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Abstract: We prove tight bounds on the relaxation time of the so called L–

reversal chain, introduced by R. Durrett as a stochastic model for the evolution

of chromosome chains. The process is described as follows: we have n distinct

letters on the vertices of the n–cycle (Zmod n); at each step a connected subset

of the graph is chosen uniformly at random among all those of length at most L

and the current permutation is shuffled by reversing the order of the letters over

that subset. We show that the relaxation time τ(n,L), defined as the inverse of

the spectral gap of the associated Markov generator, satisfies τ(n,L) = O(n ∨
n3

L3 ). Our results can be interpreted as a strong evidence for a conjecture of R.

Durrett of a similar behavior for the mixing time of the chain.
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gap.
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1. Introduction, models and results

In a series of recent papers R. Durrett has proposed stochastic models based on

shuffling rules for the analysis of the evolution of chromosomes [6, 7, 8]. One

of the main issues is that of determining the time needed for such processes to

reach stationarity. Besides proving several results in this direction and discussing

possible applications he pointed out a number of interesting conjectures. One

of them refers to the so–called L–reversal model which is described as follows.

We consider a chain (the chromosome) of n distinct genes, so that the con-

figuration of the system at any given time is a permutation η of n letters over n

vertices. The vertices are lying on a circle and we take the graph structure of the

n–cycle (where each vertex is connected to exactly two vertices). Given an inte-

ger L 6 n, one step of the L–reversal process is described as follows: uniformly

at random we pick a vertex x and, independently, choose a number 1 6 ` 6 L.

Given x and ` we perform the transition η → ηx,`, where ηx,` is obtained from

η by reversing the order of the letters in the segment {x, x+ 1, . . . , x + `} with

the sums taken modulo n. Note that the probability for the transition η → ηx,`

coincides with that of the transition ηx,` → η and therefore we have reversibility

with respect to the uniform distribution ν over all n! configurations. As in [6]

we consider the continuous time version of the L–reversal dynamics in which

the steps described above are performed at the arrival times of an independent

rate 1 Poisson process. This defines a continuous time Markov chain converging

to the uniform distribution ν.

Let T (n, L) denote the mixing time of the chain, i.e.

T (n, L) = inf {t > 0 : ‖pt − ν‖TV 6 1/e} , (1)

where ‖ · ‖TV stands for the total variation distance and pt denotes the distri-

bution of the configuration at time t for the process started from some arbitrary

(i.e. completely ordered) configuration η (note that ‖pt−ν‖TV does not depend
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on the chosen η because ν is the uniform measure).

The striking conjecture in [6] (see also Problem 4.1 in [8]) is that the mixing

time T (n, L) of the L–reversal process should satisfy

1

C

(
n ∨ n

3

L3

)
logn 6 T (n, L) 6 C

(
n ∨ n

3

L3

)
logn , (2)

for some universal constant C < ∞. Here, for numbers a, b we use a ∨ b to

denote the maximum max{a, b}. Note that when L = 1 we have the usual

transposition dynamics on the n–cycle which has been studied in great detail,

see e.g. [4, 5, 10, 12, 13]. In particular the conjecture is known to hold in this

case. Of most interest are the cases L = nα, α ∈ (0, 1).

To support the conjectured bounds in (2), Durrett uses an adaptation of Wil-

son’s method to estimate mixing times [13]. In this way, by a careful choice of

the slow modes of relaxation he proves the lower estimates in (2). As for the

upper estimates, by comparison with random transposition he proves that

T (n, L) 6 C n3

L2
logn . (3)

When L = nα, α ∈ (0, 1), the estimate (3) is off by a factor of order nα for

α 6 2/3 and n2(1−α) for α > 2/3 . This shows that the comparison with trans-

positions is efficient only in the two extreme regimes α ∈ {0, 1}. We are not able

to prove (nor disprove) the desired upper bound in (2) but we considered the

problem of establishing similar estimates for the relaxation time τ(n, L), i.e. the

inverse of the spectral gap of the chain. What we find confirms the predicted

behavior, at least at the level of the spectral gap.

To describe our main result we introduce some notation. For any function f of

the configurations we write ν[f ] = 1
n!

∑
η f(η) for its expectation and Var(f) =

ν[f2] − ν[f ]2 for its variance w.r.t. the uniform measure ν. Also, we write fx,`

for the function η → f(ηx,`) and Rx,`f = fx,` − f for the associated gradient.
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The Dirichlet form of the L–reversal dynamics introduced above is

E(f, f) =
1

2

1

nL

n∑

x=1

L∑

`=1

ν[(Rx,`f)2] . (4)

The relaxation time is then given by

τ(n, L) = sup
f

Var(f)

E(f, f)
, (5)

with the supremum taken over all non–constant functions f .

Our main result reads as follows.

Theorem 1.1. There exists C <∞ such that for any n > 2, any 1 6 L 6 n

1

C

(
n ∨ n

3

L3

)
6 τ(n, L) 6 C

(
n ∨ n

3

L3

)
. (6)

As usual the lower estimate in (6) can be obtained by a suitable choice of test

functions, see Section 3 for details. To obtain a sharp upper bound on τ(n, L)

the argument is more delicate. Here we combine new comparison arguments

with an improved iteration scheme inspired by recent work of Carlen, Carvalho

and Loss [3]. We refer to the beginning of next section for a brief description

of the main idea of the proof. Our method allows to derive sharp estimates

for more general models in the class of so–called p–reversal processes, where

each inversion η → ηx,` is performed with probability p(`), with p a probability

vector on {1, . . . , n}. The L–reversal process (4) is then obtained for p(`) = 1
L ,

` = 1, . . . , L. The so–called θ–reversal process is defined by p(`) ∝ θ`, θ ∈ (0, 1),

with Dirichlet form

Eθ(f, f) =
1

2

(1− θ)
n

n∑

x=1

n∑

`=1

θ`−1 ν[(Rx,`f)2] . (7)

In this case, calling τ(n, θ) the relaxation time associated to (7) we obtain

Theorem 1.2. There exists C <∞ such that for any n > 2, any θ ∈ (0, 1)

1

C
(n ∨ [n(1− θ)]3) 6 τ(n, θ) 6 C (n ∨ [n(1− θ)]3) . (8)
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We conclude this introduction with a last remark on Durrett’s conjecture (2).

