Esercizi CP2 per Primo Esonero

Pietro Caputo 3 novembre 2006

Esercizio 1. Siano X_1, X_2, \ldots variabili di Bernoulli (p) indipendenti, $p \in (0,1)$.

- 1) Mostrare che $\frac{1}{n}\sum_{i\leq n} X_i \to p$, \mathbb{P} -q.c. 2) Mostrare che $\frac{1}{n}\sum_{i\leq n} (X_i p)^2 \to p(1-p)$, \mathbb{P} -q.c.

Esercizio 2. Siano X_1, X_2, \ldots variabili di Bernoulli (p) indipendenti, $p \in (0,1)$. Mostrare che per $\alpha > \frac{1}{2}$ si ha

$$\frac{1}{n^{\alpha}} \sum_{i \le n} (X_i - p) \to 0, \quad \mathbb{P} - q.c..$$

Esercizio 3. Sia $(\Omega, \mathcal{F}, \mathbb{P})$ un dato spazio di probabilità. Sia $\mathcal{G} \subset \mathcal{F}$ una sotto σ -algebra finita.

- 1) Dimostrare che esistono insiemi $\Omega_1, \ldots, \Omega_n$ tali che
 - $\Omega_i \cap \Omega_j = \emptyset$,
 - $\bullet \ \Omega = \bigcup_{i=1}^n \Omega_i \,,$
 - Per ogni $G \in \mathcal{G}$, esitsono i_1, \ldots, i_m tali che $G = \bigcup_{k=1}^m \Omega_{i_k}$.
- 2) Sia $f:\Omega\to\mathbb{R}$ una funzione \mathcal{G} -misurabile. Mostrare che f è costante su ciascuno degli insiemi Ω_i .

Esercizio 4. Siano X_1 e X_2 v.a. indipendenti con X_i variabile di Poisson di parametro $\lambda_i > 0, i = 1, 2.$ Sia $X = X_1$ e $Z = X_1 + X_2$. Calcolare l'aspettazione condizionata $\mathbb{E}[X \mid Z]$.

Esercizio 5. Siano $\{X_n\}_{n\in\mathbb{N}}$ v.a. indipendenti tali che

$$X_n = \begin{cases} \frac{1}{n^{\alpha}} & con \ prob. \ 1 - \frac{1}{n^{\alpha}} \\ 1 & con \ prob. \ \frac{1}{n^{\alpha}} \end{cases}$$
 (0.1)

per qualche $\alpha > 0$. Mostrare che:

- 1) $\mathbb{E}X_n \to 0$, $n \to \infty$, per ogni $\alpha > 0$.
- 2) $X_n \to 0$, $n \to \infty$, \mathbb{P} -q.c., per ogni $\alpha > 1$.
- 3) $\limsup_{n\to\infty} X_n = 1$, \mathbb{P} -q.c., per ogni $\alpha \in (0,1]$.

Esercizio 6. Siano $\{Z_n\}$ v.a. indipendenti a valori in \mathbb{R}^2 ciascuna con distribuzione uniforme sul cerchio $\mathcal{C} := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$. Sia $\{Y_n\}_{n \in \mathbb{N}}$ una successione di v.a. indipendenti con

$$Y_n = \begin{cases} 1 & con \ prob. \ p_n \\ 0 & con \ prob. \ 1 - p_n \end{cases}$$

dove $p_n \to 0$, $n \to \infty$. Assumendo che le Y_n siano indipendenti dalle Z_n e ponendo $X_n := Z_n Y_n$, mostrare che

- 1) Se $\sum_{n} p_{n} < \infty$ allora $X_{n} \to 0$, \mathbb{P} -q.c. 2) Se $\sum_{n} p_{n} = \infty$ allora $\limsup_{n \to \infty} |X_{n}| = 1$, \mathbb{P} -q.c.
- 3) Cosa cambia se il cerchio $\mathcal C$ è di raggio R>0, con $R\neq 1$?

