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sum
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which evidently represents a meromorphic .function. It is very natural
to separate the odd and even terms and write

2541 k 1] 1
(—1)* 1 .
= = o ™
gt "z_z z—=2n s-Zb—l 2
By comparison with (11) we find that the limit is
2 z—1) = ,
%Mt'ﬁ—_i(m 2 = s w2

and we have proved that v

. . 1
s = im 3 o

EXERCISES

L Comparing coefficients in the Laurent developments of cot xz and
of its expression as a sum of partial fractions, find the values of

L © 1
w L
1 1
Give a complete justification of the steps that are needed.
2. Express

3|~

~I~e
=

1
Z?TF
in closed form. ’
3. Use (13) to find the partial fraction development of 1/cos xz, and
show that it leadstox/4 =1 — 2+ 3 — 3+ + - -.
4. What is the value of

v 1
_2_ (z + n)* + a*
5. Using the same method as in Ex. 1, show that

)"’: L _ g Be
n2k (2k)!
1

(See Sec. 1.3, Ex. 4, for the definition of By.)
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2.2. Infinite Products. An infinite product of ecomplex numbers

.pn-..zﬂp“

n=]

(14) Pips

is evaluated by taking the limit of the partial products P, = p,p, « - - P
It is said to converge to the value P = lim P, if this limit exists and is
n—rw

different from zero. There are good reasons for excluding the value zero.
For one thing, if the value P = 0 were permitted, any infinite product
with one factor 0 would converge, and the convergence would not depend
on the whole sequence of factors. On the other hand, in certain con-
nections this convention is too radical. In fact, we wish to express a
function as an infinite product, and this must be possible even if the
function has zeros. For this reason we make the following agreement:
The infinite product (14) is said to converge if and only if at most a
finite number of the factors are zero, and if the partial products formed
by the nonvanishing factors tend to a finite limit which is different from
Zero.

In a convergent produet the general factor p, tends to 1; this is clear
by writing p, = w/Pn_1, the zero factors being omitted. In view of
this fact it is preferable to write all infinite products in the form

(15) i1 a+a)
n=l
80 that a, — Qis 5 necessary condition for convergence.
If no factor is zero, it is natural to compare the product (15) with the
infinite series :

a8) 3 log (1 +ay).
: A=l

Since the a, are complex we must agree on a definite branch of the
logarithms, and we decide to choose the principal branch in each term.
Denote the partial sums of (16) by S.. Then P, = ¢5 and if S, — 8
it follows that P, tends to the limit P = ¢f which is = 0. In other
words, the convergence of (16} is a sufficient condition for the convergence
of (15).

- In order to prove that the condition is also necessary, suppose that
P,—P30. It is not true, in general, that the series {16), formed with
the principal values, converges to the principal value of log P; what we
wishtoshowisthstiteonvergestosomevﬂue of log P. For greater

olarity we.shall ‘tempieniily adopt the: usage® of “dendting the principal
valte of the logsribe

¥ Log stk e imaginary part by'Arg
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Beecause P,/P —1 it is clear that Log (P./P) »0forn — . .There
exists an integer h, such that Log (P./P) = S, — .Log P 4 hy-2xi. We
pass to the differences to obtain (k.1 — h.)2xi = log (Pa/P) —
Log (P./P) — Log (1 + a,) and hence (ko1 — ha)27 = Arg (Puy/P) —
Arg (P./P) — Arg (1 + a,). By definition, |Arg (1 + a.)| § 8 g.nd we
know that Arg (P..,/P) — Arg (P,/P) — 0. For large n tl'ns is incom-
patible with the previous equation unless knyy = h.. Hence h, is ultimately
equal to a fixed integer Ak, and it follows from Log (P,./P) = 8, — Log P +
h-2xi that S, — Log P — h-2xi. We have proved:

Theorem 5. The infinite product [| (1 + @) with 1 + a, # 0 converges
1

simulianeously with the sen’esElog (1 + a,) whose terms represent the
0 -
values of the principal branch of the logarsthm.