It is well known that T (n, L) > τ(n, L)/C. On the other side an application of

standard bounds (see e.g. Theorem 2.1.7 in [12]) only gives

T (n, L) 6 C τ(n, L) log(n!) .

Better estimates can be obtained if one considers the decay of relative entropy

functionals rather than L2–norms. Namely, let β(n, L) denote the entropy dissi-

pation constant given by

β(n, L) = sup
f>0

Ent(f)

E(f, log f)
, (9)

with the supremum taken over all positive non–constant functions. Here we use

the standard notation Ent(f) = ν[f log f ] − ν[f ] log ν[f ] for the entropy of f . It

is not hard (see e.g. Corollary 2.8 in [1]) to obtain the bound

T (n, L) 6 Cβ(n, L) log log(n!) .

Therefore the conjecture (2) would follow if we could prove the bounds (6)

with τ replaced by β. Despite recent progress in the understanding of entropy

dissipation in various reversible Markov chains, the extension of our techniques

to this case remains a challenging problem.

It is perhaps interesting to observe that the predicted mixing time cannot be

derived from logarithmic Sobolev inequalities here. Indeed, we will show that

if s(n, L) denotes the log–Sobolev constant (obtained as in (9) with E(
√
f,
√
f)

in place of E(f, log f)) then

s(n, L) > n2

C L
. (10)

Comparing with the bounds of Theorem 1.1, for L = nα the bound (10) shows

that s(n, L) > τ(n, L)n2α−1 when 1/2 6 α 6 2/3 and s(n, L) > τ(n, L)n1−α

when α > 2/3. While comparison with random transposition can always be used

to prove an upper bound of the form s(n, L) 6 C (n3/L2) logn (see e.g. Theo-

rem 6 in [6]), it remains an open question to understand the true asymptotic

behavior in L, n for the log–Sobolev constant.
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The rest of the paper consists of two sections: in the first we shortly outline

the proof of the upper bound on the relaxation time, develop all the technical

parts of our approach and finally prove the corresponding estimates of Theorem

1.1 and Theorem 1.2. In the final section we prove the matching lower bounds

and derive the estimate (10) on the log–Sobolev constant.

2. Upper bounds

The main idea for the proof of the upper bounds in Theorems 1.1, 1.2 is to

compare the L-reversal chain with (an average over ` ≤ L of) a suitable “block

dynamics” on scale ` that we may call the block–average dynamics. Such an

auxiliary process seems to be at the heart of several shuffling chains and it can

be described informally as follows (see Subsection 2.3 below for the formal

definition).

Assume for simplicity that n = N` for some integers N, ` and partition the

vertices {1, 2, . . . , n} into N non-overlapping blocks {Ii} of length `. Then, with

rate 1/N , a pair of blocks is chosen, say Ii and Ij , and the letters inside Ii ∪ Ij
are uniformly re–shuffled over the vertices of Ii ∪ Ij . We refer to this move as

an “average” of the two blocks Ii, Ij . A first key step consists then in proving

that the relaxation time of the above block dynamics is O(1) uniformly in N, `.

We are actually able to compute exactly the spectral gap of this Markov chain

(see Proposition 2.3 below). This computation is carried out via an adaptation

and extension of the technique introduced by Carlen, Carvalho and Loss [3] for

so–called Kac systems.

The comparison of the above described block–average dynamics to the L–

reversal chain is then accomplished in two further steps.

In the first step we compare the block–average dynamics to an intermediate

block dynamics in which only adjacent blocks are averaged but we also allow

an “exchange” between two adjacent blocks. We say that blocks Ii, Ii+1 are ex-
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changed if the configuration of letters inside Ii is interchanged with that inside

Ii+1. We shall call this intermediate dynamics the local average–exchange block

dynamics. This step of the comparison uses rather standard path techniques but

the crucial point is that the usual diffusive scaling factor N 2 appears only in

front of the exchange operations and does not multiply the local average moves

(see Lemma 2.5).

In the second step we compare the local average-exchange block dynamics

to the L-reversal chain. The key to this step is the observation that moves of

the L–reversal process can efficiently simulate both block exchanges and block

averages. In fact the local exchange move is easily expressed in terms of (three)

suitable `-reversal moves Rx,` (see Lemma 2.6). Also, the average of a pair of

adjacent blocks Ii and Ii+1, can be compared to inversions using the Poincaré

inequality for random transpositions on the complete graph generated by ver-

tices in Ii∪Ii+1. Finally, we use a straightforward comparison between the latter

and a 2`-reversal chain on Ii ∪ Ii+1 (see Lemma 2.7). This does not spoil the

estimate because, as discussed in the introduction, the random transpositions

chain and the L-reversal chain can be efficiently compared in the extreme case

L = n (i.e. α = 1).

2.1. Setting and notation

The setting and frequently used notation are described as follows. Vn is the

set of n ordered vertices {1, 2, . . . , n}. Unless otherwise stated the sum x + y is

assumed to be taken modulo n, for any x, y ∈ Vn. A permutation (often called

configuration) of n letters over Vn is denoted by η, with ηx = j meaning that we

have letter j at vertex x ∈ Vn. We write Ω for the space of all n! configurations.

ν is the uniform distribution on Ω. For any integer m 6 n, I ⊂ Vn is called an

m–block if I is of the form {x+1, x+2, . . . , x+m} for some x ∈ Vn. Given k ∈ N
we write ηk,m for the configuration over the m–block {(k− 1)m+ 1, (k− 1)m+
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2, . . . , km}, i.e. η1,m gives the letters over the first m–block, η2,m those over the

secondm–block and so on. Also, let Ωm denote the set of possible configurations

over the the first m–block (i.e. all possible realizations of η1,m).

2.2. Preliminary spectral estimates

We start with a spectral computation that will be used in the arguments below.

For any m 6 n, let K denote the symmetric stochastic matrix given by the

conditional probabilities

K(α, β) := ν[η1,m = β | η2,m = α] , α, β ∈ Ωm . (11)

In words, K(α, β) stands for the probability of seeing the configuration β in the

first m–block given that the configuration over the second m–block equals α.

