Esercizi 4-6 18/3/23

Es 4 Si dimostri che un aperto non vuoto di \mathbb{R}^n non è trascurabile.

Es 5 (i) Sia

$$\varphi(x) := \begin{cases} e^{1/x} & \text{se } x > 0 \\ 0 & \text{se } x \le 0 \end{cases}$$

Si dimostri che $\varphi \in C^{\infty}(\mathbb{R})$.

(ii) Per ogni $\varepsilon > 0$ si costruisca φ_{ε} crescente tale che: $\varphi_{\varepsilon}(x) = 0$ se $x \leq 0$, $\varphi(x) = 1$ se $x \geq \varepsilon$.

(iii) Per ogni $-\infty < a < b < +\infty$ e $0 < \varepsilon < (b-a)/2$, si costruisca $\psi = \psi_{a,b}^{\varepsilon} \in C_0^{\infty}([a,b])$ tale che $0 \le \psi(x) \le 1$ per ogni x e $\psi(x) = 1$ se $a + \varepsilon \le x \le b - \varepsilon$. (iv) Si dimostri che se $E \subseteq \mathbb{R}^n$ è un rettangolo (non degenere), allora $C_0^{\infty}(E)$ è denso in S(E)

e in $\mathcal{L}^1(E)$ rispetto alla norma $\|\cdot\|_1$.

Es 6* Dare un esempio di funzione non negativa $f \in \mathcal{R}([0,1])$, tale che #Disc $(f) = \#\mathbb{R}$ (ossia f ha un numero di discontinuità non numerabile) e $\int_a^b f > 0$ per ogni $0 \le a < b \le 1$.