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ABSTRACT. This expository article is a survey of recent results [8, 9] on the energy gap
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reviewed with special emphasis on the equivalence between the quantum spin models
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1. INTRODUCTION

Given J € %N, the spin—J XXZ ferromagnet is described by a Hamiltonian of the form

H=-3" {%(S;S§+S§S§)+Sgb’§’}

T~y

+ boundary conditions,

where the sum is over adjacent vertices of a suitable graph, and each vertex z is equipped
with the (2J41)-dimensional representation of SU(2) given by the usual spin—J operators
S;;,, i =1,2,3. Here A > 1 is a parameter measuring the anisotropy: A = 1 is the isotropic
model also known as XXX model; the limit A — oo gives the classical Ising model. For
an appropriate geometry of the underlying graph and for suitable boundary conditions
the system is known [3] to have ground states describing domain walls, or interfaces.
Since the discovery of such interface ground states there has been growing interest in
the XXZ ferromagnets. Several studies have been devoted to the properties of the low—
lying spectrum of these models, see e.g. [18, 15, 5, 16, 12] and other contributions to this
volume. In this paper I mostly review recent results [8, 9] obtained in collaboration with F.
Martinelli. The material is presented in an introductory fashion, with emphasis on main
ideas, examples and possible developments. Besides simple and instructive arguments full
proofs are often omitted.

A recurrent theme of this paper is that in some cases the spectrum of the quantum
spin Hamiltonian H coincides with the spectrum of the Markov generator of an exclusion—
type dynamics. This correspondence is illustrated by means of several examples and, in
addition to the models considered in [8, 9], I include here also a preliminary discussion
of the XXZ model in the presence of a transverse external field, where, on top of the
(conservative) exchange dynamics one has a (dissipative) birth and death process.

Relations between classical stochastic particle systems and quantum spin models have
been known for a long time and continue to play an important role in many theoretical
developments, see e.g. [2, 4, 21, 22] for a partial list of references related to the models
we consider here. This analogy lies at the heart of our results on energy gap estimates,
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which ultimately rely on techniques developed to bound the relaxation time to equilibrium
of interacting particle systems. The recursive scheme needed to derive bounds on the
gap which give the correct scaling with the size of the system is based on the so—called
martingale approach introduced in [17]. We refer also to [1] for an earlier use of similar
techniques directly in the framework of quantum spin chains with frustration-free ground
states. Besides the martingale approach, some profound ideas recently introduced in [10]
play an important role in our analysis.

We start our discussion, in section 2, with the simplest model, namely the one-
dimensional isotropic model, or XXX chain. Then, in section 3, we turn to the one-
dimensional anisotropic model, or XXZ chain. Generalizations to higher dimensions are
reviewed in section 4. Finally, in section 5 we derive an expression for the equivalent
stochastic process in the presence of transverse external fields.

2. XXX CHAINS

Here we introduce the basic elements of our approach, namely the ground state trans-
formation, the exclusion processes and the relevant spectral gap estimates. We start with
the case J = 1/2 and later show how the general spin-J case can be in a sense reduced to
that of spin—1/2.

2.1. Spin—% XXX chain. Given a positive integer L, the XXX chain on sites {1,..., L}
is described by the Hamiltonian

L—1
Hr = Z Hjj+1, (2.1)
7j=1
1
Hijrr=—(8jSj + 5787 + 81500 ) + 7 (2.2)

Here Sf, k = 1,2,3 are the usual spin—1/2 operators at site j and the constant 1/4 has
been added to have zero energy ground states. The operator H acts on the tensor product
Hilbert space $y, := ®]L:1(C2. We take the natural orthonormal basis in §, corresponding
to eigenvectors |a;) of the third component of the spin S}” with the convention that o; =1
stands for spin “up” and «; = 0 stands for spin “down”:

o) = ®jla),  SPla) = (a; —1/2)|a).

The variables o will be interpreted as occupation numbers, i.e. a; = 1 stands for the
presence of a particle at j while a; = 0 means that site j is empty. We write Q7 = {0, I}L
for the space of possible configurations . A generic vector |¢) in $z, is often identified
with the function ¢ : Q7 — C defining its coordinates:

) =Y ¢(@)e),  Pla) = (alp) . (2.3)

The operator (2.1) corresponds to the choice of free boundary conditions but everything
we say in this section applies without modification to the case of a periodic chain, i.e.
when the extra coupling Hy, 1 is added to the sum in (2.1).