Lemma 2.1. For any m 6 n/2, the spectrum of K is given by

λk := (−1)k
(
n−m− k
m− k

)(
n−m
m

)−1

, k = 0, . . . ,m (12)

Proof. Let Hm denote the space of all functions ϕ : Ωm → R and write

〈ϕ, ψ〉 =
1

n!

∑

η∈Ω

ϕ(η1,m)ψ(η1,m) =
(n−m)!

n!

∑

α∈Ωm

ϕ(α)ψ(α) (13)

for the scalar product of ϕ, ψ ∈ Hm. We write Kϕ for the function

Kϕ(α) =
∑

β∈Ωm

K(α, β)ϕ(β) .

By definition of K(α, β), Kϕ does not depend on the order of the m letters, for

any ϕ ∈ Hm. If H̄m denotes the linear subspace of functions ϕ ∈ Hm that are

independent of the order of the m letters, then any eigenvector of K must be in

H̄m. Clearly, constant functions give the eigenvalue λ0 = 1.

We say that letter j belongs to α ∈ Ωm and write j ∈ α if the letter labeled j

appears in the configuration α. For any j = 1, . . . , nwe define χj as the indicator

function of the event {j ∈ α}. To determine the spectrum we may proceed as
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Relaxation time of L–reversal chains 9

follows. Consider 1 6 k 6 m distinct letters j1, . . . , jk. If at least one of the k

letters belongs to α then clearly K[χj1 · · ·χjk ](α) = 0. If none of them belong

to α the probability of having the given k letters in η1,m given that η2,m = α is

K[χj1 · · ·χjk ](α) =
(
n−m−k
m−k

)
/
(
n−m
m

)
. Therefore, defining λk as in (12), we have

Kχj1 · · ·χjk = |λk| (1− χj1) · · · (1− χjk) . (14)

For k ∈ {1, . . . ,m} let Uk, be the collection of functions of the form ϕ =

χj1 · · ·χjk , with k distinct letters. Also, let Ak denote the linear span of

{U0,U1, . . . ,Uk} ,

with U0 denoting the constant function ϕ = 1. Observe that by (14) the sub-

spaces Ak are invariant for K, i.e. KAk ⊂ Ak. Moreover, Am coincides with

H̄m. Since K is self–adjoint w.r.t. 〈·, ·〉, to establish (12) it is sufficient to prove

that if ϕ ∈ Ak and ϕ is orthogonal to Ak−1 then

〈ϕ,Kϕ〉 = λk〈ϕ,ϕ〉 . (15)

To prove (15) observe that ϕ ∈ Ak must be of the form ϕ = φ + ψ with φ ∈
Ak−1 and ψ a linear combination of functions in Uk, say ψ =

∑
i aiψi. For each

ψi ∈ Uk we use (14) to obtain Kψi = φ̃i + λkψi, with φ̃i ∈ Ak−1. Setting

φ̃ =
∑
i aiφ̃i we see that Kψ = φ̃+λkψ. If ϕ is orthogonal to Ak−1 we then have

〈ϕ,Kφ〉 = 〈ϕ, φ̃〉 = 0. In particular,

〈ϕ,Kϕ〉 = λk〈ϕ, ψ〉 = λk〈ϕ,ϕ〉 .

We turn to a spectral gap estimate for an auxiliary block–dynamics. Suppose

m 6 n/N for some integer N > 2 and let I1, . . . , IN denote N non–overlapping

m–blocks in Vn. Consider the Markov chain which picks uniformly at random

one of the N blocks and, given the configuration on that block, chooses uni-

formly at random a compatible configuration on the complement of that block.
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In symbols, we are looking at the symmetric transition matrix

P(σ, ξ) =
1

N

N∑

k=1

ν[η = ξ | η = σ on Ik] , σ, ξ ∈ Ω . (16)

Next result is a natural extension of the estimates in Theorem 2.1 of [3] and

Lemma 2.2 of [2].

Proposition 2.2. Let µ denote the lowest non–zero eigenvalue of 1− P. Then

µ > N − 2

N − 1
. (17)

Proof. For all functions f, g : Ω→ R we denote by (f, g) the scalar product

(f, g) = ν[fg] =
1

n!

∑

η∈Ω

f(η)g(η) . (18)

Let πk : Ω→ Ωm denote the projection η → ηIk , the restriction to the configura-

tion on the block Ik. We define the subspace Γ consisting of sums of mean–zero

functions of a single block:

Γ =
{
f =

N∑

k=1

gk ◦ πk ; gk : Ωm → R with 〈gk, 1〉 = 0 ∀ k
}
, (19)

where 〈·, ·〉 has been defined in (13). We write P = 1
N

∑N
k=1 Pk with

Pk(σ, ξ) = ν[η = ξ |πkη = πkσ] .

In this way

Pkf(σ) =
∑

ξ∈Ω

Pk(σ, ξ)f(ξ)

coincides with the conditional expectation of f given the configuration in the

block Ik and is a function of the letters on the single block Ik only. Therefore

Pf ∈ Γ for every f with ν[f ] = 0. Since P is self–adjoint w.r.t. (·, ·), Pf = 0

whenever ν[f ] = 0 and f is orthogonal to Γ. To prove (17) it is then sufficient

to establish

(f, (1− P)f) > N − 2

N − 1
(f, f) , f ∈ Γ . (20)
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Given f ∈ Γ, f =
∑
k gk ◦ πk, we define ϕf =

∑
k gk, a function on Ωm. If K is

defined by (11) we have

(gj ◦ πj , gk ◦ πk) =




〈gj ,Kgk〉 k 6= j

〈gk, gk〉 k = j

We now compute

(f, f) =
∑

k,j

(gk ◦ πk, gj ◦ πj)

=
∑

k

∑

j: j 6=k
〈gk,Kgj〉+

∑

k

〈gk, gk〉

=
∑

k

〈gk,Kϕf 〉 −
∑

k

〈gk,Kgk〉+
∑

k

〈gk, gk〉

= 〈ϕf ,Kϕf 〉+
∑

k

〈gk, (1−K)gk〉 . (21)

Similarly, observing that

Pk(gj ◦ πj) =





(Kgj) ◦ πk k 6= j

gk ◦ πk k = j

we compute, for every k,

(f,Pkf) =
∑

i,j

(gi ◦ πi,Pk(gj ◦ πj))

=
∑

i

∑

j: j 6=k
(gi ◦ πi, (Kgj) ◦ πk)) +

∑

i

(gi ◦ πi, gk ◦ πk)

=
∑

i: i6=k

∑

j: j 6=k
〈gi,K2gj〉+

∑

j: j 6=k
〈gk,Kgj〉+

∑

i: i6=k
〈gi,Kgk〉+ 〈gk, gk〉

= 〈ϕf ,K2ϕf 〉+ 2〈ϕf ,K(1−K)gk〉+ 〈gk, (1−K)2gk〉 . (22)

Averaging over k and rearranging terms we finally have

(f, (1− P)f) =
N − 2

N
〈ϕf ,K(1−K)ϕf 〉

+
1

N

∑

k

〈gk, (1−K)((N − 1) +K)gk〉 . (23)
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Note that (21) and (23) allow to reduce the claim (20) to spectral estimates

involving only the operator K. These, in turn, will follow from Lemma 2.1.

