Capitolo 1

1 Funzioni trigonometriche

A questo punto abbiamo tutti gli elementi che permettono una discussione analitica completa (ossia, basata esclusivamente sugli assiomi dei numeri reali) delle funzioni trigonometriche, che ha però il vantaggio – rispetto ad altre trattazioni analitiche basate, ad esempio, sulla teoria delle serie¹ o su quella delle equazioni differenziali – di riallacciarsi direttamente al classico punto di vista geometrico ("cerchio trigonometrico", angoli in radianti², etc), rimanendo, però, nell'ambito dell'analisi matematica moderna ed in particolare, senza far alcun uso di risultati o argomenti tratti della geometria euclidea (che, come già detto, è altro e indipendente impianto assiomatico).

Archi di circoferenza e loro misura

Sia $S^1 := \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ la circonferenza di raggio 1 in \mathbb{R}^2 centrata nell'origine e sia S^1_+ la parte di S^1 nel quadrante positivo $[0, +\infty) \times [0, +\infty)$:

$$S^1_+ := S^1 \cap [0, +\infty) \times [0, +\infty) = \{(x, g(x)) | 0 \le x \le 1\}, \quad g(x) := \sqrt{1 - x^2}.$$
 (1)

Si noti che la funzione g è decrescente su [0,1].

Fissiamo due punti z=(x,y) e z'=(x',y') su S^1_+ . Vogliamo definire la lunghezza dell'arco di circonferenza in S^1_+ di estremi z e z', ossia, assumendo (senza perdita di generalità) che $0 \le x \le x' \le 1$, dell'insieme definito da

$$S_{x,x'}^1 := \{ (\xi, g(\xi)) \in S_+^1 | x \le \xi \le x' \}.$$

Per far questo definiamo prima la lunghezza (euclidea) di³ 'segmenti' e di 'poligonali' in \mathbb{R}^2 .

Un segmento di estremi $z_1 = (x_1, y_1)$ e $z_2 := (x_2, y_2)$ è, per definizione la porzione della retta passante per z_1 e z_2 'limitata' da z_1 e z_2 , ossia, l'insieme⁴

$$\sigma(z_1, z_2) := \{ z(t) = z_1 + t(z_2 - z_1) \in \mathbb{R}^2 \mid 0 \le t \le 1 \} . \tag{2}$$

Se $z_1, z_2,...,z_n$ sono $n \geq 2$ punti di \mathbb{R}^2 tali che, se $i \neq j$, $\sigma(z_i, z_{i+1}) \cap \sigma(z_j, z_{j+1})$ contiene al più un punto, la poligonale di vertici $z_1, z_2, ..., z_n$ è, per definizione, l'insieme⁵

$$P(z_1, z_2, ..., z_n) := \sigma(z_1, z_2) \cup \cdots \cup \sigma(z_{n-1}, z_n) = \bigcup_{i=1}^{n-1} \sigma(z_i, z_{i+1}).$$
 (3)

Definiamo la lunghezza (euclidea) di un segmento $\sigma(z_1, z_2)$ come il numero non negativo

$$\ell(\sigma(z_1, z_2)) := \sqrt{(x_1 - x_2)^2 + (y - y_2)^2} , \qquad (z_i = (x_i, y_i)),$$
(4)

e la lunghezza della poligonale $P = P(z_1, z_2, ..., z_n)$ come il numero non negativo

$$\ell(P) = \ell(P(z_1, z_2, ..., z_n)) = \sum_{i=1}^{n-1} \ell(\sigma(z_i, z_{i+1})).$$
 (5)

Dati $0 \le x \le x' \le 1$, diremo che la poligonale $P = P(z_1, z_2, ..., z_n)$ è inscritta nell'arco di circonferenza $S^1_{x,x'}$ se $z_i = (x_i, g(x_i))$ con $x_1 := x \le x_2 \le ... \le x_n := x'$ e $y_i = g(x_i)$; denotiamo $\mathscr{P}_{x,x'}$ la famiglia di tutte le poligonali inscritte in $S^1_{x,x'}$. Si noti che $\mathscr{P}_{x,x'} \ne \varnothing$, poiché $\sigma(z_1, z_2) = P(z_1, z_2) \in \mathscr{P}_{x,x'}$.

¹Cfr. L. Chierchia, Corso di Analisi, prima parte. MacGraw 2019, cap. 5.

²Per una discussione su questi temi, vedi https://it.wikipedia.org/wiki/Funzione_trigonometrica.

 $^{^3}$ Ovviamente, la nomenclatura è ispirata alla geometria euclidea ma ogni parola ha una precisa definizione in termini degli assiomi dei numeri reali.