The particle system. We recall the action of raising and lowering operators Sji = S} :I:iS]2
on basis vectors:

SHlay =1 - o)), S7|a) = a;a)y, (2.4)
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where %) is the configuration “flipped” at site j:

() _ {Oék k#j
ap’ = _
l-—a; k=y
In particular,
(SF + )|y = o)) (2.5)
Similarly,
(S7 S5y + 85087 la) = a?9H1), (2.6)

where o/711 is the “exchanged” configuration

ap  k#jj+1
(@ =S k=3 (2.7)
Q; k= j+1
We can then write
1 Y 1
[Higri](@) = (el Hyjly) = =5 [¥ (™) = p(a)] . (2.8)
This shows in particular that the system conserves the total third component of the spin
SE, = Zj S;-’. This conservation law, usually expressed as the vanishing of the commu-
tator [Hr,S3.] = 0, allows to cut the space 9, into L + 1 “non-—communicating” sectors
Hn, n=0,1,..., L, each given by the span of vectors |a) such that

L
Yaj=n,  Siila)=(n-L/2)a).
7j=1

The identity (2.8) also shows that in each sector ), we have a zero energy state given by
the constant function

1 > ,a;=n

) (2.9)
0 otherwise

Pnl@) = Ly o;=ny(a) = {
Since Hy > 0 the vectors ¢, are ground states. Moreover, $), is unitarily equivalent
to LZ(QL,VL,n), where vy, is the uniform probability measure on all configurations «
satisfying Zj a; = n. Then (2.8) says that Hy, is equivalent to the Markov generator of
the simple exclusion process:

1

L—1
Hy ~ =5 L, apzzlvjﬁup. (2.10)
]:

Here V; j110(a) = p(a?iTl) — p(a) is the exchange gradient along the bond (4, + 1).
The dynamics generated by L is the continuous time Markov process in which each bond is
exchanged with rate 1 independently of all others. Since particles are not distinguishable,
the interpretation is that particles try to jump to neighboring sites, their attempt being
suppressed if the arrival site is already occupied. The operator £ is non—positive and
ergodic in L?(Q2r, vy, ). Namely, if £ ,(¢), ¢ : Q1 — R, denotes the Dirichlet form

L—1
5L,n(90) =VLn [90(_‘6)90] = % Z VLn [(vj,jJrl(P)Q] ) (211)
7=1
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then &7, (¢) = 0 implies that ¢ is constant in L?(Qy,vr,,). This also shows that in each
sector the ground state ¢, is unique (up to multiplication).

Energy gap. The energy gap is the first excited level of Hy, and is given by the variational
formula

: (| Help)
gap(Hy) =  inf =,
veKerH)t  (Pl9)
where KerH is the vector space spanned by ¢,, n = 0,1,..., L. Equivalently we may
write gap(Hr) = min,cqy 1y 8ap,(Hr), where
) H
gap,(Hr) = inf M (2.12)

v (Yl¥)

By the unitary equivalence (2.10) we see that gap, (1) coincides with 1/(2v,(L)), where
Yn(L) is the best constant v in the Poincaré inequality

Vary n(¢) < vELn(p), o Qp — R. (2.13)

Here Vary ,(¢) = vrn(9?) — vin(e)? denotes the variance of ¢ w.r.t. vp,. It is well
known that the Poincaré constant 7, (L) for the symmetric simple exclusion process scales
diffusively, i.e.

L% < yn(L) <612, (2.14)

for some 0 € (0, 1), uniformly in n = 1,...,L — 1. The lower bound in (2.14) is obtained
immediately by plugging in (2.13) any spin—wave function ¢ of the form

L
pla) = g(i/L) oy, (2.15)
j=1

with ¢ : [0,1] — R a smooth function such that [g =0, [¢?> =1 and [(¢')? is bounded.
For the upper bound there are several approaches [20, 17, 6]. Perhaps the simplest way is
to use an apriori comparison bound [20, 13] of the form

L
Ein(@) 2 0L2E0(),  Enlp) =+ 3 vinl(Vp)] (2.16)

and then prove that the Poincaré constant ¥, (L) associated to the complete graph Dirichlet
form & n is uniformly bounded. The proof of (2.16) only uses a telescopic decomposition
for the gradient (a?*) — ¢(a) in terms of nearest neighbor exchanges and the Schwarz’
inequality. The dynamics defined by the Dirichlet form & I is a variant of the so—called
Bernoulli-Laplace diffusion model, see e.g. [14]. From (2.8) its Markov generator

L
- 1
k=1
is equivalent to a mean—field Heisenberg Hamiltonian, as already discussed in [21]. In the
next paragraph we give a proof of the uniform upper bound on the Poincaré constant
n(L) following a simple recursive argument borrowed from [11, 9].
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A first recursive argument. Here we prove that 7,(L) < 1/4, where

u() = sup Vel ), (2.17)
@ Ln(P)
with the convention o(L) = (L) = 0. Consider the non-negative operator P :
LQ(QL, VL,n) — L2(QL, VL,n) defined by
L L
Po(a) = I ZVL,n(SO | ) - (2.18)
k=1

The notation vy, ,(-|ay) stands for conditional expectation given the value of the k-th
variable . We first show that

1
vLan(pPp) < 7= vLn(9®), (2.19)

where ¢ is an arbitrary real function on Qf, such that vz, ,(¢) = 0. To prove (2.19) observe
that for every k we have v, ,(¢|ar) = ardy with & := oy —n/L and some a;, € R. Let
X C L?(,vr,) be the span of functions of the form Zﬁzl a0y, with arbitrary a € R,
Since Py € X, for every ¢ satisfying vy, ,,(¢) = 0, we may restrict to ¢ € X to prove (2.19).
On the other hand a simple computation shows that any ¢ € X satisfies Pp = ﬁ(p. This
proves (2.19).