Consider the subspace S ⊂ Γ of symmetric functions:

S =
{
f =

N∑

k=1

g ◦ πk ; g : Ωm → R with 〈g, 1〉 = 0
}
, (24)

Since S is invariant for P, i.e. PS ⊂ S, to prove (20) we may consider separately

the cases f ∈ S and f ⊥ S. When f ∈ S, i.e. f =
∑
k g ◦ πk, we have ϕf = Ng

and rearranging terms in (21) and (23) we obtain

(f, f) = N(N − 1) 〈g, [K+
1

N − 1
]g〉 , (25)

(f, (1− P)f) = (N − 1)2〈g, [1−K][K +
1

N − 1
]g〉 . (26)

Since m 6 n/2 it is easily seen from (12) that |λk+1| 6 |λk| for any k. Moreover,

since Nm 6 n we have |λ1| 6 1/(N − 1) so that K + 1
N−1 is non–negative

and we may define its square root [K + 1
N−1 ]

1
2 . Set g̃ = [K + 1

N−1 ]
1
2 g, so that

(f, f) = N(N − 1) 〈g̃, g̃〉. Observe that 〈g̃, 1〉 = 〈g, [K + 1
N−1 ]

1
2 1〉 = 0 (since

[K + 1
N−1 ]

1
2 is self–adjoint and g is orthogonal to constants). Therefore

〈g̃,Kg̃〉 6 λ2 〈g̃, g̃〉 ,

since λ1 is negative and λ2 is the largest positive eigenvalue (other than λ0 = 1).

From (25) and (26) we then have

(f, (1− P)f) = (N − 1)2 〈g̃, (1−K)g̃〉

> (N − 1)2 (1− λ2) 〈g̃, g̃〉 =
N − 1

N
(1− λ2) (f, f) . (27)

From (12) we have λ2 = m(m − 1)/(n −m)(n −m − 1). In particular, for any

N > 2 and m > 1 with Nm 6 n:

λ2 6
1

(N − 1)2
. (28)

It follows that N−1
N (1− λ2) > N−2

N−1 . From (27) we conclude that

(f, (1− P)f) > N − 2

N − 1
(f, f) ,
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Relaxation time of L–reversal chains 13

which proves the claim for f ∈ S.

It remains to study the case f ∈ S⊥. Let u be a generic element of S, i.e.

u =
∑
k u0 ◦ πk, for some u0 with 〈u0, 1〉 = 0. Computing as in (21) one has

(f, u) = (N − 1) 〈[K +
1

N − 1
]ϕf , u0〉 .

Since u0 is an arbitrary mean–zero function, requiring f ∈ S⊥ (i.e. (f, u) = 0

for all u ∈ S) implies that [K + 1
N−1 ]ϕf is a constant. It follows that

[K +
1

N − 1
]ϕf = 〈[K +

1

N − 1
]ϕf , 1〉

= 〈ϕf , [K+
1

N − 1
]1〉 =

N

N − 1
〈ϕf , 1〉 = 0 ,

where we use the fact that 〈ϕf , 1〉 = 0 (recall that each gj has mean zero by

assumption). In particular, this shows that

N − 2

N
〈ϕf ,K(1−K)ϕf 〉 =

N − 2

N − 1
〈ϕf ,Kϕf 〉 . (29)

The above identity says that the first term in the r.h.s. of (23) equals (N −
2)/(N − 1) times the first term in the r.h.s. of (21).

Let us now look at the second term in the r.h.s. of (23). If we define the

functions ĝk = (1−K)
1
2 gk, we have

1

N

∑

k

〈gk, (1−K)((N − 1) +K)gk〉 =
1

N

∑

k

〈ĝk, [(N − 1) +K]ĝk〉 . (30)

Using K > λ1 > − 1/(N − 1) we obtain that (30) is estimated from below by

N − 2

N − 1

∑

k

〈ĝk, ĝk〉 =
N − 2

N − 1

∑

k

〈gk, (1−K)gk〉 . (31)

This is precisely (N − 2)/(N − 1) times the second term in the r.h.s. of (21). In

conclusion, (29) and (31) show that

(f, (1− P)f) > N − 2

N − 1
(f, f) , f ∈ S⊥ . (32)

From (27) and (32) we obtain the claim (17) and the proof is complete.
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2.3. The block–average dynamics

Let ` and N be given integers and suppose we have exactly n = N` ver-

tices. We partition the vertex set Vn by means of N non–overlapping `–blocks

I1,`, . . . , IN,`. There are ` choices for such partitioning but, by symmetry, our

estimates will not depend on the choice. To fix ideas, we take the `–blocks

Ik,` = {(k − 1)`+ 1, (k − 1)`+ 2, . . . , k `}.
The block–average dynamics is the continuous time Markov chain obtained

as follows. There is an independent rate–1 Poisson clock at each block. When

block Ii,` rings, a further block Ij,` is chosen uniformly at random (with re-

placement, i.e. the choice may be Ii,` itself). If i = j we do nothing. If i 6= j we

choose uniformly the new configuration on Ii,` ∪ Ij,` among all configurations

compatible with the letters outside the blocks Ii,`, Ij,`.

