CP110 Probabilità: Esame del 25 gennaio, 2011

Testo e soluzione

- 1. (6 pts) Un mazzo di 20 carte contiene 15 carte rosse e 5 carte nere. 5 carte sono estratte a caso dal mazzo. Calcolare la probabilità che tra le 5 carte estratte:
 - a) ci siano solo carte rosse
 - b) ci siano 2 carte rosse e 3 nere

Soluzione: Il numero di estrazioni possibili è $\binom{20}{5}$. Quelle con 5 carte rosse sono $\binom{15}{5}$ e quelle con 2 rosse e 3 nere sono $\binom{15}{2} \times \binom{5}{3}$. Quindi si ha

$$a) \quad \frac{\binom{15}{5}}{\binom{20}{5}}$$

$$b) \quad \frac{\binom{15}{2} \times \binom{5}{3}}{\binom{20}{5}}$$

- 2. (6 pts) Tra le ore 8:00 e le ore 10:00 un centralino riceve telefonate secondo un processo di Poisson con una media di due telefonate ogni dieci minuti. Calcolare
 - a) il numero medio di chiamate ricevute tra le 8:00 e le 9:00
 - b) la probabilità di non avere ricevuto chiamate tra le 8:00 e le 8:20
 - c) la probabilità che ci siano più di due chiamate tra le 8 e le 8:10

Soluzione:

- a) Il numero di chiamate tra le 8:00 e le 9:00 è dato da una variabile di Poisson di parametro $\lambda = 2 \times 6 = 12$. Quindi il numero medio di chiamate in questo intervallo di tempo è pari a 12
- b) Il numero di chiamate tra le 8:00 e le 8:20 è dato da una variabile di Poisson di parametro $\lambda = 2 \times 2 = 4$. Quindi la prob. di zero chiamate è data da e^{-4} .
- c) Il numero di chiamate tra le 8:00 e le 8:10 è dato da una variabile di Poisson di parametro $\lambda=2\times 1=2$. Quindi la prob. di più di due chiamate tra le 8 e le 8:10 è data da $1-Prob(0)-Prob(1)-Prob(2)=1-e^{-2}(1+2+2)=1-5e^{-2}$.

- 3. (6 pts) Per una catena di Markov a tre stati, le probabilità di salto da A a B, da B a C, e da C a A sono uguali a 1/3, e la probabilità di restare fermi è uguale a 2/3.
 - a) Scrivere la matrice di transizione della catena e calcolarne la misura invariante.
 - b) Partendo da A, calcolare la probabilità di essere in C dopo tre salti

Soluzione: La matrice è data da

$$P = \begin{pmatrix} 2/3 & 1/3 & 0\\ 0 & 2/3 & 1/3\\ 1/3 & 0 & 2/3 \end{pmatrix}$$

Risolvendo il sistema $\sum_i \pi_i P_{i,j} = \pi_j$ si trova che la misura invariante π è uniforme, ossia $\pi = (1/3, 1/3, 1/3)$.

Ci sono tre modi di arrivare in C dopo tre passi se si parte da A.

- 1) Si rimane per una volta fermi in A e poi si va in B e poi in C. (Prob. $2/3 \times 1/3 \times 1/3 = 2/27$)
- 2) Si salta prima in B poi ci si ferma in B e poi si salta in C. (Prob. $1/3 \times 2/3 \times 1/3 = 2/27$)
- 3) Si salta prima in B poi in C e poi ci si ferma in C. (Prob. $1/3 \times 1/3 \times 2/3 = 2/27$) Sommando i tre casi, si ha 6/27 = 2/9.

4. (6 pts) L'intensità del traffico lungo un tratto di autostrada è misurata da un parametro $N \in \{0, 1, 2, ...\}$, e Mario stima che il tempo (in minuti) necessario a percorrere il tratto è una variabile aleatoria esponenziale di parametro $\lambda = e^{-N}$. Tuttavia, il parametro N è esso stesso soggetto a incertezza, e la società che gestisce il tratto di autostrada segnala agli automobilisti che N si può considerare con buona approssimazione distribuito come una variabile di Poisson con media 1. Quanto tempo impiegherà in media Mario a percorrere il tratto ?

Soluzione: Dato il valore di N Mario impiega in media $1/\lambda=e^N$ minuti, poiché il valor medio di un'esponenziale di parametro λ è $1/\lambda$. Se N stesso è aleatorio, allora il valor medio diventa $E[e^N]$ dove $E[\cdot]$ sta per il valore atteso. Se N è distribuita come una Poisson di parametro 1 allora si ha

$$E[e^N] = e^{-1} \sum_{k=0}^{\infty} \frac{e^k}{k!} = e^{-1} e^e = e^{(e-1)}$$
.

5. (6 pts) Un rivenditore di automobili acquista 20 automobili dalla fabbrica A e 10 dalla fabbrica B. E' noto che le automobili provenienti dalla fabbrica A hanno un difetto di carrozzeria con probabilità 0.05 mentre per le automobili provenienti dalla fabbrica B tale probabilità scende allo 0.01. Durante un'ispezione il rivenditore sceglie a caso due tra tutte le automobili e le sottopone a un test della carrozzeria.

Se nessuna delle due risulta avere il difetto, qual'è la probabilità che provengano entrambi dalla fabbrica A?

Soluzione: Sia E l'evento "nessuna delle 2 ha difetti", e F l'evento "entrambi prodotte da A". La prob. richiesta è data da

$$P(F \mid E) = P(E \mid F) \frac{P(F)}{P(E)}$$

Ora

$$P(F) = \binom{20}{2} / \binom{30}{2} = \frac{20}{30} \frac{19}{29}.$$

Inoltre (assumendo indipendenza)

$$P(E \mid F) = (0.95)^2$$

Rimane da calcolare P(E). A tal fine introduciamo gli eventi G: "una prodotta da A e una prodotta da B" e H: "entrambi prodotte da B". Si ha

$$P(E) = P(E \,|\, F)P(F) + P(E \,|\, G)P(G) + P(E \,|\, H)P(H)$$

Ora,

$$P(E \mid G) = 0.95 \times 0.99$$
, $P(G) = {20 \choose 1} \times {10 \choose 1} / {30 \choose 2} = 2 \times \frac{20}{30} \frac{10}{29}$.

In maniera analoga si calcola

$$P(E \mid H) = (0.99)^2$$
, $P(H) = {10 \choose 2} / {30 \choose 2} = \frac{10}{30} \frac{9}{29}$.

In conclusione,

$$P(F \mid E) = \frac{(0.95)^2 \times 20 \times 19}{(0.95)^2 \times 20 \times 19 + 2(0.95 \times 0.99) \times 20 \times 10 + (0.99)^2 \times 10 \times 9}$$

6.	(6 pts) Enunciare una versione del Teorema del Limite Centrale e illustrare l'enunciato con un esempio. Fornire inoltre alcuni cenni di dimostrazione del teorema.	