The elementary decomposition

VL,n(QOQ) =VLn [VarL,n(go | ozk)] +vrn [(,0 V(@] ak)] , k=1,...,L
yields

L
vin|e(l — P)p| = % Z v |[Varr (o] ar)] - (2.20)
k=1

We are using the notation Vary,,(-|ay) for the variance w.r.t. conditional probability
vin(-| ak). Note that vy, (¢ | k) = VL 1.4, (), where ¥ is obtained from the function
¢ by freezing the k—th variable ay. Set ¥(L) = sup,, 7,(L). By definition of the constant
(2.17), the r.h.s. of (2.20) is bounded above by

L—-2
L—-1

L
1) 7S v lErinea (0] =T~ 1) T2 Erali).
k=1

From (2.20) and the bound (2.19) we obtain

vLn(9?) <AL = 1) ELnlp)
for every real ¢ with mean zero. This implies ¥(L) < 4(L — 1). Iterating we arrive

at (L) < 7(2) = 71(2) = 1/4, where the last identity follows from a straightforward
computation. This completes the proof.

2.2. Spin—J XXX chain. Given J € %N we consider the Hamiltonian (2.1) with
Hjjer == (8811 + 57571+ 8]81) + T2
Now the S’;?, k =1,2,3 are the spin—J operators at site j and the Hilbert space is =

®]L:1(C2J+1. The orthonormal basis is labeled by configurations w € Q7 := {0,...,2J}L,
corresponding to eigenvalues of the third component of the spin S}”:

wy = ®jlw;),  SFw) = (wj — J)|w),
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As usual we identify a vector |¢) in $ with the function (w) = (w|¢). It will be
convenient to think of w; as the height of a nonnegative profile or as the number of
particles sitting at j.

The profile dynamics. As in the case J = 1/2 the Hamiltonian can be interpreted as the
generator of a continuous time Markov process. To see this we are going to generalize
to arbitrary values of J the discussion of the previous subsection. Let us first recall the
action of raising and lowering operators Sjt = S} + iSJZ on the basis vectors:

S; S lw) = \/(2J — wj)(wj + 1)(2J — wji1 + Dwjp W),

87 87 1lw) = /(27 — i) (wjer + DT - wj + wj [+, (2.21)
with the notation
wjEx1 k=j
k=wjin1Fl kE=j5+1
W, k#3,7+1

-
(i

If we introduce the functions

L
u() =15, @ TT (27). (2:22)
=1 !

then a simple computation shows that for every n € {0,...,2JL} and every w such that
> Wk = n we have

[Hjj19] (W) = —%Ti’jﬂ(w) [_qsnfzg;)ﬂ—) YWt - ?/f(w)]
5 rw) [ﬁ fﬁfﬁl) Pl - w(w)] : (223)
where
W) = @7 —wwpn T (@) = @27 - wj)e. (2:24)

The identity (2.23) tells us several things. First, it expresses the conservation law,
[H,S3,] = 0. Moreover, it shows that for each n the function (2.22) defines a ground
state of H,.

As in the case J = 1/2 we can represent the Hilbert space $)z as the direct sum of
sectors 9, n € {0,...,2JL}, characterized by n = Y, wy. Then Uy1p := /¢, maps
unitarily ,, into L?(Q7, I/i,n) with the probability measure

|fn ()|

ViaW) =2 Zin= Y lba(@) (2.25)
L,n wend
From (2.23) we have the equivalence
1
Lln’HLu,jl:—gﬁ, L=L,+L_, (2.26)

L-1

Lap(@) = 3 @) 9 ) — piw)]. (2.27)
1

<.
Il
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The operator £ above is the Markov generator of the conservative dynamics described

as follows. At each bond (j,7 + 1) two independent Poisson clocks “ +

(2J)%2. When Ti’j 1 rings, the current configuration w is updated to w +’J =

Jj+1

ring with rate
with probability
ri’j w) /(2J)?; similarly for the opposite transition w — w’”’™". Clearly, the total area
n under the profile w is conserved. The process is reversible w.r.t. I/i,n, i.e. the detailed
balance equations are satisfied. It is ergodic for n = 1,...,2JL — 1, therefore ¢! is the
only ground state of Hj, in each sector $),,.

Ezxample. When J = 1 we obtain the isotropic version of the diffusion limited chemical
reaction model considered by Alcaraz [4]. Namely, interpret w; = 0 as the presence of
a red particle, w; = 2 as the presence of a blue particle and w; = 1 as the absence of
particles. Particles diffuse and creation/annihilation reactions appear when particles of
different colors occupy neighboring sites.

Energy gap. The first excited level of Hp, denoted gap(H) is obtained by minimizing
gap,,(Hr), with gap,, (M) given by (2.12). From the unitary equivalence (2.26), in turn,
gap,, (Hr) is the spectral gap of the profile dynamics in L?(Q2{,v{ ). Using this represen-
tation we are able to give a simple proof of the following generafization of the estimates
in the previous subsection.