⁴Se $z_i = (x_i, y_i)$, $z_1 + t(z_2 - z_1) = (x_1 + t(x_2 - x_1), y_1 + t(y_2 - y_1))$; nel caso $z_1 = z_2$ il segmento $\sigma(z_1, z_2)$ degenera nel punto $\{z_1\}$.

⁵Si noti che, mentre nella definizione di segmento l'ordine degli estremi non conta, la definizione di poligonale per $n \ge 3$ dipende dall'ordine della ennupla $(z_1, ..., z_n)$; si noti anche che queste sono poligonali senza "autointersezioni".

2 CAPITOLO 1.

Definizione 1.1 Dati $0 \le x \le x' \le 1$, la lunghezza $\ell(S^1_{x,x'})$ dell'arco di circonferenza $S^1_{x,x'}$ è definito come l'estremo superiore delle lunghezze delle poligonali inscritte in $S^1_{x,x'}$:

$$\ell(S_{x,x'}^1) := \sup\{\ell(P) | P \in \mathcal{P}_{x,x'}\} . \tag{6}$$

Poniamo anche $S_x^1 := S_{x,1}^1$.

Per verificare la buona posizione di questa definizione si deve avere che⁶ $\{\ell(P) | P \in \mathcal{P}_{x,x'}\}$ sia un insieme limitato superiormente. Osserviamo che per ogni coppia di numeri reali a e b si ha

$$\sqrt{a^2 + b^2} \le |a| + |b|. \tag{7}$$

Dunque, presa una qualunque poligonale $P(z_1, z_2, ..., z_n)$, $z_j = (x_j, y_j)$, inscritta nell'arco di circonferenza $S^1_{x,x'}$ si ha⁷

$$\ell(P) = \sum_{i=1}^{n-1} \ell(\sigma(z_i, z_{i+1})) \le \sum_{i=1}^{n-1} |x_{i+1} - x_i| + |y_{i+1} - y_i| = \sum_{i=1}^{n-1} (x_{i+1} - x_i) + (y_i - y_{i+1})$$

$$= (x_n - x_1) + (y_1 - y_n) = (x' - x) + (g(x) - g(x')) \le 2, \quad \forall P \in \mathcal{P}_{x,x'}. \tag{8}$$

La (8) mostra che $\{\ell(P) \mid P \in \mathcal{P}_{x,x'}\}$ è un insieme limitato e dunque la Definizione 1.1 ben posta.

Nell'ambito della geometria euclidea è ben noto che in un triangolo la lunghezza di un lato è minore della somma delle lunghezze degli altri due lati. Il corrispettivo in analisi è il punto (ii) del seguente

Lemma 1.2 (i) Siano $a_i, b_i, i = 1, 2, numeri reali. Allora⁸$

$$|a_1 a_2 + b_1 b_2| \le \sqrt{a_1^2 + b_1^2} \cdot \sqrt{a_2^2 + b_2^2}, \tag{9}$$

$$\sqrt{(a_1 + a_2)^2 + (b_1 + b_2)^2} \le \sqrt{a_1^2 + b_1^2} + \sqrt{a_2^2 + b_2^2}.$$
(10)

(ii) Siano $z_i = (x_i, y_i) \in \mathbb{R}^2$, i = 1, 2, 3. Allora,

$$\ell(\sigma(z_1, z_3)) \le \ell(\sigma(z_1, z_2)) + \ell(\sigma(z_2, z_3)).$$
 (11)

Dimostrazione (i) Elevando al quadrato ed eliminando i termini comuni, si vede che la (9) è equivalente a

$$2a_1a_2b_1b_2 < a_1^2b_2^2 + a_2^2b_1^2$$

relazione, a sua volta, equivalente a $(a_1b_2 - a_2b_1)^2 \ge 0$, che è sempre verificata. Elevando al quadrato la relazione (10), svolgendo i quadrati dei binomi e semplificando si vede che (10) è equivalente a (9).

(ii) La relazione (11) è equivalente a

$$\sqrt{(x_1 - x_3)^2 + (y_1 - y_3)^2} \le \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} + \sqrt{(x_2 - x_3)^2 + (y_2 - y_3)^2},$$

che, ponendo $a_1 = x_1 - x_2$, $b_1 = y_1 - y_2$, $a_2 = x_2 - x_3$, $b_2 = y_2 - y_3$, diventa la (10).

