NOME:

COGNOME:

Es 1 [Pt 25] Discutere la convergenza, al variare del parametro reale x, della serie $\sum_{n=1}^{\infty} \frac{\sin x^n}{x^n + 2^{-n}}$.

Es 2 [Pt 25] Si studi la convergenza, al variare del parametro reale α , dell'integrale improprio $\int_0^\infty \frac{1}{1+x^2} \log \frac{1}{1+x^\alpha} dx$.

Es 3 [Pt 25] Calcolare $\lim_{x\to 0+} \frac{(\cos\sqrt{x}) - \frac{\log(1+x)}{x}}{1 - \cosh x}$.

Es 4 [Pt 10] Si determini $\limsup a_n$ e $\liminf a_n$ con $a_n = |\cos(n^2 \frac{\pi}{4})|$.

Es 5 [Pt 15] Sia $f(x) = (\cos x) + (1+x) \sin \frac{1}{x}$. Discutere l'uniforme continuità di f su $\mathbb{R}\setminus\{0\}$.

Soluzioni

Es 1 Per x = -1/2 la serie non è definita. Sia $a_n = \left| \frac{\sin x^n}{x^n + 2^{-n}} \right|$. Per |x| < 1/2, $a_n \sim (2|x|)^n$ e quindi la serie converge assolutamente (radice). Per x = 1/2 e $1/2 < |x| \le 1$, la serie non è infinitesima e quindi non converge. Per |x| > 1, $a_n < 1/x^n$ e quindi converge assolutamente per confronto.

In definitiva, la serie converge assolutamente in $\{|x| < 1/2\} \cup \{|x| > 1\}$ e non converge altrimenti.

Es 2 Esiste M>0 tale che $\frac{1}{1+x^2}\log\frac{1}{1+x^\alpha}< M/x^{3/2}$ per ogni $x\geq 1$ e per ogni $\alpha\in\mathbb{R}$; quindi, per confronto, l'integrale converge su $[1,+\infty)$ per ogni $\alpha \in \mathbb{R}$. Consideriamo ora l'integrale su (0,1). Se $\alpha < 0$, $x^{\alpha} \to +\infty$ per $x \to 0$ e $\int_0^1 \frac{1}{1+x^2} |\log \frac{1}{1+x^{\alpha}}| dx \approx \int_0^1 \log(x^{\alpha}+1) \approx \int_0^1 |\log x|$ che converge (ad esempio per confronto con $1/\sqrt{x}$). Se $\alpha \ge 0$ l'integrando è continuo in 0 e quindi l'integrale converge. In definitiva, l'integrale converge assolutamente per ogni $\alpha \in \mathbb{R}$.

Es 3 Per x piccoli si ha: $\cos \sqrt{x} = 1 - \frac{x}{2} + \frac{x^2}{24} + O(x^3)$, $\frac{\log(1+x)}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} + O(x^3)$, e $1 - \cosh x = -\frac{x^2}{2} + O(x^4)$. Da questo segue che il limite cercato è 7/12.

Es 4 $a_{2k} = |\cos(k^2\pi)| = 1$ e $a_{2k+1} = \cos(\pi/4) = \sqrt{2}/2$. Quindi, $\limsup a_n = 1$ e $\liminf a_n = \sqrt{2}/2$.

Es 5 $\lim_{x\to 0} f(x)$ non esiste e quindi f non è uniformemente continua in alcun intorno di 0. D'altra parte, $\lim_{x\to \pm\infty} (1+x) \operatorname{sen} \frac{1}{z} = 1$, e $\cos x$ è uniformemente continua su tutto R. Quindi la funzione è uniformemente continua sul complementare di qualunque intorno di 0.