1 Il teorema di Heine-Cantor su intervalli

Teorema (teorema di Heine–Cantor su intervalli) Sia I = [a, b] un intervallo chiuso e limitato e $f \in C(I)$. Allora, f è uniformemente continua su¹ I.

Dimostrazione* Supponiamo, per assurdo, che f non sia uniformemente continua su I, ossia, che esista $\varepsilon > 0$ tale che per ogni $\delta > 0$ esistono $x, y \in [a, b]$ con $|x - y| < \delta$ e $|f(x) - f(y)| \ge \varepsilon$. Scegliendo $\delta = 1/n$ con $n \in \mathbb{N}$ si avrebbe che

$$\forall n \exists x_n, y_n \in [a, b]: \quad |x_n - y_n| < \frac{1}{n}, \quad e \quad |f(x_n) - f(y_n)| \ge \varepsilon.$$
 (1)

Per il Teorema di Bozano-Weierstrass, esiste una sottosuccessione $\{x_{n_k}\}$ di $\{x_n\}$ e $x_0 \in [a, b]$ tali che $\lim x_{n_k} = x_0$. Ma allora, da (1) segue anche che $\lim y_{n_k} = x_0$, infatti:

$$|y_{n_k} - x_0| \le |x_{n_k} - y_{n_k}| + |x_{n_k} - x_0| < \frac{1}{n_k} + |x_{n_k} - x_0| \to 0.$$

Quindi, essendo f è continua in x_0 , si avrebbe

$$0 = |f(x_0) - f(x_0)| = \lim_{k \to +\infty} |f(x_{n_k}) - f(y_{n_k})| \stackrel{(1)}{\ge} \varepsilon > 0,$$

portando ad una contraddizione.

 $^{^1}f:A \to \mathbb{R}$ si dice uniformemente continua su A se $\forall \varepsilon > 0$, $\exists \delta > 0$ tale che $|f(x) - f(y)| < \varepsilon$ per ogni $x,y \in A$ tali che $|x-y| < \delta$.