Corollario 1.3 Sia $0 \le x \le x' \le 1$. Allora,

- (i) $\ell(S_{x,x'}^1) \ge \ell(\sigma((x,g(x)),(x',g(x')))) = \min\{\ell(P) \mid P \in \mathscr{P}_{x,x'}\}.$
- (ii) $\ell(S_{x,x'}^{1}) = 0$ se e solo se x = x';
- (iii) Se $x \leq \bar{x} \leq x'$, allora $\ell(S^1_{x.x'}) = \ell(S^1_{x.\bar{x}}) + \ell(S^1_{\bar{x}-x'})$.

 $^{^6}$ Ovviamente tale insieme di numeri non negativi è non vuoto essendo non vuota la famiglia $\mathscr{P}_{x,x'}$.

⁷Si noti che dalla definizione di poligonale inscritta segue che $x_i \le x_{i+1}$ mentre $y_i = g(x_i) \ge g(x_{i+1}) = y_{i+1}$.

 $^{^{8}}$ La (9) si chiama disuguaglianza di Cauchy; le disuguaglianze (10) e (11) si chiamano disuguaglianze triangolari.

Dimostrazione (i): la disuguaglianza è ovvia poiché $\sigma((x,g(x)),(x',g(x'))) \in \mathcal{P}_{x,x'}$. L'uguaglianza segue facilmente da (11) che implica che aumentando il numero dei segmenti della poligonale la lunghezza della poligonale aumenta.

(ii): Se x=x', ovviamente $\ell(S^1_{x,x'})=0$. Se $x\neq x'$ allora (per il punto (i)), $\ell(S^1_{x,x'})\geq \ell(\sigma((x,g(x)),(x',g(x'))))>0$.

(iii): Se $P_1 \in \mathcal{P}_{x,\bar{x}}$ e $P_2 \in \mathcal{P}_{\bar{x},x'}$, allora $P_3 := P_1 \cup P_2 \in \mathcal{P}_{x,x'}$ e dunque

$$\ell(P_1) + \ell(P_2) = \ell(P_3) \le \ell(S_{x,x'}^1)$$

e prendendo l'estremo superiore su $P_1\in \mathscr{P}_{x,\bar{x}}$ prima e poi l'estremo superiore su $P_2\in \mathscr{P}_{\bar{x},x'}$ si ha che

$$\ell(S_{x,\bar{x}}^1) + \ell(S_{\bar{x},x'}^1) \le \ell(S_{x,x'}^1). \tag{12}$$

Consideriamo, ora, una poligonale qualunque $P=P(z_1,...,z_n)$ in $\mathscr{D}(x,x')$. In generale P non contiene il punto $\hat{z}=(\bar{x},g(\bar{x}))$, ma necessariamente esisterà un segmento di P, diciamo $\sigma=\sigma(z_j,z_{j+1})$ con $z_j=(\xi_j,g(\xi_j))$, tale che $\xi_j\leq\bar{x}\leq\xi_{j+1}$. Allora, la poligonale P' ottenuta da P sostituendo σ con $\sigma(z_j,\hat{z})\cup\sigma(\hat{z},z_{j+1})$ avrà (per (11)) lunghezza maggiore o uguale a quella di P ed inoltre, per costruzione P' è unione di due polignali $P_1\in\mathscr{P}_{x,\bar{x}}$ e $P_2\in\mathscr{P}_{\bar{x},x'}$. Abbiamo dimostrato che, comunque presa una poligonale $P\in\mathscr{D}(x,x')$ esistono due poligonali $P_1\in\mathscr{P}_{x,\bar{x}}$ e $P_2\in\mathscr{P}_{\bar{x},x'}$ tali che

$$\ell(P) \le \ell(P_1 \cup P_2) = \ell(P_1) + \ell(P_2) \le \ell(S_{x,\bar{x}}^1) + \ell(S_{\bar{x},x'}^1).$$

Prendendo l'estremo superiore su $P \in \mathcal{P}_{x,x'}$ si ottiene che $\ell(S^1_{x,x'}) \leq \ell(S^1_{x,\bar{x}}) + \ell(S^1_{\bar{x},x'})$ che assieme alla (12) implica (iii).

π e l'arcocoseno

Possiamo ora definire pi greco:

Definizione 1.4 $\pi := 2\ell(S_0^1)$

Il numero reale π è dunque il valore in x=0 della funzione $x\in [0,1]\mapsto \ell(S^1_x)$ e coincide con la lunghezza dell'arco di circonferenza nel quadrante positivo (che per simmetria sarà pari a un quarto della lunghezza della circonferenza unitaria di "diametro" 2).