The question of convergence of a product can thus be .reduced to the
more familiar question concerning the convergence of a series. It can be
further reduced by observing that the series (16) converges abf;o}utely at
the same time as the simpler series Z |a,|. This is an immediate conse-
quence of the fact that :

imlegd+2 _
o0 z
If cither the series (16) orzv]a.l converges, we have a, — 0, and for a
1
given & > 0 the double inequality
(1 = e)laa| < flog (1 + a:)| < (1 + e)jas|

will hold for all sufficiently large n. It follows immediately that the two
eeries are in fact simultaneously absolutely convergent.

An infinite product is said to be absolutely convergent if n.n.d only 1f
the corresponding series (16) converges al_)solutely. With this termi-
nology we can state our result in the following terms:

Theorem 6. A necessary and sufficient condition for the absofute con-
vergence of the_‘prodw:tl:[ (3 + a,) is the convergence of the seriesg |&al.

In the laéf. theorem the emphasis is on absolute convergence. By
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simple examples it can be shown that the convergence of >, 8, is neither
1

sufficient nor heeessary for the convergence of the product[] (1 + a,).
1

It is clear what to understand by a uniformly convergent infinite
product whose factors are functions of a variable. The presence of
zeros may cause some slight difficulties which can usually be avoided
by considering only sets on which at most a finite number of the factors
can vanish. If these factors are omitted, it is sufficient to study the
uniform convergence of the remaining product. Theorems 5 and 6 have
obvious counterparts for uniform convergence. If we examine the proofs,
we find that all estimates can be made uniform, and the conclusions lead
to uniform convergence, at least on compact sets.

EXERCISES
L Show that
G-+
2. Prove that for |2| < 1
A+A+HA+90+2) ... =1 18
3. Prove that

I:[ (1 + f) ein

. converges absolutely and uniformly on every compact set.

4. Prove that the value of an absolutely convergent product does not
change if the factors are reordered.
5. Bhow that the function

02) = [ (1 + h*te)(1 + hin-tg—s)
1

where || < 1 ig analytic in the whole plane and satisfies the functional
equation

8z + 2log h) = ke 9 (2).

2.3. Canonical Products. A function which is analytic in the whole
plane is geid to be entire, or tnfegral. The simplest entire functions
which are not polynomials are e*, 8in #, and cos z.

If g(2) is an entire fnneti()n,_ then f(s) = &#@ igentire and 7 0. Con-
versely, if f(z) is any entire function which is never zero, let us show -
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that f(2) is of the form e*®. To this end we observe that the function
§'(2)/7(z), being analytic in the whole plane, is the derivative of an entire
funetion g(z). From this fact we infer, by computation, that f(z)e—*®
has the derivative zero, and hence f(2) is a constant multiple of *¢; the
congtant can be absorbed in g(z).

By this method we can also find the most general entire function with
a finite number of zeros. Assume that f(z) has m zeros at the origin
(m may be zero), and denote the other zeros by as, as, . . . , an, multiple
zeros being repeated. It is then plain that we can write

d 2
j()=z°'e"') 1—-=)
g I,]( o

If there are infinitely many zeros, we can try to obtain a similar repre-
sentation by means of an infinite product. The obvious generalization
would be

an f(z) = zmer® f:[ (1 - %) |

This representation is valid if the infinite produet converges uniformly
on every compact set. In fact, if this is so the product represents an
entire function with zeros at the same points{except for the origin) and
with the same multiplicities as f(z). It follows that the quotient can be
written in the form zmest=),

The product in (17) converges absolutely if and only if 2 1/la.| is
1

convergent, and in this case the convergence is also uniform in every
closed disk |z| < R. Tt is only under this special condition that we can

obtain a representation of the form (17).
In the general case convergence-producing factors must be introduced.
We consider an arbitrary sequence of complex numbers a. £ 0 with

lim @, = «, and prove the existence of polynomials p.(z) such that

'(':8.) I;:[ (1 - ui..) eral®

converges to an entire function. The product converges together with
the series with the general term

ra(z) = log (1 - f:) + pa(2)

- where the product 18 laken over-ali 6, 54 0. the- o
- gz} is an entive fm oge{) a.( "o’ ”'0‘"!- are Wn 1@&3, and
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where the branch of the logarithm shall be chosen so imaginary
: that th
part of r,.(z)’ Iies between —x and « (inclusive). o
For a given R we consider only the terms with {aa| > R. Inthe disk

|| & R the principal branch of log (1 — )
T&ylor series g ( z/6n) can be developed in a