Theorem 2.1. There exists 6 € (0,1) such that for any J € %N and any L > 2
§JL % < gap(Hy) <0 'JL2. (2.28)

Proof. We start by formulating the problem in terms of Poincaré inequalities. We write
Vari,n for the variance w.r.t. z/i,n, and f,’i’n for the Dirichlet form

.
ELn(9) = vinlo(=L)e] = 5 Y via [ T (VE 00 + T (V5 00)]
j=1

with the notation V“_Hgo = p(wy DI — p(w). Let us call 47/ (L) the corresponding

Poincaré constant, see (2.13). By the unitary equivalence the claim (2.28) is equivalent to
uniform upper and lower bounds on JL~2/(L).

As usual a lower bound on 7/ (L) is obtained simply from the Ansatz ¢(w) :=
Zleg(j/L) wj, with ¢ as in (2.15). In this case the ratio Sg’n(go)/Vari’n(go) is seen
to be of order JL~? by direct computation.

We turn to the upper bound on «;(L). Here the main observation is that the profile
dynamics with generator L is a suitable (Markovian) projection of an elementary exlcusion
process. Namely, let Qo577 = {0,1}2/% be the space of possible configurations « of an
exclusion process on 2JL sites. It is convenient to picture the 2JL sites as the vertices
of a 2J x L rectangle A in Z? and a € Qy57, as a collection {agjt, with b =1,...,2J,
j=1,...,L. We call vy, the uniform probability measure on all o € 27, such that
Z(k,j)eA a(k,j) = n. A straightforward computation shows that I/Z,n is simply the marginal
of vz, on the horizontal sums

2J
Wi = ) - (2.29)
k=1
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Writing ¢(w) = ¢(a) we have, in particular, Vari,n(go) = Vary ,(¢). Similarly, a direct
computation shows that

2J L-1

Z > van[(Vieg 409 (2.30)

kél]l

where V(i . j+1)P(a) = (k). (Li+1)) — 3(q) stands for the exchange gradient between
sites (k,j) and (£,j 4+ 1). The profile dynamics is thus a projection on horizontal sums of
the elementary exclusion process in A where each bond (k,j)-(¢,5 + 1), k, £ =1,...,2J;
j=1,...,L —1, is exchanged with rate 1.

Consider now the Bernoulli-Laplace diffusion with 2JL sites and n particles, with
Dirichlet form

Ean( Z Z v [(V kg em®)?]

k£=1j,h=1
From (2.30), a simple bound like (2.16) gives
ELu(p) > 6TLT2Ep (). (2.31)

The conclusion now follows from the recursive argument given in the previous subsection,
which shows that Ep (@) > 4Varp »(@). O

3. XX7Z CHAINS

In this section we consider the anisotropic chain described by the Hamiltonian (2.1)
when the bond interaction is given by

Hjj = —A"1(8)S), 1 +S87S5)) — SISH, + A(A) (Siyy — Sp) + 7. (3.1)

Here Sf, k =1,2,3 are the spin—J operators at site 7, A > 1 is the anisotropy parameter.
The terms A(A)(Sp,; — S;) sum up to a boundary condition favoring a discrepancy
between the first and the last spin of the chain. Following [3] (see also [5] and other
contributions to this volume) we make the choice

= JV1-A2,

which gives a set of ground states describing sharply localized domain walls. We review
below some of the known facts about these ground states and the energy gap above them
from the point of view of the equivalent asymmetric exclusion process.

3.1. Spin—1/2 XXZ chain. We start with the case J = 1/2. The notation is that of the
previous section. It is standard to introduce the parameter g € (0, 1) solution of

1
A:§(q+q_1).

When A = ¢ = 1 we are back to the isotropic case studied before. The anisotropic version
of the functions (2.9) is

P (@) = L5 a;=n} (e Hq]aj- (3.2)
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By direct computation we find the analog of (2.8): for every n, every a € €, such that
>_j @ = n, we have

(M) 5019] () = (e Hj i) =—icj(a) [#% P —gla)|, (33)

where c;(a) 1= ¢ %+,
The identity (3.3) shows that in each sector §,, we have the ground state ¢ and the
map U,y = 1/d3 gives the unitary equivalence
-1
Uy Hi Uyt = —m Ly, Lyop= Z‘I ¢ Viji1th. (3.4)

Here L, is the generator of the asymmetric exclusion process where particles jump to the
right with rate ¢ and to the left with rate g~!. Clearly, the process is reversible w.r.t. the
probability measure v{ , = (Z{ ,)7"'|¢4|*. Moreover, it shares the so—called U,[SU(2)]
quantum—group symmetry with the Hamiltonian Hy. This latter fact was exploited in
[22] to obtain interesting duality relations.