The above defined process is reversible with respect to the uniform probabil-

ity ν and its Dirichlet form can be written as

D(f, f) =
1

N

N∑

i=1

N∑

j=1

ν
[
(Ai,jf)2

]
, (33)

where the average gradient is given by

Ai,jf(σ) =
∑

ξ∈Ω

(f(ξ)− f(σ)) ν[η = ξ |πkη = πkσ , ∀k 6= i, j] , (34)

for i 6= j and we agree that Ai,if = 0. Also, note that

ν
[
(Ai,jf)2

]
= ν [Vari,j(f)] ,

where Vari,j stands for the variance w.r.t. ν[· |πkη , ∀k 6= i, j], the conditional

probability obtained by freezing the configuration in all blocks Ik,`, k 6= i, j.

Proposition 2.3. Let γ(N, `) denote the relaxation time of the block–average dy-

namics. Then

γ(N, `) = 1 , (35)

for every ` > 1, N > 2, n = N`.
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Relaxation time of L–reversal chains 15

Proof. We first observe that γ(2, `) = 1 for all ` > 1. Indeed, when N = 2 we

have A1,2f = A2,1f = ν[f ]− f so that D(f, f) = E[(f − ν[f ])2] = Var(f).

We turn to the case N > 3. Using the notation (18) of Proposition 2.2 we

write, for any f : Ω→ R

(f, (1− P)f) =
1

N

N∑

j=1

(f, f − Pjf) . (36)

Note that Pjf(η) coincides with the function η → ν[f |πjη], the conditional ex-

pectation of f given the configuration on Ij,`. In particular, denoting by Varj(f)

the variance of f w.r.t. ν[· |πjη], we have

(f, f − Pjf) = (f − Pjf, f − Pjf) = ν [Varj(f)] .

Once the ` variables in Ij,` are frozen, the measure ν[· |πjη] is the uniform

measure on all (n− `)! permutations of n− ` letters over n− ` vertices. For any

η ∈ Ω we may therefore estimate, by definition of γ(N, `):

Varj(f) 6 γ(N − 1, `)

(N − 1)

∑

i6=j

∑

k 6=j
ν
[
(Ai,kf)2 |πjη

]
.

Taking ν–expectation we then have

(f, f − Pjf) 6 γ(N − 1, `)

(N − 1)

∑

i6=j

∑

k 6=j
ν
[
(Ai,kf)2

]
.

Averaging over j and observing that

∑

j

∑

i6=j

∑

k 6=j
ν
[
(Ai,kf)2

]
= N(N − 2)D(f, f) ,

we obtain
1

N

N∑

j=1

(f, f − Pjf) 6 γ(N − 1, `)
N − 2

N − 1
D(f, f) . (37)

If (f, 1) = 0 we know by Proposition 2.2 that (f, (1 − P)f) > N−2
N−1 (f, f). From

(36) and (37) this implies

(f, f) 6 γ(N − 1, `)D(f, f) .
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In conclusion, we have shown that

γ(N, `) 6 γ(N − 1, `) , N > 3 . (38)

This shows that γ(N, `) 6 γ(2, `) = 1 for any N > 2, ` > 1.

To prove a lower bound on γ(N, `), let f denote the indicator function of the

event that letter 1 belongs to block I1,`. Clearly, the expectation of f is 1
N and

Var(f) = N−1
N2 . On the other hand one can easily check that, for every j 6= 1 one

has ν
[
(A1,jf)2

]
= 1

2N . Therefore, for this function

D(f, f) =
2

N

∑

j: j 6=1

ν
[
(A1,jf)2

]
=
N − 1

N2
= Var(f) ,

which implies γ(N, `) > 1.

2.4. Extensions of the block–average dynamics

Here we extend the dynamics defined by (33) to the case where n is not a

multiple of `. We thus consider the case n = N` + m, 1 6 m 6 ` − 1. We say

that a collection D = {Ij} of subsets of Vn is an `–partition if

i) Vn = ∪jIj and Ij ∩ Ik = ∅ for j 6= k

ii) all the Ij ’s but one are `–blocks

iii) the remaining one is an m–block

Any `–partition is therefore made of N `–blocks (for some integer N) and

one m–block. An `–partition is called of type 1 if vertex x = 1 is the left end

point of one of the blocks Ij . We use symbols Ij,`, j = 1, . . . , N for the `–blocks

and IN+1,m for the m–block. Moreover, there are exactly N + 1 `–partitions of

type 1, depending on the position of IN+1,m relative to the Ij,`, and we call

Dk the `–partition of type 1 for which IN+1,m is the k–th block in the partition

starting from vertex 1. The elements of Dk are denoted by I
(k)
j,` and I

(k)
N+1,m

(k = 1, . . . , N + 1).
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Relaxation time of L–reversal chains 17

Let Dk(f, f) denote the Dirichlet form

Dk(f, f) =
1

N

N∑

i=1

N∑

j=1

ν
[
(A

(k)
i,j f)2

]
, (39)

where the average gradients A(k)
i,j are defined by (34) with I(k)

j,` in place of Ij,`.

Since the m–block I
(k)
N+1,m is never updated, the Dirichlet form (39) is non–

ergodic. However the average over k of Dk is ergodic and we have

Proposition 2.4. For any ` > 1, N > 2 and m 6 ` − 1 such that n = N` + m,

for every function f : Ω→ R

Var(f) 6 3

2
D̂(f, f) , (40)

where

D̂(f, f) :=
1

N + 1

N+1∑

k=1

Dk(f, f) . (41)

Proof. For k = 1, . . . , N + 1, let Jk denote the m–block I(k)
N+1,m of the partition

Dk. Also, let π∗k denote the projection η → ηJk . Note that by construction the

m–blocks Jk have no overlap. We may then apply Proposition 2.2 defining P as

in (16) with Ik := Jk and N replaced by N + 1 (for every N > 2 we have here

N + 1 blocks of length m). We then see that, for any f

Var(f) 6 N

N − 1
(f, (1− P)f) 6 3

2
(f, (1− P)f) . (42)

We now observe, as in the proof of Proposition 2.3, that for each k the expres-

sion (f, (1 − Pk)f) can be written as ν[Vark(f)], where Vark(f) stands for the

variance of f w.r.t. ν(· |π∗kη), the probability obtained by freezing the m–block

Jk. Clearly, for each η, the measure ν(· |π∗kη) is uniform over the configurations

of n −m = N` given letters. For each k and η we may then apply Proposition

2.3 to the system of N blocks I(k)
j,` , j = 1, . . . , N and estimate

Vark(f) 6 1

N

N∑

i=1

N∑

j=1

ν
[
(A

(k)
i,j f)2 |π∗kη

]
. (43)
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Taking ν–expectation and averaging over k we therefore obtain

(f, (1− P)f) 6 1

N + 1

N+1∑

k=1

Dk(f, f) . (44)

The proof is complete.