Esercizio 7. Siano $\{X_n\}_{n\in\mathbb{N}}$ v.a. indipendenti identicamente distribuite con $X_n\geqslant 0$

$$\mathbb{P}(X_n > t) = e^{-t^{\beta}}, \quad t \geqslant 0,$$

per un certo $\beta > 0$, ossia le X_n hanno la distribuzione di Weibull di parametro β . Trovare i valori di $\alpha > 0$ tali che:

- 1) $\mathbb{P}(X_n > (\alpha \log n)^{\frac{1}{\beta}} \text{ i.o.}) = 0$
- 2) $\mathbb{P}(X_n > (\alpha \log n)^{\frac{1}{\beta}} \text{ i.o.}) = 1$

Esercizio 8. Siano $\{Y_n\}_{n\in\mathbb{N}}$ i.i.d. tali che

$$Y_n = \begin{cases} 1 & con \ prob. \ \frac{1}{2} \\ -1 & con \ prob. \ \frac{1}{2} \end{cases}$$
 (0.2)

Sia X_n definita da: $X_0 = 0$, $X_{n+1} = X_n + Y_{n+1}$, $n \in \mathbb{N}$. Mostrare che

- 1) $\limsup_{n\to\infty} X_n = +\infty$, $\mathbb{P} q.c.$ 2) $\liminf_{n\to\infty} X_n = -\infty$, $\mathbb{P} q.c.$
- 3) $\mathbb{P}[X_n = 0, \text{ i.o.}] = 1$

Esercizio 9. Siano $\{Y_n\}_{n\in\mathbb{N}}$ v.a. indipendenti tali che

$$Y_n = \begin{cases} 0 & con \ prob. \ \varepsilon_n \\ 1 & con \ prob. \ 1 - \varepsilon_n \end{cases}$$
 (0.3)

dove $\varepsilon_n \in (0,1)$ e $\varepsilon_n \to 0$, $n \to \infty$. Sia

$$Z_n = \prod_{k=1}^n Y_k \,.$$

Mostrare che $\mathbb{P}[\lim_{n\to\infty} Z_n = 0] < 1$ se e solo se

$$\sum_{k=1}^{\infty} \varepsilon_k < \infty.$$

Soluzione Esercizio 1: 1) Sia $S_n = \sum_{k=1}^n Y_k$, con $Y_k := X_k - p$. Allora, poiché $|Y_k| \leq 1$ si ha, per ogni n:

 $\mathbb{E}(S_n^4) \leqslant 3 \, n^2 \, .$

Quindi se $E_n = \{|S_n| > \varepsilon n\}$, tramite la disuguaglianza di Markov si ottiene

$$\mathbb{P}(E_n) \leqslant \frac{3}{\varepsilon^4 \, n^2} \, .$$

Essendo $\sum_{n} \mathbb{P}(E_n) < \infty$ il primo Lemma di Borel–Cantelli implica che lim sup E_n ha probabilità 0. Ne segue che $\frac{1}{n} S_n \to 0$ quasi certamente. Per il punto 2) si ripete esattamente il ragionamento esposto sopra ma questa volta si usa $Y_k := (X_k - p)^2 - p(1 - p)$.

Soluzione Esercizio 2: Sia $\Lambda(\lambda) := \log \mathbb{E}[e^{\lambda Y_n}]$, con $Y_n := X_n - p$. Sia $S_n = \sum_{i \leq n} Y_i$. Grazie all'indipendenza delle Y_n si ha

$$\mathbb{E}[e^{\lambda S_n}] = \prod_{i \leq n} \mathbb{E}[e^{\lambda Y_i}] = e^{n \Lambda(\lambda)}.$$

Tramite la disuguaglianza di Markov, per ogni $\lambda > 0$ si ha

$$\mathbb{P}[S_n \geqslant \varepsilon \, n^{\alpha}] = \mathbb{P}[e^{\lambda \, S_n} \geqslant e^{\lambda \, \varepsilon \, n^{\alpha}}] \leqslant e^{-\lambda \, \varepsilon \, n^{\alpha}} \, \mathbb{E}[e^{\lambda \, S_n}] = e^{-\lambda \, \varepsilon \, n^{\alpha}} \, e^{n \, \Lambda(\lambda)} \,. \tag{0.4}$$

