Funzioni convesse di una variabile reale

Qui f denota una funzione definita su un intervallo $I \subseteq \mathbb{R}$ e a valori in \mathbb{R} e x_k punti di I.

1 Definizioni e proprietà generali delle funzioni convesse

Definizione 1 (i) Il rapporto incrementale di f nei punti $x_1 \neq x_0$ è dato da:

$$R(x_1, x_0) := \frac{f(x_1) - f(x_0)}{x_1 - x_0} . {1}$$

(ii) Il bi-rapporto incrementale di f nei punti x_2 , x_1 e x_0 diversi tra loro (cioè $x_2 \neq x_1 \neq x_0 \neq x_2$) è dato da:

$$R_2(x_2, x_1, x_0) := \frac{R(x_2, x_0) - R(x_1, x_0)}{x_2 - x_1} . (2)$$

Osservazione 2 (i) R è una funzione simmetrica di due variabili: $R(x_1, x_0) = R(x_0, x_1)$.

(ii) $R \ge 0$ se e solo se f è una funzione crescente¹.

Lemma 3 (i) Il bi-rapporto incrementale è una funzione simmetrica: $R(x_2, x_1, x_0) = R(x_{j_1}, x_{j_2}x_{j_3})$ per ogni permutazione² (j_1, j_2, j_3) di $\{0, 1, 2\}$.

(ii) Si ha:

$$R_2(x_2, x_1, x_0) = -\frac{f(x_0) - \frac{x_0 - x_2}{x_1 - x_2} f(x_1) - \frac{x_1 - x_0}{x_1 - x_2} f(x_2)}{(x_2 - x_0)(x_0 - x_1)} .$$
 (3)

Dimostrazione Inserendo la definizione di R in (2) si trova

$$R_2(x_2, x_1, x_0) = \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)}$$
(4)

e tale espressione è chiaramente simmetrica in x_0 , x_1 e x_2 ; il che prova (i).

La (3) segue da (4) mettendo in evidenza $1/((x_2-x_0)(x_0-x_1))$.

Definizione 4 f si dice convessa se

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) , \qquad \forall \ t \in (0,1) .$$
 (5)

Ad esempio, dalla disuguaglianza triangolare, segue immediatamente che $x \to |x|$ è convessa su \mathbb{R} (esercizio 1).

Osservazione 5 (i) La (5) è simmetrica in x_1 e x_2 e in t e (1-t).

(ii) Per l'osservazione precedente, possiamo assumere che $x_1 < x_2$ e, ponendo

$$t = \frac{x - x_2}{x_1 - x_2} \iff 1 - t = \frac{x_1 - x}{x_1 - x_2} \iff x = tx_1 + (1 - t)x_2 , \tag{6}$$

Ossia $f(x_1) \ge f(x_0)$ per ogni $x_1 > x_0$.

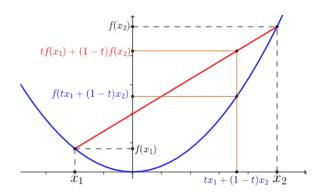
 $^{^2}$ Una permutazione di un insieme finito $\{a_1,...,a_n\}$ è una applicazione iniettiva $j:\{1,...,n\} \rightarrow \{a_1,...,a_n\}$.

si ha che $t \in (0,1)$ se e solo se $x \in (x_1,x_2)$, da cui segue immediatamente che (5) equivale a

$$f(x) \leq \frac{x - x_2}{x_1 - x_2} f(x_1) + \frac{x_1 - x}{x_1 - x_2} f(x_2)$$

$$= f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1) , \qquad \forall x_1 < x < x_2$$
(7)

(iii) Geometricamente la (7) dice che in ogni intervallo $[x_1, x_2]$ di I le ordinate del grafico di f sono al di sopra delle corrispondenti (cioè stessa ascissa x) ordinate della retta³ passante per i punti $(x_1, f(x_1))$ e $(x_2, f(x_2))$.



Proposizione 6 f è convessa se e solo sono vere le seguenti affermazioni

- (i) $x \to R(x, x_0)$ è una funzione crescente in $I \setminus \{x_0\}$.
- (ii) $R_2(x_2, x_1, x_0) \ge 0$ per ogni $x_1 < x_0 < x_2$.
- (iii) $R(x_1, x_0) \le R(x_2, x_0)$ per ogni $x_1 < x_0 < x_2$.

Dimostrazione Dall'Osservazione 2-(ii) (con $R(x, x_0)$ al posto di f) segue che (i) è equivalente a $R_2(x_2, x_1, x_0) \ge 0$ per ogni tripla di punti diversi tra loro. Per la simmetria di R_2 (Lemma 3-(i)), possiamo assumere che $x_1 < x_0 < x_2$, e quindi (i) e (ii) sono equivalenti. L'equivalenza tra (ii) e (iii) segue immediatamente dalle definizioni di R e R_2 e dal fatto che $x_1 < x_0 < x_2$.

