CP410: Esame 2, 4 febbraio 2016

Cognome	
Nome	
Matricola	
Firma	

Nome:		

- 1. Sia $(\Omega, \mathcal{F}, \mathbb{P})$ lo spazio di probabilità $\Omega = [0, 1]$, \mathcal{F} la sigma algebra dei Boreliani e \mathbb{P} la misura di Lebesgue su Ω . Per ogni $n \in \mathbb{N}$ sia X_n la variabile aleatoria definita da $X_n(\omega) = \omega^n$, $\omega \in \Omega$.
 - (a) Scrivere la densità di probabilità X_n
 - (b) Dire se X_n converge quasi certamente.
 - (c) Dire se X_n converge in L^1 .

Soluzione: (a). Per $t \in [0,1]$ si ha $\mathbb{P}(X_n \leq t) = \mathbb{P}(X_1 \leq t^{1/n}) = t^{1/n}$. Dunque la densità di X_n vale

$$f_{X_n}(x) = \frac{1}{n} x^{1/n-1} 1_{x \in [0,1]}.$$

- (b). Fissato $\omega \in [0,1)$ si ha $X_n(\omega) \to 0$, dunque $X_n \to 0$ q.c. poiché l'insieme [0,1) ha probabilità 1.
- (c). Si, converge a zero in L^1 infatti

$$\mathbb{E}[|X_n|] = \mathbb{E}[X_n] = \int_0^1 x f_{X_n}(x) dx = 1/(n+1) \to 0.$$

Nome:	:

- 2. Siano X, Y due variabili aleatorie di media zero e varianza 1.
 - (a) Dimostrare che

$$\mathbb{P}(|XY| \geqslant t) \leqslant \frac{1}{t} \quad \forall t > 1.$$

(b) Supponendo X, Y indipendenti, dimostrare che

$$\mathbb{P}(|XY| \geqslant t) \leqslant \frac{1}{t^2} \qquad \forall t > 1.$$

Soluzione: a) Per ogni t > 0, per la disuguaglianza di Markov si ha

$$\mathbb{P}(|XY|\geqslant t)\leqslant \tfrac{1}{t}\,\mathbb{E}[|XY|].$$

Per la disuguaglianza di Cauchy-Schwarz abbiamo $\mathbb{E}[|XY|] \leq \mathbb{E}[X^2]^{1/2}\mathbb{E}[Y^2]^{1/2}=1$, dove abbiamo usato l'ipotesi di media nulla e varianza 1. Allora

$$\mathbb{P}(|XY| \geqslant t) \leqslant \frac{1}{t}.$$

La disuguaglianza vale per ogni t > 0, e in particolare per t > 1 (altrimenti è banale).

b) Sempre per la disuguaglianza di Markov, per ogni t > 0 si ha

$$\mathbb{P}(|XY| \geqslant t) = \mathbb{P}(|XY|^2 \geqslant t^2) \leqslant \frac{1}{t^2} \mathbb{E}[|XY|^2].$$

Se X,Y sono indipendenti, allora $\mathbb{E}[|XY|^2] = \mathbb{E}[X^2]\mathbb{E}[Y^2] = 1$, che implica la conclusione.

Nome:			

3. Consideriamo la passeggiata aleatoria asimmetrica S_n definita da $S_0 = 0$ e $S_n = \sum_{i=1}^n Z_i$, dove Z_i sono variabili i.i.d. tali che $Z_i = +1$ con probabilità 2/3 e $Z_i = -1$ con probabilità 1/3. Sia

$$\tau = \inf\{n \geqslant 1 : S_n = 0\},\$$

il tempo di primo ritorno nell'origine.

- (a) Calcolare $\mathbb{P}(\tau=2)$.
- (b) Calcolare $\mathbb{P}(\tau \geqslant 4)$.
- (c) Dimostrare che $\mathbb{E}[\tau] = \infty$

Soluzione: a). Per l'evento $\tau=2$ ci sono due possibilita': $\{Z_1=+1,Z_2=-1\}$ oppure $\{Z_1=-1,Z_2=+1\}$. Entrambi i casi hanno prob. $2/3\times 1/3=2/9$, dunque $\mathbb{P}(\tau=2)=4/9$.

