PRIMO ESONERO

ESAME AM120-ANALISI MATEMATICA 2 - (AA 2022/23 - L. Chierchia) 20/4/2023

Es 1 [Pt 20] Discutere la convergenza, al variare del parametro reale x, della serie $\sum_{n=1}^{\infty} n^x \tanh x^n$.

Es 2 [Pt 40] Discutere la convergenza, al variare del parametro reale x, delle seguenti serie

(i)
$$\sum_{n=1}^{\infty} (n!)^2 x^{n^2}$$
. (ii) $\sum_{n=1}^{\infty} \left(\frac{x-3}{x+2}\right)^n$. (iii) $\sum_{n=1}^{\infty} \left((n!)^2 x^{n^2} - \left(\frac{x-3}{x+2}\right)^n\right)$.

Es 3 [Pt 15] Trovare $N \in \mathbb{N}$ tale che $2^n \ge 10 n^2$ per ogni $n \ge N$ (giustificare la risposta usando il "principio di induzione").

Es 4 [Pt 10] Determinare l'estremo superiore/inferiore (specificando se massimo/minimo) di $A = \{y = \cosh(\sqrt{2}n + 1) | n \in \mathbb{Z}\}.$

Es 5 [Pt 15] Trovare massimo/minimo limite della successione di numeri $a_n = \{n^2/5\}$ dove $\{x\}$ denota 'la parte frazionaria di x'.

Es 6 [Pt 10] Sia $\{a_n\}$ una successione di numeri reali ed $L \in \mathbb{R}^*$ tali che $\lim a_{2n} = L$ e $\lim a_{2n+1} = L$. Dimostrare che $\lim a_n = L$.

Soluzioni

Es 1 Sia $a_n(x) := n^x \tanh x^n$. Se $x \ge 1$, $a_n(x) \to +\infty$ e quindi la serie diverge. Se |x| < 1, $|\tanh x^n| \sim |x|^n$ per $n \to +\infty$, e quindi per confronto asintotico $\sum |a_n(x)| \approx \sum n^x |x|^n$ e poiché $(n^x |x|^n)^{1/n} \to |x|$, per il criterio della radice, la serie converge assolutamente. Se x = -1, $a_n(x) = (-1)^n/n$ e quindi la serie converge condizionatamente¹ per il criterio di Leibniz. Se x < -1, $|a_n(x)| \le n^x = 1/n^{|x|}$ e quindi la serie converge assolutamente per confronto con la serie convergente $\sum 1/n^{|x|}$. In definitiva la serie converge se e solo se $x \in (-\infty, 1)$ e la convergenza è assoluta se e solo se $x \in (-\infty, 1) \setminus \{-1\}$.

Es 2 (i) Sia $a_n(x) := (n!)^2 x^{n^2}$. Se $|x| \ge 1$, $|a_n(x)| \ge n!^2 \to +\infty$ e quindi la serie non converge. Se |x| < 1, $|a_n(x)| \le n^{2n} |x|^{n^2}$ e poiché $(n^{2n}|x|^{n^2})^{1/n} = n^2|x|^n \to 0$, per il criterio della radice, la serie converge assolutamente.

(ii) Innanzitutto bisogna escludere il valore x = -2 dove $b_n(x) := \left(\frac{x-3}{x+2}\right)^n$ non è definita. La serie è una serie geometrica di ragione $y := \frac{x-3}{x+2}$ e dunque converge se e solo se |y| < 1 ossia se e solo se x > 1/2.

(iii) La serie converge assolutamente in (1/2,1) (essendo somma di serie assolutamente convergenti), non converge in (-1,1/2] (essendo $\sum a_n(x)$ convergente e $\sum b_n(x)$ non convergente). La serie non è infinitesima² se $|x| \ge 1$ e $x \ne -2$: infatti

$$|a_n(x) - b_n(x)| \ge |a_n(x)| - |b_n(x)| \ge n!^2 - |y|^n \to +\infty;$$

quindi la serie non converge per il criterio necessario di Cauchy. In definitiva, la serie converge se e solo se $x \in (1/2, 1)$ ove converge assolutamente.

Es 3 Se N=10, si ha $2^{10}=1024>10\cdot 10^2=1000$ (mentre se N=9, allora $2^9=512<10\cdot 9^2=810$). Dimostriamo per induzione che $2^n\geq 10$ n^2 per $n\geq N:=10$. La base induttiva (n=N) è già stata verificata. Assumiamo che $2^n\geq 10$ n^2 per $n\geq N$. Allora,

$$2^{n+1} = 2 \cdot 2^n \ge 2 \cdot 10 \, n^2 = 20n^2 > 10(n+1)^2$$

essendo l'ultima relazione equivalente a $(n-1)^2 > 2$ che è verificata per $n \ge 3$ (e quindi per $n \ge N = 10$).

Es 4 Poichè $\lim_{n\to +\infty} \cosh(\sqrt{2}n+1) \to +\infty$, $\sup A = +\infty$ (e quindi A non ha massimo). La funzione $n\in \{n\in \mathbb{Z} \mid n\geq 0\} \to \cosh(\sqrt{2}n+1)$ è crescente mentre $n\in \{n\in \mathbb{Z} \mid n\leq -1\} \to \cosh(\sqrt{2}n+1)$ è decrescente; dunque

$$\min A = \min\{\cosh 1, \cosh(-\sqrt{2} + 1)\} = \cosh(\sqrt{2} - 1).$$

Es 5 Poiché la funzione parte frazionaria è periodica di periodo 1 e n^2 è un numero naturale i valori possibili di a_n appartengono a $\{0, 1/5, 2/5, 3/5, 4/5\}$. Se $n_k = 5k$ si ha che $a_{n_k} = \{5k^2\} = 0$ e quindi $\underline{\lim} a_n = 0$. Se $m_k := 5k + 2$, $a_{m_k} = \{5k^2 + 2k + \frac{4}{5}\} = 4/5$ e quindi $\overline{\lim} a_n = 4/5$.

Es 6 Svolto in classe.

¹Ossia converge ma non converge assolutamente.

²Ossia i termini della serie non tendono a zero.