Osserviamo che $\Lambda(\lambda) = \log[pe^{\lambda(1-p)} + (1-p)e^{-\lambda p}]$. Si ha $\Lambda(0) = 0$. La disuguaglianza di Jensen applicata alla funzione esponenziale mostra che $\Lambda(\lambda) \geq 0$. La derivata prima in zero soddisfa $\Lambda'(0) = \mathbb{E}Y_n = 0$ mentre la derivata seconda in zero vale

$$\Lambda''(0) = \text{Var} Y_n = p(1-p).$$

Inoltre si vede facilmente che $\Lambda''(\lambda)$ è uniformemente limitata intorno al punto $\lambda=0$. Ne segue in particolare, facendo uno sviluppo al secondo ordine intorno a $\lambda=0$, che $\Lambda(\lambda) \leq C \lambda^2$, per una costante finita C, per tutti i valori di λ abbastanza piccoli. Dalla (0.4) possiamo allora concludere che se $\lambda=n^{-\frac{1}{2}}$ si ha

$$\mathbb{P}[S_n \geqslant \varepsilon \, n^{\alpha}] \leqslant e^{-\varepsilon \, n^{\alpha - \frac{1}{2}}} \, e^C$$

Se $\alpha>\frac{1}{2}$ allora $\sum_n \mathbb{P}[S_n\geqslant \varepsilon\, n^\alpha]<\infty$ e le usuali considerazioni mostrano che lim sup $n^{-\alpha}S_n\leqslant 0$ q.c. Ripetendo lo stesso argomento per $-S_n$ al posto di S_n si ottiene $\sum_n \mathbb{P}[S_n\leqslant -\varepsilon\, n^\alpha]<\infty$ per ogni $\varepsilon>0$ e dunque lim inf $n^{-\alpha}S_n\geqslant 0$ q.c. Ne segue che lim $n^{-\alpha}S_n=0$ q.c.

Soluzione Esercizio 3: Sia $\mathcal{G} = \{G_1, \dots, G_n\}$. Per ogni *i* definiamo

$$G_i^1 = G_i$$
, $G_i^0 = \Omega \setminus G_i$.

Sia ora $v = (v_1, \dots, v_n), v_i \in \{0, 1\}$. Poniamo

$$G^v = \bigcap_{i=1}^n G_i^{v(i)} .$$

Osserviamo che $G^v \cap G^{v'} = \emptyset$, se $v \neq v'$. Infatti $v \neq v'$ significa $v_j \neq v'_j$ per qualche j. Quindi se per esempio $v_j = 1$ e $v'_j = 0$ si ha $G^v \subset G_j$ mentre $G^{v'} \subset G_j^c$.

Inoltre ogni G_k si puo' ottenere come unione di G^v al variare di $v \in \{0,1\}^n$. Per esempio G_1 si ottiene facendo l'unione di G^v al variare di v tali che $v_1 = 1$.

Basta quindi mostrare che $\Omega = \bigcup_v G^v$. Sia $\omega \in \Omega$. Allora per ogni j si ha $\omega \in G_j$ oppure $\omega \in G_j^c$. Ne segue che per ogni $\omega \in \Omega$ esiste un $v \in \{0,1\}^n$ tale che $\omega \in G_v$. Questo conclude la dimostrazione del punto 1.

Sia f una funzione \mathcal{G} -misurabile. Quindi

$$\sigma(f) = \{f^{-1}(B), B \text{ boreliano}\} \subset \mathcal{G}$$

Notiamo che f assume un numero finito di valori (altrimenti $\sigma(f)$ non potrebbe essere finita). Siano $\{x_1,\ldots,x_n\}$ i valori assunti da f. Notiamo che il numero di valori distinti non puo' superare il numero di insiemi distinti di \mathcal{G} . Quindi se $U_i = f^{-1}(x_i)$, si ha $U_i \in \mathcal{G}$ e per il punto precedente si puo' scrivere U_i come unione $\bigcup_{v \in I_i} G^v$, per qualche insieme di indici I_i . Allora $f(\omega) = x_i$ per ogni $\omega \in G^v$, $v \in I_i$. Ne segue che f non puo' che assumere un unico valore su ciascuno degli elementi G^v .

Soluzione Esercizio 4: Si ha $\mathbb{P}(X_i = k) = e^{-\lambda_i \frac{\lambda_i^k}{k!}}, k = 0, 1, 2, \dots$ Quindi

$$\mathbb{P}(Z=n) = \sum_{k=0}^{n} \mathbb{P}(X_1 = k) \mathbb{P}(X_2 = n - k) = e^{-(\lambda_1 + \lambda_2)} \frac{(\lambda_1 + \lambda_2)^n}{n!},$$

ovvero la somma di Poisson indipendenti è Poisson con parametro dato dalla somma dei parametri. Quindi se $k \leq n$ si ha