Definizione 1.5 Per $x \in [0,1]$, poniamo $A(x) := \ell(S_x^1)$ e chiameremo tale funzione il ramo principale dell'arcocoseno ristretta a [0,1].

Osservazione 1.6 Dal Corollario 1.3, segue immediatamente che la funzione $x \in [0,1] \mapsto A(x) \in [0,\pi/2]$ è una funzione strettamente decrescente e tale che $A(0) = \frac{\pi}{2}$, A(1) = 0.

Lemma 1.7 Per ogni
$$0 \le x < 1$$
, $A'(x) = -\frac{1}{\sqrt{1-x^2}}$.

Dimostrazione Fissiamo $x \in [0, 1)$ e calcoliamo la derivata destra $D_+A(x)$. Sia 0 < h < 1-x. Dal Corollario 1.3 segue che

$$A(x+h) - A(x) = -(A(x) - A(x+h)) = -\ell(S_{x}^{1}).$$
(13)

Ora, si noti che, se $0 \le x_1 < x_2 < 1$, $y_i = g(x_i)$ e $z_i = (x_i, y_i)$, dal Teorema di Lagrange segue

$$\ell(\sigma(z_1, z_2) = (x_2 - x_1)\sqrt{1 + \left(\frac{g(x_2) - g(x_1)}{x_2 - x_1}\right)^2} = (x_2 - x_1)\sqrt{1 + g'(\bar{x})^2}$$

4 CAPITOLO 1.

per un opportuno $\bar{x} \in (x_1, x_2)$, e dunque

$$(x_2 - x_1) \inf_{(x_1, x_2)} \sqrt{1 + {g'}^2} \le \ell(\sigma(z_1, z_2) \le (x_2 - x_1) \sup_{(x_1, x_2)} \sqrt{1 + {g'}^2}, \quad \forall \ 0 \le x_1 \le x_2 \le 1.$$
(14)

Sia ora $P = P(z_1, ..., z_n) \in \mathcal{P}_{x,x+h}$ una qualunque poligonale inscritta in S^1_+ di estremi x e x+h, ossia $z_i = (x_i, y_i) = (x_i, g(x_i))$ con $x_1 = x \le \cdots \le x_n = x+h$, e siano $\alpha(h) := \inf_{(x,x+h)} \sqrt{1+g'^2}$ e $\beta(h) := \sup_{(x,x+h)} \sqrt{1+g'^2}$. Allora, da (14) segue

$$h \cdot \alpha(h) = \sum_{i=1}^{n-1} (x_{i+1} - x_i) \alpha(h) \leq \sum_{i=1}^{n-1} \left((x_{i+1} - x_i) \inf_{(x_i, x_{i+1})} \sqrt{1 + g'^2} \right)$$

$$\stackrel{(14)}{\leq} \sum_{i=1}^{n-1} \ell(\sigma(z_i, z_{i+1})) = \ell(P) \stackrel{(14)}{\leq} \sum_{i=1}^{n-1} \left((x_{i+1} - x_i) \sup_{(x_i, x_{i+1})} \sqrt{1 + g'^2} \right)$$

$$\leq \sum_{i=1}^{n-1} (x_{i+1} - x_i) \beta(h) = h \cdot \beta(h).$$

Dunque, per ogni poligonale $P\in \mathscr{P}_{x,x+h},$ si ha che

$$\alpha(h) \le \frac{\ell(P)}{h} \le \beta(h)$$
,

e, prendendo l'estremo superiore su tutte le partizioni $P \in \mathcal{P}_{x,x+h}$, otteniamo

$$\alpha(h) \le \frac{\ell(S_{x,x+h}^1)}{h} \le \beta(h).$$

Poiché $\lim_{h\to 0+} \alpha(h) = \sqrt{1+g'(x)^2} = \lim_{h\to 0+} \beta(h)$, dal teorema del confronto segue anche che

$$\lim_{h \to 0+} \frac{\ell(S_{x,x+h}^1)}{h} = \sqrt{1 + g'(x)^2} = \frac{1}{\sqrt{1 - x^2}}.$$

Tale relazione, assieme alla (13), mostra che $D_+A(x)=-1/\sqrt{1-x^2}$. In modo del tutto analogo si mostra che anche per la derivata sinistra si ha⁹ $D_-A(x)=-1/\sqrt{1-x^2}$.