The energy gap above the ground states ¢;, was computed by Koma and Nachtergaele
[15] using explicitly the quantum-group symmetry. Their result implies that for J = 1/2,
independently of n, gap,,(Hr) — 1 — A~!, as L — oco. That for A > 1 the gap must be
positive uniformly in L, can be seen by means of a recursive argument using the particle
system representation, see [8], Theorem 4.3. The interest of an alternative method is
apparent when we move to the general J > 1/2 case, where the quantum symmetry is
lost.

3.2. Spin—J XXZ chain. The model here is again (3.1). In analogy with (3.2) and (2.22)
we introduce the functions

P (W) = L5 wy=n}(w Hq]“]\/U- (3.5)

The identities (2.21) allow to compute, for each w € Qf with dojwi=m

9] ) = —5x i @) [ ¢qf”( ])ﬂ) P ~ ¢<w>]

1 ¢ (w)
N R [ ¢%(w§§-’+1) P2’ - w(w)] : (3.6)
where
P w) =7 2T —wpwip, W) = g (2T = wip)w; (3.7)

From (3.6) we see that ¢7, is a ground state for each n, as first discussed in [3]. As usual
(3.6) allows to derive the unitary equivalence through the map U, : 9 — /¢,

1
Uy Hi U, ! = “ox Lo Lo=LigtLoy, (3.8)

where L, is the generator of the asymmetric profile dynamics

Lo gl Z P @) |9 ) — )] . (3.9)
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The difference with the process in (2.27) is only the asymmetry in the rates (3.7) which
favors high profiles on the left and low profiles on the right. The process is reversible
w.r.t. the probability I/Z’ZL = (Zg’%)*1|¢%|2. Ergodicity and uniqueness of the ground
states follow immediatel}; as before. When J = 1 we obtain the asymmetric counterpart
of the diffusion limited chemical reaction model mentioned in the previous section.

One of our main results in [9] is that the spectral gap of the anisotropic spin—J chain
grows linearly with J, in the sense of the following theorem. The precise asymptotics for
large J was predicted in [16], with the help of numerical data.

Theorem 3.1. For every A > 1, there exists 6 € (0,1) such that for any L > 2 and any
J €N

§.J < gap(Hr) < 6 'J

In the isotropic case of Theorem 2.1 we have seen that diffusive scaling was a direct
consequence of (the local nature of the interaction and) translation invariance. Here the
profile process is asymmetric and has a finite (of order .J !, independently of L) relaxation
time to equilibrium.

The proof is not as easy as that of Theorem 2.1 and we refer to [9] for the details. In
the next paragraph, however, we sketch the main ideas involved in the lower bound.

Ideas for the proof of Theorem 3.1. As in the proof of Theorem 2.1 we have to bound the
Poincaré constant v;'?(L) of the Dirichlet form

J, o g+l 41
Enle) = v le(—L ZVLn 7"3{7; Vi +1‘P) + ]qur (V ,J+1‘P)] (3.10)

J,q

We write again A for the 2J x L rectangle in Z2. The measure VL on w’s is now seen to

be the marginal on the horizontal sums (2.29) of the probability I/A,n on a € {0,1}* given
by

2J L

1
]/X,n(a) = A {Z aj_n} H H qQJOé(k 7)., (3]_]_)

o1 k=1j=1
Note that the asymmetry is only in the vertical direction. With ¢(w) = @(«), we have

2J L-1

1 )
ELn@) =5 D D Kl (Viean®)] (3.12)

k=1 j=1

where c?’g(a) = ¢k 7%+, The identity (3.12) says that the asymmetric profile dy-
namics with generator £, can be computed by projecting on horizontal sums w the dy-
namics of particles in the box A which take arbitrary jumps in the horizontal direction but
only unit jumps in the vertical one, with particles jumping to unoccupied sites, upwards
(downwards) with rate ¢ (g~!).

At this point there does not seem to be a straightforward comparison argument to
bound (3.12) from below as in (2.31) and we turn to a finer recursive analysis which is
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roughly described as follows. We first set N = 2.J and rewrite (3.12) as

Errt(p) = TEnn(@), Enu(p) = Z Dy (9
N =
1L71
Dre(@) =5 Z (k) (eg+1)P)°] -
=1

Here the idea is to isolate the deependence so that the final claim would follow from
a uniform (in N, L,n) upper bound on the Poincaré constant of the Dirichlet form é Non-
The argument for the latter estimate is sketched below.

For each k = 1,..., N, consider the variables n := {a( ), j = 1,..., L}. Let P denote
the non—negative operator

1 N
(0) = 2 S VR 5 1)
k=1

As in (2.20), when ¢ has mean zero we have

N

Vf{,n [@(1 - = Z ValrA n (@] nk)] (3.13)
k:

Letting -, (N, L) denote the Poincaré constant of the £y ,,~dynamics and writing y(N, L) =
sup,, Yn(N, L) we have that the r.h.s. in (3.13) is bounded from above by

N -2
N -1
The above bound is actually only correct if all the diagonal terms Dy, ;(¢) vanish. This
problem, however, is easily solved by slightly modifying the Dirichlet form from the be-

ginning. Once we have this, the main claim is that there exist uniform constants C' < oo
and ¢ > 0 such that for any mean zero ¢ we have

7(N -1, L)

gNn((p)

1
Vi (PPP) < 57— (L+CON )1, (37 (3.14)

If (3.14) holds then (3.13) implies
’Y(Nﬂ L) < (1 + ClN?li() ’Y(N - 17 L) )

with a finite constant C’. This estimate can be iterated down to some fixed Ny, so that
v(N, L) < C"y(Ny, L) for all N > Ny with another constant C”. The uniform estimate

sSup ’Y(N07L) <0,
L>2

can be obtained by the martingale technique combined with the uniform upper bound on
v(1,L) as in [8], Theorem 4.1 and Theorem 4.3. This shows that (3.14) is sufficient for
our purposes.