2.5. Comparison estimates

The first comparison allows to go from the block–average dynamics to an inter-

mediate block dynamics the moves of which are 1) average of adjacent blocks

and 2) exchange of adjacent blocks. The exchange moves are speeded up by a

factor N2. We refer to this intermediate process as the local average–exchange

dynamics.

The setting is as in Proposition 2.4 above, with Dk defined by (39). Given the

type 1 `–partition Dk we agree to rename the `–blocks I(k)
j,` so that I(k)

1,` comes

after the m–block I
(k)
N+1,m, I(k)

2,` after I(k)
1,` and so on. The exchange gradients

E
(k)
i,i+1 appearing in the statement below are defined by

E
(k)
i,i+1f(η) = f(η(i,i+1))− f(η) , (45)

where, for any i, j, η(i,j) denotes the configuration η after the interchange of

block I(k)
i,` with I(k)

j,` , i.e. πkη(i,j) = πkη for all k 6= i, j, while πjη(i,j) = πiη and

πiη
(i,j) = πjη. We agree that η(i,i) = η.

Lemma 2.5. For every function f : Ω→ R, for every k = 1, . . . , N + 1

Dk(f, f) 6 3N2
N−1∑

i=1

ν
[
(E

(k)
i,i+1f)2

]
+

1

2

N−1∑

i=1

ν
[
(A

(k)
i,i+1f)2

]
. (46)

Proof. Let Ti,j : Ω → Ω denote the transformation η → η(i,j). Then, assuming

i < j we see that

Ti,j = Ti,i+1 Ti+1,i+2 · · ·Tj−2,j−1 Tj−1,j Tj−2,j−1 · · ·Ti+1,i+2 Ti,i+1 .
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Define H = j − i and set

Uh = Ti+h−1,i+h · · ·Ti+1,i+2 Ti,i+1 , h = 1, . . . , H .

Also, set

Sh = Tj−h−1,j−h · · ·Tj−2,j−1UH , h = 1, . . . , H − 1 .

In this way, setting S0 = UH and U0 = 1 we write

E
(k)
i,j f(η) = f(η(i,j))− f(η) = f(SH−1η)− f(UHη) + f(UHη)− f(η)

=
H−1∑

h=1

[f(Tj−h−1,j−hSh−1η)− f(Sh−1η)]

+
H∑

h=1

[f(Ti+h−1,i+hUh−1η)− f(Uh−1η)]

= A(f) +B(f) , say .

We then estimate

ν[(E
(k)
i,j f)2] 6 2 ν[(A(f))2] + 2 ν[(B(f))2] .

By Schwarz’ inequality

ν[(A(f))2] 6 (H − 1)
H−1∑

h=1

ν[(f ◦ Tj−h−1,j−hSh−1 − f ◦ Sh−1)2]

= (H − 1)
H−1∑

h=1

ν[(f ◦ Tj−h−1,j−h − f)2]

6 N
N−1∑

i=1

ν
[
(E

(k)
i,i+1f)2

]
,

where we have used the invariance of ν under all transformations Sh. The same

reasoning gives the same estimate for ν[(B(f))2]. This shows that for each cou-

ple i, j we obtain the following estimate for the exchange terms:

ν
[
(E

(k)
i,j f)2

]
6 4N

N−1∑

i=1

ν
[
(E

(k)
i,i+1f)2

]
. (47)

We have to estimate the average terms. To this end observe that if the symbol

ωi,j(η) is used to denote the configuration η outside the two blocks I (k)
i,` , I

(k)
j,` we
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may regard A
(k)
i,j f as the function A

(k)
i,j f(η) = ν[f |ωi,j(η)] − f . Now a simple

change of variables shows that for any other block I (k)
h,` , h 6= i, j:

ν[f |ωi,j(η)] = ν[f (j,h) |ωi,h(η(j,h))] ,

where as usual η(j,h) stands for the configuration in which the blocks I (k)
j,` , I

(k)
h,`

have been exchanged and f (j,h)(η) = f(η(j,h)). We then have, using the invari-

ance of ν under the exchange η → η(j,h):

ν

[(
A

(k)
i,j f

)2
]

= ν

[(
ν[f (j,h) |ωi,h(η(j,h))]− f

)2
]

= ν

[(
ν[f (j,h) |ωi,h(η)]− f (j,h)

)2
]

= ν

[(
A

(k)
i,hf

(j,h)
)2
]
.

Moreover,

ν

[(
A

(k)
i,hf

(j,h)
)2
]
6 2 ν

[(
A

(k)
i,hf

)2
]

+ 2 ν

[(
A

(k)
i,h (f (j,h) − f)

)2
]
,

and Jensen’s inequality implies

ν

[(
A

(k)
i,h (f (j,h) − f)

)2
]
6 ν

[(
f (j,h) − f)

)2
]
.

The last expression is nothing but ν
[(
E

(k)
j,hf

)2
]

and we can estimate it by (47).

Summarizing, choosing e.g. h = j + 1 we have obtained

ν

[(
A

(k)
i,j f

)2
]
6 2ν

[(
A

(k)
j,j+1f

)2
]

+ 8N
N−1∑

l=1

ν
[
(E

(k)
l,l+1f)2

]
. (48)

Recalling the expression (39) for the Dirichlet form Dk(f, f) the bounds (47)

and (48) imply the desired claim (46).

The next task is to rewrite the exchange and average contributions to the

local block dynamics appearing in the r.h.s. of (46) in terms of the inversions

η → ηx,`. We start by writing each exchange term by means of three inversions.