In particolare, A è continua su [0,1) e $\lim_{x\to 1-0} A'(x) = -\infty$. Ma, in effetti, A è continua anche in x=1: dalla definizione di A e da (8) segue che, per ogni 0 < x < 1,

$$|A(x) - A(1)| = A(x) \le (1 - x) + g(x) \to 0 \text{ per } x \to 1 - .$$
 (15)

In conclusione abbiamo dimostrato il seguente

Lemma 1.8 $A: x \in [0,1] \mapsto t = A(x)$ è una funzione continua su [0,1], strettamente decrescente con $A(0) = \pi/2$, A(1) = 0 e^{10} $A([0,1]) = [0,\pi/2]$. Inoltre, $A \in C^1([0,1])$ con $A'(x) = -1/\sqrt{1-x^2}$.

Coseno e seno

Possiamo ora definire le funzioni trigonometriche principali ossia il coseno ed il seno.

⁹Esercizio 1.1.

 $^{^{10}\}mathrm{Per}$ il teorema dei valori intermedi.

Coseno e seno su $[0, \pi/2]$

Essendo strettamente decrescente, la funzione $A: x \in [0,1] \mapsto t = A(x) \in [0,\pi/2]$ è invertibile e la sua inversa (strettamente decrescente) prende il nome di coseno di t (ristretto a $[0, \pi/2]$):

Definizione 1.9 La funzione inversa della funzione $A: x \in [0,1] \mapsto t = A(x) \in [0,\pi/2],$ ossia la funzione che a $t \in [0, \pi/2]$ associa $x = \cos t := A^{-1}(t)$ (A(x) = t), prende il nome di coseno di t ristretta a $[0, \pi/2]$; la funzione $t \in [0, \pi/2] \mapsto \operatorname{sen} t := \sqrt{1 - \cos^2 t}$ prende il nome di seno di t ristretta a $[0, \pi/2]$.

Lemma 1.10 (i) $\cos t$ e sen t sono funzioni continue su $[0, \pi/2]$; $\cos 0 = \sin \pi/2 = 1$ e $\cos \pi/2 = \sin 0 = 0$; $t \in [0, \pi/2] \mapsto \cos t$ è strettamente decrescente; $t \in [0, \pi/2] \mapsto \sin t$ è strettamente crescente e, per ogni $t \in [0, \pi/2]$, si ha

$$\cos^2 t + \sin^2 t = 1. \tag{16}$$

(ii) Le funzioni coseno e seno sono derivabili su $[0, \pi/2]$ e per ogni $t \in [0, \pi/2]$ si ha

$$D\cos t = -\sin t$$
, $D\sin t = \cos t$. (17)

Dimostrazione (i) segue immediatamente dalla Definizione 1.9 e dal Lemma 1.8.

(ii) Dalla regola di derivazione della funzione inversa segue che, per ogni¹¹ $t \in (0, \pi/2]$

$$D\cos t = \frac{1}{A'(x)|_{x=\cos t}} = -\sqrt{1-x^2}|_{x=\cos t} = -\sin t.$$
 (18)

Inoltre, derivando sen $t = \sqrt{1 - \cos^2 t}$ ed usando la (18) si ottiene che $D \operatorname{sen} t = \cos t$ per ogni $t \in (0, \pi/2]$. La derivabilità in 0 segue da un semplice corollario del teorema del valor medio di Lagrange¹² e dalla (17).

Coseno e seno su $[0,\pi]$

Estendiamo le funzioni coseno e seno all'intervallo $[0,\pi]$ imponendo opportune simmetrie rispetto all'asse $t = \pi/2$: per $t = \frac{\pi}{2} + s$, con $0 \le s \le \pi/2$, definiamo:

$$\begin{cases} \cos t = \cos\left(\frac{\pi}{2} + s\right) := -\cos\left(\frac{\pi}{2} - s\right) = -\cos(\pi - t), \\ \sin t := \sin\left(\frac{\pi}{2} + s\right) := \sin\left(\frac{\pi}{2} - s\right) = \sin(\pi - t), \end{cases} \frac{\pi}{2} < t = \frac{\pi}{2} + s \le \pi.$$
 (19)

Chiaramente, (poiché $\cos \pi/2 = 0$) queste estensioni sono continue su $[0, \pi]$ e (come è immediati verificare) sono derivabili su $(\pi/2, \pi]$ dove vale di nuovo la (17). Ma allora, dal Corollario 1.11 segue che sono derivabili anche in $x = \pi/2$ dove si ha:

$$(D\cos t)|_{t=\pi/2} = -1, \qquad (D\sin t)|_{t=\pi/2} = 0.$$
 (20)

Dunque la (17) vale su tutto l'intervallo $[0, \pi]$.

Si noti che cos t è strettamente decrescente su $[0,\pi]$ e si annulla solamente in $\pi/2$. Il seno invece si annulla in 0 e π ed ha un massimo stretto in $\pi/2$ dove vale 1.