Osservazione 7 (i) Essendo $x \to R(x, x_0)$ una funzione crescente per ogni x_0 segue che esistono finiti i limiti (tranne, al più, negli estremi di⁴ I) per x che tende a x_0 da sinistra e destra di $R(\cdot, x_0)$, che per definizione sono la derivata sinistra e la derivata destra di f in x_0 :

$$D_{-}f(x_{0}) := \lim_{x \to x_{0}-} R(x, x_{0}) \le D_{+}f(x_{0}) := \lim_{x \to x_{0}+} R(x, x_{0}) , \qquad \forall x_{0} \in \mathring{I} .$$
 (8)

³Per definizione, una retta in \mathbb{R}^2 (di coefficiente angolare $m \in \mathbb{R}$) è il grafico di una funzione lineare r(x) = mx + c; due rette si dicono parallele se hanno lo stesso coefficiente angolare; le rette parallele all'asse delle y sono date da $\{(x,y) \in \mathbb{R}^2 | x = c\}$ (e non sono grafici).

 $^{^4}$ Se x_0 è interno ad I esisto punti di I $x_1 < x_0 < x_2$ e quindi $R(x_1, x_0) \le R(x, x_0) \le R(x_1, x_0)$ per ogni $x \in (x_1, x_2)$; quindi i limiti da destra e da sinistra per $x \to x_0$ (che esistono per la monotonia di $R(\cdot, x_0)$) sono finiti. Negli estremi tali limiti potrebbero essere infiniti: ad esempio $f(x) = -\sqrt{x}$ è convessa in $[0, \infty)$ ma $\lim_{x\to 0+} f(x) = -\infty$.

In particolare, questo implica che f è continua in \mathring{I} essendo⁵

$$\lim_{x \to x_0 \pm} f(x) - f(x_0) = \lim_{x \to x_0 \pm} R(x, x_0) \cdot (x - x_0) = D_{\pm} f(x_0) \cdot 0 = 0.$$

(ii) Se f è convessa e $x_1 < x_2$, dalla Proposizione 6-(i) segue che per ogni x e y in (x_1, x_2) si ha

$$R(x, x_1) \le R(x_2, x_1) = R(x_1, x_2) \le R(y, x_2)$$
,

e, per l'osservazione (i), prendendo il limite per $x \to x_1 +$, e $y \to x_2 -$, segue che

$$D_+ f(x_1) \le R(x_1, x_2) \le D_- f(x_2) , \quad \forall x_1 < x_2 .$$
 (9)

(iii) Se nelle disuguaglianze (9) poniamo $x_0 = x_1$ e $x = x_2$ nella prima e $x_0 = x_2$ e $x = x_1$ nella seconda otteniamo:

per una funzione convessa valgono sempre le seguenti relazioni⁶

$$f(x) \geq f(x_0) + D_+ f(x_0) (x - x_0) , \qquad \forall x > x_0 ,$$

$$f(x) > f(x_0) + D_- f(x_0) (x - x_0) , \qquad \forall x < x_0 .$$
(10)

(iv) Da quest'ultima osservazione segue facilmente (**esercizio 3**) che se f è convessa e se $D_-f(x_0) \le m \le D_+f(x_0)$ si ha

$$f(x) \ge f(x_0) + m \cdot (x - x_0) , \qquad \forall x. \tag{11}$$

Una retta $f(x_0) + m \cdot (x - x_0)$ tale che valga (11) si dice retta d'appoggio in x_0 al grafico di f. Ad esempio, qualunque retta mx con $m \in [-1, 1]$ è una retta d'appoggio al grafico di |x| in $x_0 = 0$.

(v) Vale anche il viceversa dell'affermazione in (iv), ossia:

Se per ogni $x_0 \in I$ esiste una retta d'appoggio al grafico di f, allora f è convessa in I.

Dimostrazione Siano $x_1 < x_0 < x_2$ punti di I. Ponendo $x = x_1$ nella (11) si ha

$$m \cdot (x_0 - x_1) \ge f(x_0) - f(x_1) \iff R(x_0, x_1) \le m$$
 (12)

Ponendo, ora, $x = x_2$ nella (11) si ha che

$$f(x_2) - f(x_0) \ge m \cdot (x_2 - x_0) \iff R(x_2, x_0) \ge m$$

che assieme a (12) mostra che $R(x_1, x_0) = R(x_0, x_1) \leq R(x_2, x_0)$; l'asserto segue quindi dalla Proposizione 6-(iii).