To this end we denote by z the left end vertex of I (k)
i,` , so that z+ ` is the left end

vertex of I(k)
i+1,`.
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Lemma 2.6. For every function f : Ω→ R, for every k = 1, . . . , N + 1

ν
[
(E

(k)
i,i+1f)2

]
6 3 ν

[
(Rz,2`−1f)2 + (Rz+`,`−1f)2 + (Rz,`−1f)2

]
. (49)

Proof. Denote by Wx,h : Ω→ Ω the inversion transformation η → ηx,`. It is clear

that Wz,2`−1Wz+`,`−1Wz,`−1η coincides with η(i,i+1). Therefore

E
(k)
i,i+1f(η) = Rz,2`−1f(Wz+`,`−1Wz,`−1η) +Rz+`,`−1f(Wz,`−1η) +Rz,`−1f(η) .

The conclusion now follows from Schwarz’ inequality and the invariance of ν

under all transformations Wx,h.

Our last comparison shows how to bound each average term in (46) by

means of inversions.

Lemma 2.7. For every function f : Ω→ R, for every k = 1, . . . , N + 1

ν
[
(A

(k)
i,i+1f)2

]
6 1

2`

∑

x∈I(k)
i ∪I

(k)
i+1

∑

l 6 2`

ν
[
(Rx,lf)2 + (Rx+1,l−1f)2

]
. (50)

Proof. The starting point is the following standard spectral gap estimate for

random transpositions. Consider a system with d vertices and d letters. Let ∇x,y
denote the gradient associated to the transposition of the letters at vertices x

and y, i.e. ∇x,yf(η) = f(ηx,y) − f(η), with ηx,y denoting the configuration

identical to η out of x, y and such that (ηx,y)x = ηy and (ηx,y)y = ηx. Then it is

well known (see e.g. Theorem 5.1 in [2] for a simple proof) that for all d > 2,

all functions f

Vard(f) 6 1

4d

∑

x,y

νd
[
(∇x,yf)2

]
, (51)

where νd is the uniform measure over the d! permutations and Vard denotes the

variance w.r.t. νd.

We want to apply this bound to the system with d = 2` obtained by freezing

all the letters in the complement of I (k)
i ∪ I

(k)
i+1. Recall the notation A(k)

i,i+1f(η) =
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ν[f |ωi,i+1(η)]− f that we have used in the proof of Lemma 2.5. We then have

for each η and every f : Ω→ R

Var(f |ωi,i+1(η)) 6 1

8`

∑

x,y∈I(k)
i ∪I

(k)
i+1

ν
[
(∇x,yf)2 |ωi,i+1(η)

]
. (52)

Clearly, each transposition is written as the composition of two inversions: if

e.g. y = x+h then ∇x,x+hf(η) = Rx,hf(ηx+1,x+h−1) +Rx+1,h−1f(η). Recalling

that ν[(A
(k)
i,i+1f(η))2] = ν[Var(f |ωi,i+1(η))] the bound (50) is a straightforward

consequence of (52).

2.6. Proof of the upper bound in Theorem 1.1

We now combine the spectral gap estimate of Proposition 2.4 with the three

comparison lemmas above. Recall that we are looking for a bound of the form

τ(n, L) 6 C (n ∨ n3

L3 ), i.e.

Var(f) 6 C
(
n ∨ n

3

L3

)
E(f, f) , (53)

for arbitrary functions f , with E(f, f) given by

E(f, f) =
1

2

1

nL

∑

x∈Vn

∑

` 6 L
ν[(Rx,`f)2] . (54)

For every 1 6 ` 6 L we use Proposition 2.4 and Lemma 2.5 to write

Var(f) 6 C N2 Ex(f) + C Av(f) , (55)

with the exchange and average terms given by

Ex(f) :=
1

N + 1

N+1∑

k=1

N−1∑

i=1

ν
[
(E

(k)
i,i+1f)2

]
, (56)

Av(f) :=
1

N + 1

N+1∑

k=1

N−1∑

i=1

ν
[
(A

(k)
i,i+1f)2

]
. (57)

We start by estimating the average term Av(f). Using Lemma 2.7 and observing

that for every x ∈ Vn, on any given partition Dk the number of indices i such
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that x ∈ I(k)
i ∪ I(k)

i+1 is at most 2 we have

Av(f) 6 2

`

∑

x∈Vn

∑

l 6 2`

ν
[
(Rx,lf)2 + (Rx+1,l−1f)2

]
6 4

`

∑

x∈Vn

∑

l 6 2`

ν
[
(Rx,lf)2

]
.

Therefore, for any δ > 0 and ` 6 n such that δL 6 ` 6 1
2L we have

Av(f) 6 8 δ−1 n E(f, f) . (58)

Summarizing, taking e.g. δ = 0.1 and adjusting the value of the constant C in

(55), we have obtained that if δL 6 ` 6 1
2L, for every f

Var(f) 6 C N2 Ex(f) + C n E(f, f) . (59)

We turn to an estimate of the exchange terms (56). Observe that so far, only

partitions of type 1 enter the definition of Ex(f), see (56). However, by sym-

metry, we could just as well use, for any y ∈ Vn, partitions of type y defined as

those `-partitions {Ij} of Vn for which the vertex y is the left end point of one

of the blocks Ij . Again there are exactly N + 1 `–partitions of type y, say Dk,y,

k = 1, . . . , N + 1. Let us call I(k,y)
j,` the corresponding `–blocks and define the

associated exchange gradients E(k,y)
i,j as in (45) and (34) with I(k,y)

j,` in place of

Ij,`. We may then replace Ex(f) in (59) by the following average over partitions

of type y, for y = 1, . . . , `:

1

`

∑̀

y=1

Exy(f) , Exy(f) :=
1

N + 1

N+1∑

k=1

N−1∑

i=1

ν
[
(E

(k,y)
i,i+1f)2

]
. (60)

Now, each term Exy(f) is estimated by means of Lemma 2.6. Moreover, it is easy

to check that for every x ∈ Vn and k = 1, . . . , N + 1, there is only one vertex

y ∈ {1, . . . , `} such that x is the left end point of one of the I (k,y)
j,` (j = 1, . . . , N).

It follows that

1

`

∑̀

y=1

Exy(f) 6 3

`

∑

x∈Vn
ν
[
(Rx,2`−1f)2 + (Rx+`,`−1f)2 + (Rx,`−1f)2

]
.