Corollario 1.11 Sia $f \in C([a,b])$ derivabile su (a,b) e sia $L \in \mathbb{R}$. Se $\lim_{x \to a} f' = L$ allora $D_+f(a) = L$; analogomente, se $\lim_{x \to b} f' = L$ allora $D_-f(b) = L$.

Dimostrazione Fissiamo $\varepsilon > 0$ e sia $\delta < b-a$ tale che $|f'(x)-L| < \varepsilon$ per ogni $a < x < a+\delta$. Per tali x, per il Teorema di Lagrange applicato all'intervallo [a,x], esiste $0 < \bar{x} < x$, tale che $f(x)-f(a)=f'(\bar{x})(x-a)$ o, equivalentemente, $f(a)-f(x)=f'(\bar{x})(a-x)$ e quindi,

$$\left| \frac{f(x) - f(a)}{x - a} - L \right| = |f'(\bar{x}) - L| < \varepsilon, \quad \forall a < x < x + \delta,$$

il che significa che $D_+f(a)=L$. L'argomento per $D_-f(b)$ è del tutto analogo.

 $^{^{11}}$ Il valore t=0 in questo calcolo va escluso in quanto corrisponde a x=1 dove la funzione A(x) non è derivabile e quindi non si può applicare la regola della derivata della funzione inversa.

12 Dal teorema di Lagrange segue subito il seguente

CAPITOLO~1.

Coseno e seno su \mathbb{R}

Ora estendiamo coseno e seno all'intervallo $[-\pi, 0]$ "per parità", ponendo:

$$\begin{cases}
\cos t := \cos(-t), \\
\sin t := -\sin(-t),
\end{cases} - \pi \le t < 0.$$
(21)

Osserviamo, di nuovo, che la continuità su $[-\pi, \pi]$ e la derivabilità su $[-\pi, 0)$ seguono immediatamente da questa definizione e la derivabilità in 0 segue dal Corollario 1.11. Inoltre vale (17) su tutto $[-\pi, \pi]$. Si noti anche che il seno è strettamente crescente tra $-\pi/2$ (dove vale -1) e $\pi/2$ (dove vale 1).

Infine, estendiamo coseno e seno a tutto \mathbb{R} per "periodicità", ponendo:

$$\begin{cases}
\cos t := \cos(t - 2\pi k) \\
\sin t := \sin(t - 2\pi k)
\end{cases} \quad \text{se } t \in [-\pi, \pi) + 2\pi k, \quad (0 \neq k \in \mathbb{Z}). \tag{22}$$

Con i soliti argomenti si verifica che coseno e seno sono differenziabili su tutto \mathbb{R} e che vale la (17) per ogni $t \in \mathbb{R}$.

Riassumendo abbiamo dimostrato il seguente

Teorema 1.12 Le funzioni coseno e seno definite su $[0, \pi/2]$ nella Definizione 1.9 ed estese a tutto \mathbb{R} in (19), (21) e (22) sono funzioni differenziabili e periodiche di periodo 2π . Il coseno è una funzione pari e il seno una funzione dispari e soddisfano le relazioni

$$\cos^2 t + \sin^2 t = 1, \qquad (\forall t \in \mathbb{R}); \tag{23}$$

$$D\cos t = -\sin t$$
, $D\sin t = \cos t$, $(\forall t \in \mathbb{R})$; (24)

$$\cos 0 = \sin \frac{\pi}{2} = 1$$
, $\cos \frac{\pi}{2} = \cos \frac{3\pi}{2} = \sin 0 = \sin \pi = 0$, $\cos \pi = \sin \frac{3\pi}{2} = -1$. (25)

Infine, il coseno ristretto a $[0, \pi]$ è strettamente decrescente, mentre il seno ristretto a $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ è strettamente crescente.

Si osservi che da (24) seguono immediatamente i seguenti "limiti notevoli":

$$\lim_{t \to 0} \frac{\sin t}{t} = 1, \qquad \lim_{t \to 0} \frac{1 - \cos t}{t^2/2} = 1; \tag{26}$$

infatti, il primo limite è semplicemente la derivata di seno in 0 che coincide con $\cos 0 = 1$; per il secondo limite osserviamo che

$$\frac{1 - \cos t}{t^2 / 2} = 2 \cdot \frac{1 - \cos^2 t}{t^2 (1 + \cos t)} = \left(\frac{\sin t}{t}\right)^2 \cdot \frac{2}{1 + \cos t} \to 1, \quad \text{per } t \to 0.$$