(i-2)- 2 -3

We reverse the signs and choose Pa(2) 88 a partial sum

oz, 1fz\¢ 1 fz\™
”z _— —f — - v e —_ —
Pal2) a.+2(a,.)+ +m,.(a,)‘
Then r,(2) has the representation

rae) = — —~ (_"’_)""“ N A
ma 3 1 \@a ma + 2 E) -

and we obtain easily the estimate

(19) ra2)| = _—1 ( ) ! - !
Suppose now that the series

o L@

converges. By the estimate (19) it follows first that ra{2) = 0, and
henoe a(2) has an imaginary part between -—x and x as soon s.; n is
suﬂiclefltly large. Moreover, the comparison shows that the series
Zra(2) is absolutely and uniformly convergent for [z| £ R, and thus the
product (18) represents an analytic function in |z| < B. For the sake
of the reasoning we had to exclude the values |a,| < R, but it is clear
that the umfo_rm convergence of (18) iz not affected when the corre-
spomllxtng fuitors :lre again taken into account.

.1t remains only to show that the series (20) can

for all R.. But this is obvious, for if we také m),. = nb(i!t )i‘:::il::: ltll‘:::g(ezlg;
has a majorant geometric series with ratio < 1 for any fixed value of R.

Theorem 7. There exists an entire Junction with arbitrarily prescribed

" 2€ros8 a, provided that, in the case of infinttely many zeros, g, — . Every

mtirefundionwiththeseandnootkcrzems-canbewriaeninthefmn

@) = e T (1= 2)EHE G

=1
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This theorem is due to Weierstrass. It has the following important,
corollary:

Corollary. Every function which ts meromorphic in the whole plane is
the quotient of two eniire funcitons.

In fact, if F(z)} is meromorphic in the whole plane, we can find an
entire function g(z) with the poles of F(2) for zeros. The product F(z)g(z)
is then an entire funetion f(z), and we obtain F(z) = f(2)/g(2).

The representation (21} becomes considerably more interesting if it is
possible to choose all the m, equal to each other. The preceding proof
has shown that the product '

en (- 2) s RE)

@n
1
converges and represents an entire function provided that the series
E (R/]es)*/(h + 1) converges for all R, that is to say provided that
n=1

Z1/|a.ft < . Assume that h is the smallest integer for which this
series converges; the expression (22) is then called the canonical product
associated with the sequence {a,}, and h is the genus of the canonical
product.

‘Whenever possible we use the canonical product in the representation
(21), which is thereby uniquely determined. If in this representation
¢(2) reduces to a polynomisal, the funetion f(z) is said to be of finite genus,
and the genus of f(z) is by definition equal to the degree of this polynomial
or to the genus of the canonical product, whichever is the larger. For
instance, an entire function of genus zero is of the form

. oz-]-:[(l—%)

with Z1/le,| < . The canonical representation of an entire function
of genus 1 is either of the form

" h _i 71
cg-ef ]](1 a,.)e"'

1

with 21/|a.|? < », Z1/|a,| = «, or of the form

Czﬂefl.:] (1 -- ai,.) |
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with Z1/la.| < 0, & 0.

The As an apphcati?n we consider the product representation of sin =z,
zerog are the integers z = +n. Since Z1/n diverges and Z1/n?

converges, we must take & = 1 and obtain a representation of the form

sinxz = 2@ [] {1 - f) esin
n .
140

In ord i ithmi ivati
e e;v t: f;dnedtel’mme (2} we form the logarithmic derivatives on both

_1, ., 1 1
wcotrz—z+g(z)+2( +;‘)

Z2—Nn
ny<Q

where the procedure is easy to justify by uniform convergence on any

. compact set which does not contain the points z = n. By comparison

with the previous formula (10) we conclud

\ e that ¢'(z) = 0. Hence g(

iy ormula (1 : 9(2)
a constant, and since lim sin x2/z = r we must have e2® = 5 and thus

