CP410: Esame 3, 22 giugno 2015

Cognome	
Nome	
Matricola	
Firma	

Nome:_____

1. Sia $(\Omega, \mathcal{F}, \mathbb{P})$ lo spazio di probabilità definito da $\Omega = [0, 1] \times [0, 1] \times [0, 1]$, \mathcal{F} la sigma algebra dei Boreliani e \mathbb{P} la misura di Lebesgue su Ω . Per ogni $\omega = (\omega_1, \omega_2, \omega_3) \in \Omega$, definiamo

$$X(\omega) = \omega_1$$

$$Y(\omega) = \omega_2,$$

$$Z(\omega) = \omega_1 + \omega_2 + \omega_3.$$

- (a) Dire se X, Y, Z sono variabili indipendenti.
- (b) Calcolare il valore atteso $\mathbb{E}[(X^2 + Y^2)Z]$
- (c) Descrivere la variabile aleatoria $\mathbb{E}[Z|X]$

Soluzione: (a). Le variabili non sono indipendenti: per esempio gli eventi $A = \{\omega \in \Omega : X(\omega) \geq 1/2\}, B = \{\omega \in \Omega : Y(\omega) \geq 1/2\}, C = \{\omega \in \Omega : Z(\omega) \leq 1/2\}$ soddisfano $A \cap B \cap C = \emptyset$ e dunque:

$$0 = \mathbb{P}(A \cap B \cap C).$$

Inoltre $\mathbb{P}(A) = \mathbb{P}(B) = 1/2$, e

$$\mathbb{P}(C) = \int_{x_1 + x_2 + x_3 \le 1/2} dx_1 dx_2 dx_3 > 0.$$

Dunque

$$\mathbb{P}(A \cap B \cap C) \neq \mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C).$$

(b). Il valore atteso $\mathbb{E}[\,(X^2+Y^2)Z\,]$ vale

$$\mathbb{E}[\,(X^2+Y^2)Z\,]=\mathbb{E}[X^2Z]+\mathbb{E}[Y^2Z]=2\mathbb{E}[X^2Z].$$

Sia W=Z-X. Allora X e W sono indipendenti e $\mathbb{E}[W]=1$. Usando $\mathbb{E}[X^2]=1/3$ e $\mathbb{E}[X^3]=1/4$ abbiamo

$$\mathbb{E}[X^2 Z] = \mathbb{E}[X^3] + \mathbb{E}[X^2 W] = 1/4 + \mathbb{E}[X^2] \mathbb{E}[W] = 1/4 + 1/3 = \frac{7}{12}.$$

Ne segue che $\mathbb{E}[(X^2 + Y^2)Z] = 7/6.$

(c). Se W=Z-X, allora X e W sono indipendenti, $\mathbb{E}[W|X]=\mathbb{E}[W]=1,$ e

$$\mathbb{E}[\,Z\,|X\,] = \mathbb{E}[X+W|X\,] = \mathbb{E}[X|X] + \mathbb{E}[W|X\,] = X+1.$$

Nome			

2. Enunciare e dimostrare il teorema del limite centrale.

Nome:

- 3. Sia X_n una successione di variabili aleatorie indipendenti tale che X_n converge quasi certamente alla variabile X uniforme in [0,1]. Per ciascuna delle seguenti affermazioni dire se è vera o falsa, motivando la risposta.
 - (a) $\lim_{n\to\infty} \mathbb{P}(|X_n| \geqslant 2) = 0$.
 - (b) $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| \ge \frac{3}{2}) = +\infty.$
 - (c) $\sum_{n=1}^{\infty} \mathbb{P}(X_n \leq -0.1) < +\infty$.

Soluzione: (a). Se $X_n \to X$ quasi certamente, allora $X_n \to X$ in probabilità: per ogni $\varepsilon > 0$ si ha $\mathbb{P}(|X_n - X| > \varepsilon) \to 0$, $n \to \infty$. Essendo $X \in [0, 1]$, l'evento $|X_n| \ge 2$ implica $|X_n - X| \ge 1$ e quindi $\mathbb{P}(|X_n| \ge 2) \to 0$, $n \to \infty$. Dunque (a) è vera.

- (b). Supponiamo per assurdo che (b) sia vera. Allora per il lemma di Borel-Cantelli 2 si avrebbe $|X_n| \ge 3/2$ infinite volte, quasi certamente. Ma questo contraddice $X_n(\omega) X(\omega) \to 0$ per quasi ogni ω , se $X(\omega) \in [0,1]$. Dunque (b) è falsa.
- (c). Supponiamo per assurdo che (b) sia falsa. Allora per il lemma di Borel-Cantelli 2 si avrebbe $X_n \leqslant -0.1$ infinite volte, quasi certamente. Come sopra, questo contraddice l'ipotesi di convergenza quasi certa $X_n \to X$. Dunque (c) è vera.

Nome:_____

4. Siano X_k , $k=1,2,\ldots$ variabili di Bernoulli di parametro 1/2 indipendenti e poniamo $Y_n=\sum_{k=1}^n(X_k-1/2)$. Per $\ell\in\mathbb{N}$ fissato, sia

$$\tau_{\ell} = \inf\{n \geqslant 1 : |Y_n| = \ell/2\}.$$

- (a) Calcolare $\mathbb{E}[\tau_{\ell}]$ in funzione di ℓ .
- (b) Sapendo che $Y_1 = 1/2$, calcolare il valore atteso di τ_2 .