Formule di addizione

Un'altra proprietà fondamentale delle funzioni trigonometriche sono le "formule di addizione":

Teorema 1.13 Per ogni $s, t \in \mathbb{R}$ si ha:

$$\cos(t+s) = \cos t \cos s - \sin t \sin s, \qquad (27)$$

$$\operatorname{sen}(t+s) = \operatorname{sen} t \cos s + \cos t \operatorname{sen} s. \tag{28}$$

Dimostrazione Fissato $s \in \mathbb{R}$, definiamo, per ogni $t \in \mathbb{R}$,

$$u(t) := \cos(t+s) - \cos t \cos s + \sin t \sin s,$$

$$v(t) := \sin(t+s) - \sin t \cos s - \cos t \sin s,$$

$$E(t) := \frac{u(t)^2 + v(t)^2}{2}.$$
(29)

Si noti che u' = -v e v' = u; dunque E' = uu' + vv' = -uv + vu = 0 e quindi E'(t) = 0, per ogni $t \in \mathbb{R}$. Ma allora (per il teorema del valor medio di Lagrange), questo implica che E(t) è costante su \mathbb{R} e quindi E(t) = E(0) = 0, ossia, $u \equiv 0 \equiv v$, relazioni equivalenti, rispettivamente a (27) e (28).

Dalle formule di addizione (27), (28) (e dalle relazioni di parità) seguono immediatamente le seguenti formule di duplicazione:

$$\operatorname{sen} 2t = 2\operatorname{sen} t \cos t, \qquad \cos 2t = \cos^2 t - \operatorname{sen}^2 t. \tag{30}$$

Altre funzioni trigonometriche

Altre funzioni trigonometriche notevoli sono la tangente, la cotangente, la secante, la cosecante definite, rispettivamente come

$$\tan t := \frac{\operatorname{sen} t}{\cos t}, \quad \cot t := \frac{\cos t}{\operatorname{sen} t}, \quad \operatorname{sec} t := \frac{1}{\cos t}, \quad \operatorname{csc} t := \frac{1}{\operatorname{sen} t}. \tag{31}$$

Il dominio di tangente e secante è $\mathbb{R}\setminus (\frac{\pi}{2}+\pi\mathbb{Z})$, mentre il dominio di cotangente e cosecante è $\mathbb{R}\setminus \pi\mathbb{Z}$; la tangente e la cotangente sono periodiche di periodo π ; per ulteriori proprietà delle funzioni trigonometriche si veda l'Esercizio 1.2.

Funzioni trigonometriche inverse

Osservazione 1.14 (i) La funzione

$$x \in [-\pi/2, \pi/2] \mapsto \text{sen } x \in [-1, 1]$$
 (32)

è strettamente crescente e quindi invertibile. Dal teorema dei valori intermedi (essendo sen $(-\pi/2)$ = -1 e sen $(\pi/2)$ = 1) segue che l'immagine di tale funzione è [-1,1].

(ii) La funzione

$$x \in [0, \pi] \mapsto \cos x \in [-1, 1] \tag{33}$$

è strettamente decrescente e quindi invertibile. Dal teorema dei valori intermedi (essendo $\cos 0 = 1$ e $\cos(\pi) = -1$) segue che l'immagine di tale funzione è [-1, 1].

(ii) La funzione

$$x \in (-\pi/2, \pi/2) \mapsto \tan x \in \mathbb{R}$$
 (34)

è strettamente crescente e quindi invertibile. Dal teorema dei valori intermedi (essendo inf tan $x = -\infty$ e sup tan $x = +\infty$) segue che l'immagine di tale funzione è \mathbb{R} .

Grazie a queste osservazioni la seguente definizione è ben posta.

Definizione 1.15 (Rami principali delle funzioni trigonometriche inverse)

(i) L'inversa della funzione (32) prende il nome di (ramo principale) dell'arcoseno:

$$x \in [-1, 1] \mapsto \operatorname{Arcsen} x \in [-\pi/2, \pi/2].$$
 (35)

(ii) L'inversa della funzione (33) prende il nome di (ramo principale) dell'arcocoseno:

$$x \in [-1, 1] \mapsto \operatorname{Arccos} x \in [0, \pi]. \tag{36}$$

(iii) L'inversa della funzione (34) prende il nome di (ramo principale) dell'arcotangente:

$$x \in \mathbb{R} \mapsto \operatorname{Arctan} x \in (-\pi/2, \pi/2).$$
 (37)