Note that (3.14) only refers to a property of the measure, independent of the original
dynamics. Following [10], the main idea behind the proof of (3.14) is to exploit exchange-
ability of the variables 1 (due to horizontal symmetry in the measure I/A ) to reduce
(3.14) to a suitable one-dimensional problem, i.e. an estimate involving functions of a
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single variable, say n;. Let h = h(n;) be such a function, and assume h is orthogonal to
both the constant and the number of particles, i.e. v{ (k) =0 and

L

Vi [Mm)Em)] =0, &m) =) o).

j=1

The required estimate can be formulated as follows [9]: There exist uniform constants
C < 00, ¢ > 0 such that any function h with the above properties satifies

vE () h(n2)]| < ONT'CwE [h(m)?] - (3.15)

We shall not describe the problem (3.15) but only note that the main tools used here
are some local expansions related to the central limit theorem. Indeed, the point of
(3.15) is to estimate how far the measures V[‘{’n are from product measures on the random
variables 71, 72. This equivalence of ensembles problem is strictly related to the central
limit theorem. We refer to [8, 9, 7] for further details.

4. HIGHER DIMENSION: 111 INTERFACES

The mapping between quantum Heisenberg models and particle systems can be dis-
cussed, in principle, on general graphs. As we have seen, however, boundary conditions
play a crucial role. In the isotropic case, for instance, when free or periodic boundary
conditions are considered, a straightforward modification of the arguments in the proof
of Theorem 2.1 shows that the gap scales like JL™2 on any rectangular box in Z? whose
longest side is L, for any d > 1. In this section we focus on some higher dimensional ver-
sion of the anisotropic model which recently attracted many investigations in connection
with the problem of stability of quantum domain walls, see e.g. [19] for an introduction to
this fascinating subject.

Following [5] we study the case of boundary conditions forcing a diagonal interface in
the system. For simplicity we discuss only the 2-dimensional case, but the results below
can be shown to hold in any dimension d > 2.

Consider a tilted rectangle I' = I'g ;, with height along the 11 direction

I'={z€Z’: -R<z1—22<R, 1<z +12< L}

where R, L are two positive integers. We write £, = z1 + zo for the distance of a site
x = (z1,z2) from the line 21 = —xz9. We call B the set of (ordered) pairs (z,y) € T' x T’
such that |z, —y1| + |22 —y2| = 1 and £, = ¢, + 1. For any J € %N the anisotropic spin—J
Hamiltonian in the region I' with 11 boundary conditions is defined by

HR,L = Z H(:v,y) ) (41)
(z,y)eB
Hizy) = A7 (S8, + 5357) — S8y + V11— A2 (S) - S3) + 7.
This corresponds to classical boundary conditions favoring high (low) values of S on the

south-west (north—east) side of I'. The analog of the ground states (3.5) are given here
by the functions

¢%,n(w) = 1{Zzer we=n} (w) H qémwm (Zj) . (4.2)

zel
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As usual the Hilbert space Hr = ®,crC?’*! is divided into sectors 9,, n =0,...,2J|T|,
and qﬁ% ,, is the unique ground state in each $),,. The derivation of the unitary equivalence
(3.8) can be repeated here without modification and the resulting process is described by

Lo=Ligtlog, Lo = Y rl@[pel) —sw)]. @3
(z,y)EB

Note that the asymmetry is now along the 11 direction while there is essentially translation
invariance in the orthogonal direction. To remove fluctuations in the orthogonal direction
it can be convenient to study the modified model defined as follows. Consider a new graph
with vertices the sites of ' but with edge set given by

B={(z,y) €T xT : £, =10,+1}.

Define the Hamiltonian

- 1
HR,L = }_% Z 7/H(m,y) ) (44)
(z,y)eB

with the bond operator H, ,y as in (4.1). Hp 1, models a mean—field type interaction in
the orthogonal direction while keeping a local interaction in the 11 direction. It is not
difficult to check that the ground states of Hp 1, are again given by the functions QS%’H in
(4.2). Therefore the associated particle system has the generator Rilﬁiq, with Eq given
by (4.3) with the only difference that now the edge set B is replaced by B. Combining the
techniques of Theorem 2.1 and Theorem 3.1 we can derive the following result, see [9].

Theorem 4.1. For every A > 1, there exists § > 0 such that for all J,R and L
0J < gap(’}:lR,L) < o,

A uniform lower bound on the gap like the one in Theorem 4.1 might be of help in
establishing results on the stability of domain walls at positive temperature.