Soluzione: (a). Se scriviamo $S_n = 2Y_n$ otteniamo la posizione al tempo n di una passeggiata semplice e simmetrica con condizione iniziale $S_0 = 0$. Allora gli argomenti usuali di martingala permettono di calcolare $\mathbb{E}[\tau_\ell] = \ell^2$.

(b). Abbiamo

$$\mathbb{E}[\tau_2 \mid Y_1 = 1/2] = \mathbb{E}[\tau_2 \mid S_1 = 1]$$

= 1 + \mathbb{E}[\tau_2 - \tau_1 \setminus S_1 = 1].

Osserviamo che, partendo da $S_1=1$, possiamo avere $S_2=0$ oppure $S_2=2$. Se condizioniamo a $S_2=2$ allora $\tau_2-\tau_1=1$, mentre se condizioniamo a $S_2=0$, allora $\tau_2-\tau_1$ è una variabile aleatoria con la stessa distribuzione di $1+\tau_2$, con il tempo τ_2 relativo alla passeggiata aleatoria incondizionata che parte da $S_0=0$. Dunque

$$\mathbb{E}[\tau_2 - \tau_1 | S_1 = 1] = \mathbb{P}(S_2 = 2 | S_1 = 1) + (1 + \mathbb{E}[\tau_2]) \mathbb{P}(S_2 = 0 | S_1 = 1) = \frac{1}{2} + \frac{1}{2} (1 + \mathbb{E}[\tau_2]).$$

Usando $\mathbb{E}[\tau_2] = 4$ abbiamo $\mathbb{E}[\tau_2 \mid Y_1 = 1/2] = 4$.

Notiamo che lo stesso risultato si poteva ottenere osservando che per simmetria

$$\mathbb{E}[\tau_2 \,|\, Y_1 = 1/2] = \mathbb{E}[\tau_2 \,|\, Y_1 = -1/2],$$

e dunque

$$4 = \mathbb{E}[\tau_2] = \mathbb{P}(Y_1 = 1/2)\mathbb{E}[\tau_2 \mid Y_1 = 1/2] + \mathbb{P}(Y_1 = -1/2)\mathbb{E}[\tau_2 \mid Y_1 = -1/2] = \mathbb{E}[\tau_2 \mid Y_1 = 1/2].$$

Nome:_____

5. Siano Z_j , $j\in\mathbb{N}$, variabili aleatorie indipendenti tali che $Z_j=1+j^{-1}$ con probabilità $1-j^{-1}$, $Z_j=1$ con probabilità j^{-2} , e $Z_j=0$ con probabilità $j^{-1}-j^{-2}$. Sia

$$M_n = \prod_{j=1}^n Z_j.$$

- (a) M_n converge quasi certamente?
- (b) M_n converge in L^1 ?
- (c) M_n converge in L^2 ?

Soluzione: (a). Notiamo che $Z_j \geqslant 0$ e

$$\mathbb{E}[Z_j] = (1+j^{-1})(1-j^{-1}) + j^{-2} = 1.$$

Allora M_n è martingala limitata in L^1 . Pertanto converge quasi certamente. Inoltre

$$\sum_{j=1}^{\infty} \mathbb{P}(Z_j = 0) = \sum_{j=1}^{\infty} (j^{-1} - j^{-2}) = +\infty.$$

Allora per il lemma di Borel-Cantelli 2 si ha $Z_j=0$ infinite volte quasi certamente. In particolare, $M_n\to 0$ quasi certamente.

- (b). Se $M_n \to 0$ q.c. allora M_n non converge in L^1 , altrimenti non potrebbe valere $\mathbb{E}[M_n] = 1$.
- (c). Se M_n non converge in L^1 allora non può convergere in L^2 .

Nome:	:	

6. Siano X,Y variabili aleatorie indipendenti con funzioni caratteristiche:

$$\varphi_X(\theta) = e^{-\frac{\theta^2}{2}}, \quad \varphi_Y(\theta) = e^{-\frac{3\theta^2}{2}}, \quad \theta \in \mathbb{R}.$$

- (a) Calcolare la funzione caratteristica di X+2Y.
- (b) Calcolare $\mathbb{E}[(X Y)^2]$

Soluzione: Sappiamo che la normale $N(\mu, \sigma^2)$ ha funzione caratteristica $\varphi(\theta) = e^{-\frac{1}{2}\theta^2\sigma^2 + i\theta\mu}$. Allora $X \in N(0, 1)$, mentre $Y \in N(0, 3)$.

(a). Per l'indipendenza si ha X + 2Y = N(0, 13), e dunque

$$\varphi_{x+2Y}(\theta) = e^{-\frac{13}{2}\theta^2}.$$

(b). Inoltre

$$\mathbb{E}[(X - Y)^2] = \mathbb{E}[X^2] - 2\mathbb{E}[XY] + \mathbb{E}[Y^2] = \text{Var}[X] + \text{Var}[Y] = 4.$$

Nome:			
_			