$$\mathbb{P}[X = k \mid Z = n] = \frac{\mathbb{P}[X_1 = k, X_2 = n - k]}{\mathbb{P}(Z = n)}$$
$$= \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(1 - \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^{n-k},$$

ovvero la distribuzione di X_1 condizionata al valore della somma $X_1 + X_2 = n$ è binomiale con parametri n e $p = \lambda_1/(\lambda_1 + \lambda_2)$. Ne segue che il valore aspettato di X condizionato a Z = n vale np. Quindi la v.a. $\mathbb{E}[X \mid Z]$ vale

$$\mathbb{E}[X \mid Z] = Z \, \frac{\lambda_1}{\lambda_1 + \lambda_2} \, .$$

Soluzione Esercizio 5: Osserviamo che

$$\mathbb{E}X_n = n^{-\alpha} + n^{-\alpha}(1 - n^{-\alpha}).$$

Quindi $\mathbb{E}X_n \to 0$, se $\alpha > 0$.

Se $\alpha > 1$ si ha

$$\sum_{n} \mathbb{P}(|X_n| > \varepsilon) < \infty$$

per ogni $\varepsilon > 0$. Infatti, se $n^{-\alpha} < \varepsilon$ (cioè se n è abbastanza grande) $|X_n| > \varepsilon$ è equivalente a $X_n = 1$ e quindi ha probabilità $n^{-\alpha}$ che è sommabile per $\alpha > 1$. Dal primo lemma di Borel–Cantelli segue che $X_n \to 0$ q.c.

Se $\alpha \in (0,1]$ abbiamo

$$\sum_{n} \mathbb{P}(X_n = 1) = \sum_{n} n^{-\alpha} = +\infty.$$

Dal secondo lemma di Borel–Cantelli segue che con probabilità 1 si ha $X_n=1$ infinite volte. Segue che lim sup $X_n=1$ q.c.

Soluzione Esercizio 6: 1) Osserviamo che $|Z_n| \le 1$ quindi $|X_n| \le Y_n$. In particolare, se $Y_n \to 0$ q.c. si ha anche $X_n \to 0$ q.c.

Se $\sum_n p_n < \infty$ allora per il primo lemma di Borel-Cantelli si ha $Y_n = 0$ quasi certamente da un certo n in poi. Quindi $X_n \to 0$ quasi certamente.

2) Sia $\delta > 0$ fissato e sia $\nu_n := \mathbb{P}(|X_n| \geqslant 1 - \delta)$. Si ha

$$\nu_n = \mathbb{P}(|Z_n| \geqslant 1 - \delta, Y_n = 1) = p_n \mathbb{P}(|Z_n| \geqslant 1 - \delta).$$

Poiché l'area del cerchio di raggio $1 - \delta$ è $\pi (1 - \delta)^2$ per la v.a. uniforme sul cerchio di raggio 1 (che ha area totale uguale a π) si ha

$$\mathbb{P}(|Z_n| \geqslant 1 - \delta) = \frac{\pi - \pi (1 - \delta)^2}{\pi} = 2\delta - \delta^2.$$

In conclusione abbiamo

$$\nu_n = p_n \left(2\delta - \delta^2 \right).$$

Quindi $\sum_n \nu_n = +\infty$ se $\sum_n p_n = +\infty$. Allora per il secondo lemma di Borel–Cantelli si ha $|X_n| \geqslant 1 - \delta$ infinite volte, quasi certamente. Allora lim sup $|X_n| \geqslant 1 - \delta$, \mathbb{P} –q.c. Poiché δ è arbitrariamente piccolo, le usuali considerazioni che sfruttano la numerabilità implicano che lim sup $|X_n| \geqslant 1$ q.c. Essendo inoltre $|X_n| \leqslant 1$ sempre abbiamo dimostrato che

$$\limsup |X_n| = 1$$
, $\mathbb{P} - q.c$.

nel caso in cui $\sum_{n} p_n = +\infty$.

3) Se il raggio del cerchio è arbitrario non cambia nulla, tranne che ora, nel caso in cui $\sum_n p_n = +\infty$ si ottiene $\limsup |X_n| = R$, \mathbb{P} -q.c.