Going back to the local interaction (4.1) we restore fluctuations in the orthogonal direc-
tion and produce the associated low—lying (diffusive) excitations. Using simple comparison
arguments as in (2.16) we have the following bounds.

Corollary 4.2. For every A > 1, there exists § > 0 such that for all J,R and L
§JR? < gap(Hpr) < 0 'JR 2.

That the system described by (4.1) should have gapless spectrum in the limit R — oo
was first observed in [18] as a consequence of a continuous symmetry breaking. Rather
precise upper bounds on gap(Hg,z,) were then obtained in [5] by a careful choice of the
test function in the variational principle. The estimates in Corollary 4.2 were first derived
in [8] for spin J = 1/2, and then in [9] for arbitrary values of J.

5. ON THE INFLUENCE OF AN EXTERNAL FIELD

In this last section we are interested in the effect of an external field located somewhere
in the system. For simplicity we restrict to the one-dimensional case. Following [12] we
consider a magnetic field B = (By, Bs, Bs) acting at a site y € {1,...,L}. We then have
the Hamiltonian

HP,=HL+B-S,,
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where #, is the anisotropic spin—J chain obtained from (3.1) and B-S, = 23:1 B,»S;. We
shall see that this model has a simple representation in terms of non—conservative particle
systems.

Recall the set of ground states ¢f of Hp, given in (3.5), such that Hpéh = 0. As
observed in [12], if the transversal component is nonzero, i.e. if B? + B3 > 0, then the
unique ground state of ’HLB,y is an appropriate mixture of the states ¢;, above. This is
interpreted as a pinning of the interface. To be precise, consider the grand—canonical
states

W=D 2", (5.1)
n
where z € C\ {0} is a fugacity parameter. Then v* is a product state with

Wi

L
¥, wiwy) = (a9 (2">. (5:2)
j=1

Proposition II.1 in [12] says that, if B? + B2 > 0, the ground state of ’Hf,y is given by 1*
with the choice

|B|| + Bs
=2(B,y) = — ¢ ———
z(B,y) B —iB,
where | B||? = Y, BZ. It also shows that ’HLB,yzpz = —J||B|.
from the following computation. We use the notation w®™¥ for the configuration

(i,y) — w] y#]
77wy £1 y=j

(5.3)

These results can be recovered

Lemma 5.1. For any J € %N and any B = (By, Ba, B3) such that B+ B2 > 0, we have,
for every function ¢

(Wl HE o) = [HP ] (@) = —u ¥ (w) [ V() ) - so(w>]

@) | s vl — ol (5.4

where H} := B - S, -{—JHBH z = z(B,y) is given in (5.3) and

—w Y (w

wh¥(w) = 5 (1Bl = Bs) 2 —wy), w™¥(w) = 5 (1Bl + Bs) wy - (5.5)

Proof. Observe that for any z, if w, < 2J

P (w ~
) — Gl /2T ).
and, if wy >0
% = (zq_y)_l\/(ZJ —wy+1)/wy,.

On the other hand, recall that raising and lowering operators SjE 31 + 252 satisfy

Sflw) = /27 —w)(wy + D |wt?), 55 lw) = /(2T —wy + Dy ™). (5.6)




ENERGY GAP ESTIMATES 15

Using these expressions and zq ¥ = —(|| B|| + Bs)/(B1 — iB2) we see that

(5158} + BaSEhi] () = —0 ) 2 o) =0 ¥w) S plar ).
Finally, (5.4) follows from
Bs(wy — J) + J|B| =w™Y +w Y.

O

5.1. Kawasaki + Glauber. We now use the identity of Lemma 5.1 to describe the
equivalent stochastic process. Recall the basic relations (3.6). Since 1% (w) /¢ (w2 Th) =
b (w)/ qﬁ%(wij 1) whenever 3 ;jwj =, we have the following unitary equivalence.

Let y1, denote the probability measure p, = (Z,) '%?|?, 2 = 2(B,y). ThenU,p = p/1p*
maps unitarily $;, into L?(Q7, u,) and from Lemma 5.1 and (3.6)

1
C2A
where £, is the generator of the conservative profile dynamics described in (3.8), while
E? is the dissipative term given by

Ly o(w) = wH(w)[p(w™) = p(w)] +w™ ¥ (W) [plw™) - pw)] -

As before the measure u, can be viewed as the marginal on horizontal sums (2.29) of
variables a € {0,1}*, with the difference that now the «’s are distributed according to
independent Bernoulli measures with

U, [Ho+HJ Ut = L, — LS (5.7)

y

B _jt=2 _ 1Bl = Bs o4
apn=1)=—1 1 2g |72 = 120 73 2(i-y)
NZ( (£,9) ) 1+|Zq_]|_2 | q | ||B||+ng
It is also easy to see that the dynamics generated by £ =1/ (ZA)Eq—i—EE coincides with the
projection of the process on a—variables, which we may call Kawasaki+Glauber dynamics,
described as follows. On one hand we have the usual exchange (Kawasaki) dynamics with
generator
| 2 Ll o
oA Z an(z,j)*a(z',jﬂ) [f(a(l,J);(f ,J+1)) _ f(a)] ]
0,0=1j=1

On the other hand we have the single-site Glauber dynamics at row y with generator

2J
Zg(l,y) (O() [f(a{(l,y)}) - f(a)] )
=1

where g ) (@) = (1B - Bs)a,y + s(IB|l + Bs)(1 — Q(g,y)), and oA&¥)} denotes the
configuration “flipped” at (4, y).