- b). Notiamo che τ puo' assumere soltanto valori pari e necessariamente $\tau \in \{2, 4, 6, \dots\}$. Allora $\mathbb{P}(\tau \ge 4) = 1 \mathbb{P}(\tau = 2) = 5/9$.
- c) Il risultato segue da

$$\mathbb{E}[\tau] = \frac{2}{3} \mathbb{E}[\tau | Z_1 = +1] + \frac{1}{3} \mathbb{E}[\tau | Z_1 = -1] \geqslant \frac{2}{3} \mathbb{E}[\tau | Z_1 = +1],$$

e dal fatto che

$$\mathbb{E}[\tau|Z_1=+1]=+\infty.$$

Per dimostrare l'ultima identità, ossia che $\mathbb{E}[\tau|Z_1=+1]=+\infty$, possiamo argomentare come segue. Sia τ' il primo tempo n in cui $S_n=-1$ in modo che, per semplice traslazione si ha

$$\mathbb{E}[\tau|Z_1=+1]=1+\mathbb{E}[\tau'].$$

Mostriamo che $\mathbb{E}[\tau'] = +\infty$. Sia $M_n = S_n - \frac{1}{3}n$ per $n \ge 1$ e sia $M_0 = 0$. Notiamo che M_n e' una martingala a incrementi limitati. Allora se fosse $\mathbb{E}[\tau'] < \infty$ si avrebbe, per il teorema di optional stopping, $\mathbb{E}[M_{\tau'}] = M_0 = 0$. Ma $S_{\tau'} = -1$ e quindi

$$\mathbb{E}[M_{\tau'}] = \mathbb{E}[S_{\tau'}] - \frac{1}{3} \mathbb{E}[\tau'] = -1 - \frac{1}{3} \mathbb{E}[\tau'] \leqslant -1,$$

e quindi una contraddizione. Ne segue che $\mathbb{E}[\tau'] = +\infty.$

Nome:	:	

4. Siano E_1, \ldots, E_n variabili aleatorie esponenziali indipendenti, ciascuna di parametro $\lambda = \sqrt{n}$ e sia Z_n la variabile aleatoria

$$Z_n = (E_1 + \dots + E_n - \sqrt{n}).$$

Dimostrare che Z_n converge in distribuzione per $n \to \infty$, e descriverne il limite.

Soluzione: Per il teorema del limite centrale dobbiamo aspettarci che $Z_n \to N(0,1)$ in distribuzione: infatti E_i sono variabili i.i.d. con media $1/\lambda = 1/\sqrt{n}$ e deviazione standard $1/\lambda = 1/\sqrt{n}$, quindi la Z_n ha media nulla e varianza 1.

Per una dimostrazione precisa procediamo calcolando la funzione caratteristica di \mathbb{Z}_n :

$$\varphi_{Z_n}(\theta) = \mathbb{E}[e^{i\theta Z_n}] = e^{-i\theta\sqrt{n}}\mathbb{E}[e^{i\theta E_1}]^n.$$

Per la variabile esponenziale E_1 di parametro $\lambda = \sqrt{n}$ si ha

$$\mathbb{E}[e^{i\theta E_1}]^n = \frac{1}{(1 - i\theta/\lambda)^n} = \frac{1}{(1 - i\theta/\sqrt{n})^n}.$$

Usando lo sviluppo $e^x = 1 + x + x^2/2 + o(x^2)$ si ha

$$1 - i\theta/\sqrt{n} = e^{-i\theta/\sqrt{n}} (1 + \frac{\theta^2}{2n} + o(1/n)),$$

e dunque

$$\mathbb{E}[e^{i\theta E_1}]^n = e^{i\theta\sqrt{n}}(1 + \frac{\theta^2}{2n} + o(1/n))^{-n}.$$

Dunque

$$\varphi_{Z_n}(\theta) = (1 + \frac{\theta^2}{2n} + o(1/n))^{-n} \to e^{-\frac{\theta^2}{2}},$$

per ogni $\theta \in \mathbb{R}$, che equivale al risultato $Z_n \to N(0,1)$ in distribuzione.

Nome:			
_			

5. Per ogni $t \ge 0$ definiamo

$$Q_t = \{(x, y) \in \mathbb{R}^2 : |x| \le t \text{ e } |y| \le t\}.$$

Siano $\{Y_k,\ k\in\mathbb{N}\}$ variabili aleatorie i.i.d. con distribuzione uniforme sul quadrato Q_1 e poniamo

$$U_n = \sum_{k=1}^{n} 1_{Y_n \in Q_{r_n}} ,$$

dove r_n è una successione tale che $r_n \ge 0$ e $r_n \to 0$. Trovare una condizione necessaria e sufficiente sulla successione $\{r_n\}$ per avere che $U_n \to \infty$ quasi certamente.

Soluzione:

Notiamo che Q_t ha area $4t^2$ e gli eventi $E_n = \{Y_n \in Q_{r_n}\}$ soddisfano

$$\mathbb{P}(E_n) = \frac{\text{area}(Q_{r_n})}{\text{area}(Q_1)} = 4r_n^2/4 = r_n^2,$$

per ogni n tale che $0 \le r_n \le 1$. Inoltre $U_n \to \infty$ se e solo se $\{E_n, i.o.\}$. La conclusione segue dunque dai lemmi di Borel-Cantelli I e II: Si ha $U_n \to \infty$ se e solo se $\sum_n r_n^2 < \infty$.

Nome:			

6. Enunciare e dimostrare una versione della legge forte dei grandi numeri.

Nome:			
_			