(vi) Mettendo assieme le osservazioni (iv) e (v) si ha, dunque, la seguente ulteriore caratterizzazione delle funzioni convesse:

f è convessa su I se e solo esiste una retta d'appoggio al grafico di f in ogni punto di I.

2 Convessità e differenziabilità

Assumiamo ora che f sia differenziabile in I. In tal caso

$$D_{-}f(x) = D_{+}f(x) = f'(x) , \quad \forall x \in I .$$
 (13)

 $^{{}^5}$ Si noti che una funzione convessa può non essere continua negli eventuali estremi di I. Ad esempio, la funzione $f:[0,1] \to \mathbb{R}$ che vale 0 in (0,1) e 1 in x=0 e x=1 è convessa (**esercizio 2**) ma non è continua in 0 e 1.

⁶Si faccia attenzione che nella seconda disuguaglianza $(x-x_0) < 0$ e quindi, nel moltiplicare per $(x-x_0)$, la disuguaglianza cambia verso.

Proposizione 8 Sia f differenziabile su I. Allora, f è convessa su I se e solo se sono vere le seguenti affermazioni:

(i) f' è crescente su I;

(ii)
$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$
, $\forall x \in I$.

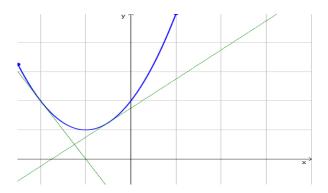
Dimostrazione Se f è convessa, da (9) e (13) segue che f' è crescente. Viceversa, se f' è crescente e $x_1 < x_0 < x_2$ dal Teorema di Lagrange segue che esistono $x_1 < \xi_1 < x_0 < \xi_2 < x_2$ tali che

$$R_2(x_2, x_1, x_0) = \frac{f'(\xi_2) - f'(\xi_1)}{x_2 - x_1} \ge 0$$

e dunque, per la Proposizione 6-(ii), f è convessa.

Se f è convessa, da (10) e (13) segue (ii). D'altra parte, se vale (ii) significa che la retta tangente al grafico di f è una retta d'appoggio e quindi f è convessa per l'osservazione 7–(v).

Osservazione 9 Geometricamente il punto (ii) della Proposizione 8 dice che le ordinate del grafico di una funzione differenziabile convessa è sempre al di sopra delle ordinate corrispondenti di una qualunque sua retta tangente



Infine, ricordando che una funzione differenziabile F è crescente se e solo se $F' \geq 0$, dalla Proposizione 8–(i), segue immediatamente la

Proposizione 10 Sia f derivabile due volte su I. Allora f è convessa su I se e solo se $f'' \geq 0$ su I.

3 Concavità

Definizione 11 Una funzione f si dice concava su I se -f è convessa su I.

Dalle sezioni precenti è possibile riformulare i risultati corrispondenti per funzioni concave. Ad esempio f è concava su I se e solo se

$$f(x) \ge f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1), \qquad \forall x_1 < x < x_2.$$
 (14)

Esercizio 4 Riformulare e dimostrare tutti i risultati corrispondenti delle sezioni 1 e 2 per funzioni concave.

4 Stretta convessità/concavità

Definizione 12 Una funzione f si dice strettamente convessa su I se vale la (5) con la disuguaglianza stretta. Una funzione f si dice strettamente concava su I se -f è strettamente convessa su I.

È facile verificare (esercizio 5) che valgono le seguenti proposizioni.

Proposizione 13 f è strettamente convessa se e solo sono vere le seguenti affermazioni

- (i) $x \to R(x, x_0)$ è una funzione strettamente crescente in $I \setminus \{x_0\}$.
- (ii) $R_2(x_2, x_1, x_0) > 0$ per ogni $x_1 < x_0 < x_2$.
- (iii) $R(x_1, x_0) < R(x_2, x_0)$ per ogni $x_1 < x_0 < x_2$.

Proposizione 14 Sia f differenziabile su I. Allora, f è strettamente convessa su I se e solo se sono vere le sequenti affermazioni:

- (i) f' è strettamente crescente su I;
- (ii) $f(x) > f(x_0) + f'(x_0)(x x_0)$, $\forall x \in I \setminus \{x_0\}$.

Proposizione 15 Sia f derivabile due volte su I. Se f'' > 0 allora f è strettamente convessa.

Esercizio 6 Dimostrare che $f(x) = x^4$ è strettamente convessa su \mathbb{R} (e si noti che f''(0) = 0 e dunque che non vale, in generale, il viceversa della Proposizione 15).

Esercizio 7 Enunciare e dimostrare i risultati corrispondenti per funzioni strettamente concave.