Once the equivalent representation is established, a number of questions for the pinned
interface can be asked and, possibly, answered in the framework of the Kawasaki+Glauber
dynamics just described. This stochastic process seems to be a natural alternative tool to
understand and extend the results obtained in [12] such as the existence of a uniformly
positive spectral gap above the unique ground state ¥?. We hope to come back to this
and related problems in future work.



16

[1]

[2]
[3]

[4]

[5]
[6]

[20]
[21]

[22]

P. CAPUTO

REFERENCES

I. Affleck, T. Kennedy, E. Lieb, H. Tasaki, Valence bond ground states in isotropic quantum antifer-
romagnets, Comm. Math. Phys. 115, 477-528, 1987.

C. Albanese, A Goldstone mode in the Kawasaki—Ising model, J. Statist. Phys. 77, 77-87, 1994

F.C. Alcaraz, S.R. Salinas, W.F. Wreszinski, Anisotropic ferromagnetic quantum domains, Phys. Rev.
Lett. 75, 930-933, 1995.

F.C. Alcaraz, Ezact steady states of asymmetric diffusion and two-species annihilation with back reac-
tion from the ground state of quantum spin models, Intern. Journal of Modern Physics B, 8, 3449-3461,
1994.

O. Bolina, P. Contucci, B. Nachtergaele and S. Starr, Finite volume excitations of the 111 Interface
in the quantum XXZ model, Comm. Math. Phys. 212, 63-91, 2000.

N. Cancrini, F. Martinelli, On the spectral gap of Kawasaki dynamics under a mizing condition revis-
ited, J. Math. Phys. 41, no. 3, 1391-1423, 2000

P. Caputo, Spectral gap inequalities in product spaces with conservation laws, preprint 2003

P. Caputo, F. Martinelli, Asymmetric diffusion and the energy gap above the 111 ground state of the
quantum XXZ model, Comm. Math. Phys. 226, 323-375, 2002

P. Caputo, F. Martinelli, Relazation time of anisotropic simple exclusion processes and quantum
Heisenberg models, Ann. Appl. Probab. 13, 2, 2003

E. Carlen, M.C. Carvalho, M. Loss, Many-Body Aspects of Approach to Equilibrium, Semin. Equ.
Deriv. Partielles, Ecole Polytech., Palaiseau, 2001.

E. Carlen, M.C. Carvalho, M. Loss, Determination of the spectral gap in Kac’s master equation and
related stochastic evolutions, preprint 2002

P. Contucci, B. Nachtergaele, W. Spitzer, The ferromagnetic Heisenberg XXZ chain in a pinning field,
arXiv: math-ph/0204011

P. Diaconis, L. Saloff-Coste, Comparison theorems for reversible Markov chains, Ann. Appl. Probab.
3, 696-730, 1993

P. Diaconis, M. Shahshahani, Time to reach stationarity in the Bernoulli-Laplace diffusion model,
STAM J. Math. Anal. 18, no. 1, 208-218, 1987.

T. Koma, B. Nachtergaele, The spectral gap of the ferromagnetic XXZ chain, Lett. Math. Phys. 40,
no. 1, 1-16, 1997.

T. Koma, B. Nachtergaele, S. Starr, The spectral gap for the ferromagnetic spin-J XXZ chain, Adv.
Theor. Math. Phys. 5, 1047-1090, 2001

S.T. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics.
Comm. Math. Phys. 156, 399-433, 1993

T. Matsui, On the spectra of the kink for ferromagnetic X X Z models, Lett. Math. Phys. 42, 229-239,
1997

B. Nachtergaele, Interfaces and droplets in quantum lattice models, Proceedings of the XIIIth In-
ternational Congress on Mathematical Physics, 243-249, Int. Press, Boston, MA, 2001. Archived as
mp_arc/00-369

J. Quastel, Diffusion of color in the simple exclusion process, Comm. Pure Appl. Math. 45, 623-679,
1992

P. Lloyd, A. Sudbury, P. Donnelly, Quantum operators in classical probability theory. I. ”Quantum
spin” techniques and the exclusion model of diffusion, Stoch. Proc. Appl. 61, 205-221, 1996

G.M. Schiitz, Duality relations for asymmetric exclusion processes, J. Stat. Phys. 86, 1265-1287, 1997

Dip. MATEMATICA, UNIVERSITA’ DI RoMA TRE, L.Go S. MURIALDO 1, 00146 RomA, ITALY
E-mail address: caputo@mat.uniroma3.it