We want to average this expression over δL 6 ` 6 1
2L. To this end choose

δ = 0.1 and L0 such that the number of integers ` such that δL 6 ` 6 1
2L is
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larger than L/4 for every L > L0. If L > L0 we can therefore estimate

1

#{` : δL 6 ` 6 1
2L}

∑

δL 6 ` 6 1
2L

1

`

∑̀

y=1

Exy(f) 6 C n

L
E(f, f) ,

for some universal constant C. Going back to (59) we first replace Ex(f) by

(60) and then make the average over δL 6 ` 6 1
2L. In this way, recalling that

N = [n/`] 6 n/(δL) we obtain, for L > L0 and a new universal constant C:

Var(f) 6 C n3

L3
E(f, f) + C n E(f, f) 6 2C

(
n ∨ n

3

L3

)
E(f, f) . (61)

It remains to consider the case L 6 L0. In this case it is sufficient to prove

that τ(n, L) 6 C n3 for some universal constant C. Recall that when L = 1,

τ(n, 1) 6 Cn3 by the well known diffusive bound for local transpositions (see

e.g. [2]). On the other hand, the obvious bound

E(f, f) > 1

nL0

∑

x∈Vn
ν[(Rx,1f)2]

shows that τ(n, L) 6 L0 τ(n, 1), for any L 6 L0. This ends the proof of the

upper bound in Theorem 1.1.

2.7. Proof of the upper bound in Theorem 1.2

This is a straightforward consequence of the previous bounds on τ(n, L). In-

deed, there is C1 < ∞ such that θ`−1 > 1/C1 for any ` 6 (1 − θ)−1, θ ∈ (0, 1).

Therefore, choosing an integer L 6 (1−θ)−1 with L−1 6 C2(1−θ), and remov-

ing all inversions with ` > L we have

τ(n, θ) 6 C1C2 τ(n, L) 6 C1C
4
2 (n ∨ [n(1− θ)]3).

3. Lower bounds

Here we are going to find the appropriate slow modes of relaxation. As already

discussed in [6, 8] the bound O(n ∨ n3

L3 ) corresponds to the competition of two
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different phenomena: the diffusive scale O( n
3

L3 ) is related to the transport of lo-

cal information while the scale O(n) originates from the difficulty to separate

two adjacent letters during the time evolution (described in terms of conserved

edges in [6]). For the sake of completeness below we derive explicitly these

bounds although some of them appear already (in some cases with explicit con-

stants) in [6].

3.1. Proof of the lower bound in Theorem 1.1

Let the n letters be labeled by the integers from 1 to n and call ξx the indicator

function of the event {letter n is at vertex x}. Let g : [0, 1] → R be a smooth

function with
∫ 1

0
g(t) dt = 0,

∫ 1

0
g(t)2 dt = 1. Set

ψ(η) =
∑

x∈Vn
g(x/n) ξx . (62)

We have, as n → ∞: ν[ψ] → 0 and ν[ψ2] → 1. We may therefore estimate

Var(ψ) > 1
2 if n is large enough. The lower estimate τ(n, L) > n3

C L3 is then a

consequence of

Lemma 3.1. There exists C <∞ such that

E(ψ, ψ) 6 C L3

n3

∫ 1

0

g′(t)2 dt (63)

Proof. Write Ix,` for the `+ 1–block with left end x and right end x+ `. Observe

that for any x ∈ Vn and ` 6 L we have

∑

y∈Ix,`
(ξx,`y − ξy) = 0 .

It follows that

Rx,`ψ =
∑

y∈Ix,`
(g(y/n)− g(x/n))(ξx,`y − ξy) .
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We now expand g(y/n)−g(x/n) = g′(x/n)(y−x)/n+O(`2/n2). Observing that

∑

y∈Ix,`
ν[(ξx,`y − ξy)2] 6 2 (`+ 1)/n ,

and ignoring higher order terms we have

ν[(Rx,`ψ)2] 6 C g′(x/n)2 `
3

n3
.

The claim is then obtained by averaging over x ∈ Vn and ` 6 L.

To prove the bound τ(n, L) > n/C we may proceed as follows. Let χ denote

the indicator function of the event {letter 1 is adjacent to letter 2}. It is easily

seen that for every n > 3 the probability of this event is ν[χ] = 2/(n − 1). The

variance is given by Var(χ) = 4(n − 2)/(n − 1)2. The desired estimate then

follows from

Lemma 3.2. For every n > 3

E(χ, χ) 6 16

n(n− 1)
. (64)

Proof. Observe that (Rx,`χ)2 = χ(1 − χx,`) + χx,`(1 − χ). Let us analyze the

contribution of χ(1− χx,`) (the other term contributes the same by symmetry).

If 1, 2 are adjacent in η but not in ηx,` this implies that either ηx ∈ {1, 2} or

ηx+` ∈ {1, 2}. Therefore, for every `

∑

x∈Vn
χ(1− χx,`) 6 4χ .

Taking expectations and dividing by n this gives the desired claim.

3.2. Proof of the lower bound in Theorem 1.1

For the bound τ(n, θ) > [n(1 − θ)]3/C we simply follow the computation in

Lemma 3.1 to obtain

Eθ(ψ, ψ) 6 C (1− θ)
n3

∑

` 6 n
θ`−1`3

∫ 1

0

g′(t)2 dt
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The required bound now follows from the fact that (1 − θ)4
∑
` 6 n θ

`−1`3 is

uniformly bounded in θ ∈ (0, 1). Finally, the bound τ(n, θ) > n/C is straightfor-

ward since Lemma 3.2 holds as it is with E(χ, χ) replaced by Eθ(χ, χ).

3.3. A lower bound on the log–Sobolev constant

Here we prove the estimate (10). Let n be even and call ξ the indicator function

of the event

{the first n/2 letters occupy the first n/2 vertices} .

Then ν[ξ] =
(
n
n/2

)−1
and

Ent(ξ) = −ν[ξ] log ν[ξ] > n

C
ν[ξ] . (65)

On the other hand, only inversions η → ηx,` with x ∈ {n − L, . . . , n} ∪ {n/2 −
L, . . . , n/2} can affect the value of ξ. In such cases we have ν[(Rx,`ξ)

2] 6 2ν[ξ]

for any ` 6 L. It follows that

E(
√
ξ,
√
ξ) = E(ξ, ξ) 6 C L

n
ν[ξ] . (66)

Combining (65) and (66) we arrive at the desired estimate.
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