(23) sin xz = zz [] (1 - ;j) e,

8 =0

In this representation the factors co i
rresponding to » and —# can b
bracketed together, and we obtain the simple form )

.(24) sinwz=rzﬁ(l—;:~:)-
1

5 It follows from (23) that sin 2 is an entire function of genus 1.
EXERCISES

1. Suppose that a,— © and that the A, are arbit
] ; " T compl
}l?m)bem;q Show that there exists an entire function J@ w;:cyh saIt[;:ﬁZ:
Gn) = A,

Hini: Let g(z) be a function with simple zeros at the a,. Show that

o enstre) 4
9@ ——— - =2
21: z2—a. g'(a.)
converges for some choice of the numbers y,.
2. Prove that
Sinx(z + a) = vssotwa T| z
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whenever « is not an integer. Hint: Denote the factor in front of the
canonical product by g(z) and determine g'(2)/g(2).

3. What is the genus of cos v/2z?

& 1{ f(2) is of genus k, how large and how small can the genus of f(2*)
be?

5. Show that if f(2) is of genus 0 or 1 with real zeros, and if f(2) is real
for real z, then all zeros of f'(2) are real. Hink: Consider Im §(2)/f(2).

2.4. The Gamma Function. The function sin =z has all the integers
for zeros, and it is the simplest function with this property. We shall now
introduce functions which have only the positive or only the negative
integers for zeros. 'The simplest function with, for instance, the negative
integers for zeros is the corresponding canonical product

(25) G =] (1 + ;i) ein
1

It is evident that G(—z) has then the positive integers for zeros, and by

comparison with the product representation (23) of sin xz we find at once
8in 72

(26) GEG(—2) = T

Because of the manner in which G(z) has been constructed, it is bound
to have other simple properties. We observe that G(z — 1) has the same
zeros 88 G(z), and in addition a zero at the origin. It is therefore clga.r
that we can write

Gz — 1) = 2eWG(2),

where y(2) is an entire function. In order to determine () we take the
logarithmic derivatives on both sides. This gives the equation

@ ,.Zl (r_"%ﬂ - %) = Y@+ zj (z Fao rla)

In the series to the left we can replace n by n -+ 1. By this change we
obtain

< 1 1\ _1 v {1 _L)
,Z‘l(z——m—ﬁ)—zel’i_..zx(z"'" ntl

1 c 1 1 S 1_ 1 )
=;"1+.21(z+n n +.2.('° nEd

The last series has the sum 1, and hence equation (27) reduces to ¥’'(z) = 0.
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'I.‘hus ¥(2) is & constant, which we denote by v, and G(2) has the reproduc-
tive prop.erty G(z — 1) = e2G(z). Tt is somewhat simpler to consider
t!le function H(z) = G(z)e** which evidently satisfies the functional equa-
tion H{z — 1) = 2H(2).

The value of v is easily determined. Taking z = 1 we have

1 = G(0) = e*G(1),
and hence ) = o6

e = H 1 + _l) g tin
7
=1
Here the nth partial product can be written in the form

( + e Otitit - +um
and we obtain

. 1
wam(1+§+§+ - +$—logn)

The ;?n;{t(al)lt v is;;alled Fuler’s constant; its approximate value is .57722.

2) satisties H(z — 1) = zH(z), then I'(z) = 1/[zH tisfi
I¢—1)=T@/(z — 1), or (O] satisis
(28) Iz + 1) = 2I'(z).

This is found to be a more useful relation, and for this reason it has
b.eoome c}lstoxx}ary to implement the restricted stock of elementary func-
tions by inclusion of I'(z) under the name of Euler's gamma function.

Our definition leads to the explicit representation

(29). . e =211 (1 + i‘)‘1 ev/a
e 5 n !

and the formula (26) takes the form

30) —g) =T

¢ T — 2) pr—

We observe that I'(z) is a meromorphic function with poles at z = 0
—1, =2, . . . but without zeros. ' ’

We have I'(1) = 1, and by the functional equation we find I'(2) = 1,
@ =1-2,T@ =1 -2-3andgenerally '(n) = (n — 1)\. The I'func-

_ tion can thus be considered asa generalization of the factorial. From (30)

we conclude that T(}) = 7,
Other properties are moat. easily found by considering the second