Soluzione Esercizio 7: Ripetendo l'argomento usuale (vedi Williams, pag. 41, per il caso $\beta = 1$) si ha

$$\mathbb{P}(X_n > (\alpha \log n)^{\frac{1}{\beta}} \text{ i.o.}) = \begin{cases} 0 & \text{se } \alpha > 1\\ 1 & \text{se } \alpha \leqslant 1 \end{cases}$$

Soluzione Esercizio 8: L'evento $A = \{\limsup_{n\to\infty} X_n = +\infty\}$ è un evento coda e per la legge 0/1 di Kolmogorov si ha $\mathbb{P}(A) \in \{0,1\}$. Allora basta mostrare che $\mathbb{P}(A) > 0$.

Per $t \in \mathbb{R}$ sia $E_{n,t}$ l'evento $\{X_n \ge t\}$. Per il teorema del limite centrale sappiamo che X_n/\sqrt{n} approssima un normale standard nel senso che per ogni $s \in \mathbb{R}$ si ha

$$\lim_{n \to \infty} \mathbb{P}(E_{n,s\sqrt{n}}) = \frac{1}{\sqrt{2\pi}} \int_{s}^{\infty} e^{-x^2/2} dx$$

Per ogni $t, \epsilon > 0$ fissati si ha $E_{n,\epsilon\sqrt{n}} \subset E_{n,t} \subset E_{n,0}$, se n è abbastanza grande. Allora

$$\frac{1}{\sqrt{2}\pi} \int_{\epsilon}^{\infty} e^{-x^2/2} dx \leqslant \liminf_{n \to \infty} \mathbb{P}(E_{n,t}) \leqslant \limsup_{n \to \infty} \mathbb{P}(E_{n,t}) \leqslant \frac{1}{\sqrt{2}\pi} \int_{0}^{\infty} e^{-x^2/2} dx = \frac{1}{2}.$$

Poiché $\epsilon > 0$ è arbitrariamente piccolo ne segue che

$$\lim_{n\to\infty} \mathbb{P}(E_{n,t}) = \frac{1}{2},$$

per ogni t > 0 fissato.

Ora notiamo che

$$A = \bigcap_{k=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{j \geqslant n} E_{j,k}.$$

Allora

$$\mathbb{P}(A) = \lim_{k \to \infty} \lim_{n \to \infty} \mathbb{P}(\bigcup_{j \geq n} E_{j,k}) \geqslant \lim_{k \to \infty} \lim_{n \to \infty} \mathbb{P}(E_{n,k}) = \frac{1}{2}.$$

Abbiamo mostrato che $\limsup_{n\to\infty} X_n = +\infty$ quasi certamente. Allo stesso modo si mostra che $\liminf_{n\to\infty} X_n = -\infty$, per esempio usando la simmetria della X_n e il fatto che

$$\liminf_{n \to \infty} X_n = -\limsup_{n \to \infty} (-X_n).$$

Infine il punto 3) segue dal fatto che - per i punti 1) e 2) - si ha infinite volte $X_n > M$, $X_n < -M$, con M > 0 fissato, e dal fatto che X_n ha incrementi di ± 1 e pertanto se $X_i > M$ e $X_{i+k} < -M$, si deve avere $X_j = 0$ per qualche i < j < i + k.

Soluzione Esercizio 9: Abbiamo che Z_n vale 0 o 1, con $Z_n = 1$ se e solo se $Y_k = 1$, $k = 1, \ldots, n$. Quindi

$$\mathbb{P}(Z_n = 1) = (1 - \varepsilon_1) \cdots (1 - \varepsilon_n) \tag{0.5}$$

Gli argomenti di monotonia usuali mostrano che

$$\mathbb{P}[\lim_{n\to\infty} Z_n = 0] = \lim_{n\to\infty} \mathbb{P}[Z_n = 0].$$

Dalla (0.5) abbiamo che $\pi:=\lim_{n\to\infty}\mathbb{P}[Z_n=0]$ soddisfa $\pi<1$ se e solo se

$$\lim_{n\to\infty} (1-\varepsilon_1)\cdots(1-\varepsilon_n) > 0.$$
 (0.6)

Passando ai logaritmi si ha che (0.6) è equivalente a

$$\lim_{n \to \infty} \sum_{k=1}^{n} \log(1 - \varepsilon_k) > -\infty.$$
 (0.7)

Usando le disuguaglianze elementari

$$-2x \leqslant \log(1-x) \leqslant -\frac{1}{2}x \quad x \in [0, \frac{1}{2}],$$

vediamo che la (0.7) è equivalente a $\sum_k \varepsilon_k < \infty$.