CP2 - Esame

14 febbraio 2007

Esercizio 1. Illustrare con esempi e cenni di dimostrazione le diverse nozioni di convergenza associate a successioni di variabili aleatorie.

Esercizio 2. Si consideri la catena di Markov con spazio degli stati $S := \{-1, 0, -1\}$ e matrice di transizione P^{ε} tale che $P^{\varepsilon}(-1, -1) = 1 - \varepsilon$, $P^{\varepsilon}(-1, 0) = \varepsilon$; $P^{\varepsilon}(0, -1) = P^{\varepsilon}(0, 1) = \frac{1}{2}$; $P^{\varepsilon}(1, 0) = \varepsilon$, $P^{\varepsilon}(1, 1) = 1 - \varepsilon$, dove $\varepsilon \in (0, 1)$ è un parametro. Ossia abbiamo

$$P^{\varepsilon} = \begin{pmatrix} 1 - \varepsilon & \varepsilon & 0\\ \frac{1}{2} & 0 & \frac{1}{2}\\ 0 & \varepsilon & 1 - \varepsilon \end{pmatrix}$$

- (1) Calcolare le misure reversibili e invarianti associate a P^{ε} .
- (2) Per $x \in S$ assegnato, sia $\{Z_n^{\varepsilon,x}, n \in \mathbb{N}\}$ la catena di Markov con stato iniziale $Z_0^{\varepsilon,x} = x$ e matrice di transizione P^{ε} . Mostrare che per ogni $\varepsilon \in (0,1)$ e per ogni $x \in S$, $Z_n^{\varepsilon,x}$ converge in distribuzione, per $n \to \infty$, a una v.a. Y^{ε} indipendente da x.
- (3) Mostrare che a sua volta la Y^{ε} converge in distribuzuione per $\varepsilon \to 0$ e calcolarne il limite.

Esercizio 3. Siano X_1, \ldots, X_k v.a. indipendenti con distribuzione geometrica di parametro $p \in (0,1)$. Mostrare che per ogni $k \in \mathbb{N}$ fissato, la v.a.

$$p(X_1 + \cdots X_k)$$

converge in distribuzione per $p \to 0$ e descriverne il limite.

Esercizio 4. Siano Y_n , $n \in \mathbb{N}$ variabili indipendenti con distribuzione di Poisson di parametro $\lambda_n := \frac{1}{n^{\alpha}}$, dove $\alpha > 0$ è assegnato. Dimostrare che $Y_n \to 0$ quasi certamente, per $n \to \infty$, se e solo se $\alpha > 1$. Se $m \in \mathbb{N}$ è fissato, per quali valori di $\alpha > 0$ si ha $\limsup_{n \to \infty} Y_n \geqslant m$ quasi certamente?

Esercizio 5. Sia X_n , $n \in \mathbb{N}$ la passeggiata aleatoria simmetrica su \mathbb{Z} con condizione iniziale $X_0 = 0$ e sia \mathcal{F}_n la filtrazione naturale associata. Sia τ il tempo di primo ritorno in 0. Dimostrare che

- (1) τ è un tempo di arresto rispetto a \mathcal{F}_n
- (2) $\mathbb{P}(\tau < \infty) = 1$
- (3) $\mathbb{E}[\tau] = +\infty$

Esercizio 6. Sia X una v.a. su uno spazio di probabilità $(\Omega, \mathcal{F}, \mathbb{P})$ e sia \mathcal{G} una sotto sigma algebra di \mathcal{F} . Discutere con cenni di dimostrazione l'esistenza e l'unicità dell'aspettazione condizionata $\mathbb{E}[X \mid \mathcal{G}]$.