8 CAPITOLO 1.

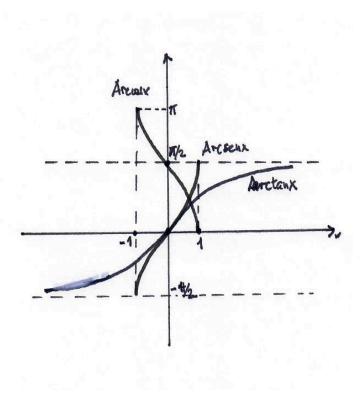


Figura 1.1: Funzioni trigonometriche inverse

Osservazione 1.16 Altri "rami" dell'arcoseno si ottengono considerando altri domini (massimali) su cui il seno è invertibile: ad esempio, $[\pi/2, 3\pi/2]$; su tale intervallo il seno è strettamente decrescente e la sua inversa arcsen : $[-1,1] \rightarrow [\pi/2, 3\pi/2]$ sarà una funzione strettamente decrescente.

Analogamente, altri "rami" dell'arcocoseno si ottengono considerando altri domini (massimali) su cui il coseno è invertibile: ad esempio, $[\pi, 2\pi]$: su tale intervallo il coseno è strettamente crescente e la sua inversa arcocosen : $[-1,1] \rightarrow [\pi, 2\pi]$ sarà una funzione strettamente crescente e continua.

Gli altri "rami" dell'arcotangente si ottengono considerando altri domini (massimali) su cui la tangente è invertibile: ad esempio, $[\pi/2, 3\pi/2]$.

Come si evince da questi esempi esistono infinite funzioni inverse ("rami") delle funzioni trigonometriche caratterizzate dai (in generale diversi) codomini.

Esercizi

Esercizio 1.1 Si dimostri che, per 0 < x < 1, $D_A(x) = -1/\sqrt{1-x^2}$.

Esercizio 1.2 Dimostrare analiticamente (ossia senza far uso degli assiomi della geometria euclidea) le identità trigonometriche elencate \underline{qui} (tralasciare le identità dove appaiono i gradi e i numeri complessi).

Esercizio 1.3 Determinare tutti gli intervalli massimali dove sono strettamente monotòne le funzioni seno, coseno, tangente e cotangente e discutere in dettaglio le proprietà delle relative funzioni inverse (ossia, dei vari rami dell'arcoseno dell'arcoseno, arcocoseno, arcotangente e arcocotangente 13) elencate qui e qui.

 $^{^{13}}$ Ad esempio, il seno è strettamente decrescente su $I:=\left[\frac{5}{2}\pi,\frac{7}{2}\pi\right]$ e il relativo ramo dell'arcoseno è definito come l'inversa di $t\in I\mapsto \operatorname{sen} t\in [-1,1];$ tale ramo ha dunque dominio [-1,1]e immagine I.

9

Esercizio 1.4 (i) Dimostrare che

$$\operatorname{sen} t < t < \tan t, \qquad \forall \ 0 < t < \frac{\pi}{2} \,.$$

 $\textbf{Suggerimento}: \text{ si considerino le funzioni } u(t) = t - \operatorname{sen} t \text{ e } v(t) = \tan t - t \text{ su } [0, \pi/2] \text{ e si usi il Teorema di Lagrange}$

(ii) Dimostrare che $|\sin t| < |t|$ per ogni $t \neq 0$.

Esercizio 1.5 Dimostrare i seguenti limiti notevoli

$$\lim_{x \to 0} \frac{\operatorname{Arcsen} x}{x} = 1 \tag{38}$$

$$\lim_{x \to 0} \frac{\operatorname{Arctan} x}{x} = 1 \tag{39}$$

Esercizio 1.6 Sia $f:[0,1] \to \mathbb{R}$ la funzione che vale 0 in x=0 e $x \operatorname{sen}(1/x)$ per $x \in (0,1]$.

- (i) Dimostrare che $f \in C([0,1])$.
- (ii) Trovare i punti critici di f in (0,1).
- (iii) Trovare il massimo e il minimo di f su [0,1].

Esercizio 1.7 Dimostrare che valgono le seguenti identità

$$2\operatorname{Arctan}(x+\sqrt{x^2-1}) = \pi - \operatorname{Arcsen}\frac{1}{x}, \qquad x \ge 1$$
(40)

$$\operatorname{Arctan} x = \frac{\pi}{2} - \operatorname{Arctan} \frac{1}{x}, \qquad x > 0 \tag{41}$$

Esercizio 1.8 Sia $f(x) := x^2 \operatorname{sen}(1/x)$ se $x \neq 0$ e f(0) := 0. Dimostrare che f è derivabile su \mathbb{R} ma che non esiste $\lim_{x\to 0} f'(x)$.