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WE WILL PROVE that any area preserving “twist” homeomorphism f on the annulus 
has quasi-periodic orbits of all frequencies w in an interval [pcfO), pcf,)]. It is easy to 
see that there are no quasi-periodic orbits of frequency w when o is not in this 
interval. In stating this result, we give a liberal interpretation of what it means for an 
orbit to be quasi-periodic: the closure of such an orbit may be a Cantor set, not a 
circle. 

The method used in this paper is closely related to a method Percival has 
previously used to find quasi-periodic orbits numerically [3,4]. However, to the best of 
my knowledge, Percival has not proved an existence theorem using his method. 

To state our theorem, it is easier to work with the universal cover A of the annulus 
than with the annulus itself. Let A = {(x, y) E R2: 0 I y 5 1). Let T: A + A be the 
translation T(x, y) = (x + 1, y). Let f be an area perserving, orientation preserving, and 
boundary component preserving homeomorphism of A such that fT = Tf. In addition 
suppose that f(x, y), > f(x, z),, when y > .z, where p1 = x if p = (x, y) E A. This is the 
“twist condition”. 

Let fi = fllw X i, i = 0, 1. Let Z3 = {(x, x') E R*: fo(x) 5 x'~f~(x)}. From the twist 
condition, it follows that for each (x, x’) E B, there exists a unique y = g(x, x’) E [0, l] 
and y’ = g’(x, x’) E [O, 11 such that f(x, y) = (x’, y’). The functions g and g’ are con- 
tinuous functions on B. 

For any homeomorphism h : R + R such that h(x + 1) = h(x) + 1, let 

p(h) = lim h”(x). 
n-soL n 

A well known theorem of PoincarC states that this limit exists and is independent of x. 
The following is our main result. 

THEOREM. Suppose p(fO) 5 w 5 pcf,). Then there exists a weakly order preserving 
mapping 4 : R + R such that 4(t + 1) = 4(t) + 1 and 

ftddt), v(t)) = (44t + @I, rltt + WI) (1) 

where T(t) = gt40), &tt + w)). 

The mapping 4 is not necessarily continuous. However, we will show: 

ADDENDUM 1. Zf t is a point of conrinuity of 4, then so are t + w and t - W. 

The meaning of this theorem depends on whether w is rational or irrational. If w is 
rational, say w = p/q in lowest terms, then the theorem implies the existence of a 
point (x, y) such that f”(x, y) = (x + p, y). For, if 4 satisfies the conditions of the 
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theorem, and (x, y) = (4(t), q(t)), for some t E R, then fq(x, y) = (x + p, y). This case 
is a consequence of a famous theorem of Birkhoff [l]. 

In the case w is irrational, we have: 

ADDENDUM 2. If tig Cl, then 4 is not constant on any interual. 

When w is irrational, we let M4 be the closure of the set of (4(t), q(t)) such that t 

is a point of continuity of 4. Since 4 is weakly order preserving, the set of points of 
discontinuity of t is at most countable. Then Mm is the same as the union of all limits 
from below (4(t-), q(t-)) and all limits from above (+(t +), ~(t +)). We set 
&=MJT. 

In the case 4 is continuous, it is clear that M+ is homeomorphic to R and Z, is 
homeomorphic to a circle. Moreover, letting f be the homeomorphism of the annulus 
A/T induced by f, we have that fl& is conjugate to a rotation with rotation 
number = w (mod. 1). 

In the case that 4 is not continuous, it follows from Addenda 1 and 2 that C, is a 
Cantor set invariant under r It is easily checked from the conditions imposed on 4 in 

the conclusion of theorem 1 and addenda 1 and 2 that f/Z,+ is topologically semi- 
conjugate to the rotation of a circle with rotation number = o(mod 1). In fact, 
identifying (4(t -), T(t -)) with ($(t +), q(t +)) and then identifying Tp with p, gives 
a circle, on which the homeomorphism induced by f is topologically conjugate to a 
rotation. These identifications may also be described purely in terms of the topological 
dynamics of f[Z, points of Z, which approach each other under indefinite forward and 
backward iteration under f are identified. A known, and not very difficult, argument 

then shows that f/Z, is topologically conjugate to one of the well known Denjoy 
minimal systems: @, is minimal, and X9 can be embedded in the circle so that flZ, 
extends to an orientation preserving homeomorphism of the circle. 

From the fact that 4 is weakly order preserving, it follows that t++(t) - t has 

bounded variation. Hence the Fourier expansion $m a, exp(27 int) of 4(t) - t con- 

verges pointwise everywhere, and converges to 4(t) - t, whenever t is a point of 
continuity of 4 [5]. 

In view of the definition of q(t), its Fourier expansion n$_r b, exp(2r int) is C&saro 

summable everywhere, and sums to q(t), whenever t is a point of continuity of 4. 

Moreover, if f is C’ and “(ii’)’ > 0, then q(t) has bounded variation, so its Fourier 

series converges pointwise, and converges to q(t) when t is a point of continuity of 4. 

Consider a point of continuity to of 4 and define 

xk = *tz a, exp(2rr in(to + ko)) 

yk = n& b, exp(2n in(h + kw)), 

where the second sum is understood in the sense of CCsaro summability. By 

Addendum 1, to + ko is a point of continuity of 4 for all k. Hence 

xk = +(to+ kw), yk = q(to+ kw), 

so f(xk, yk) = (xk+l, yk+,). Thus, we have found a quasi-periodic orbit of frequency 0. 
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$1. OUTLINE OF THE PROOF 

Let Y, denote the set of all weakly order preserving mappings 4 : R + W such that 

+(t + 1) = M) + 1, fo(M)) 5 +(t + w) 5 f,(+(t)), and 4 is continuous from the left, 

i.e. d(t -) = 4(t), Let X, denote the set of all 4 E Y, such that 4(t) 2 0 for t > 0 and 
4(t)SO for t SO. 

From the fact that f is area preserving, it follows that g(x, x’) dx - g’(x, x’) dx’ is a 
closed l-form on B. Hence there exists a C’ function h(x, x’) on B such that 

dh(x, x’) = g(x, x’) dx - g’(x, x’) dx’. (1.1) 

For I$ E Y,,,, we define 

F,(4) = j M&O, $(t + w)> dt. 
I=0 

(1.2) 

In f2, we will show that X,# 0 if and only if pcfo) I w 5 pcf,). 
In $4, we will define a metric on Y,,,. In OS, we will show that X, is compact and in 

86 that F, is continuous, with respect to that metric. Hence there exists 4 E X, where 
F, takes its maximum. 

For a E R, let T, : [w + R be the translation To(x) = x + a. In 93, we will show that 
F,,,(4T,) = F,(4) for any a ER. If 4 E Y,. we have dTa EX, where a = 
sup @-‘(-co, 0). Hence, if F, takes its maximum on X, at 4, it also takes its maximum 
on Y, at 4. 

For+EY,andtER,wedefine 

v(b, t) = & [h(f, x) + h(x, x’)], (1.3) 

evaluated at 

f = t#J(t - a), x = f#J(f), x’ = d(t + 0). (1.4) 

In 57-10, we will show that if F, takes its maximum on Y, at 4, then we have the 
following “Euler-Lagrange equation:” 

V(4, t) = 0, for all t E R. (1.5) 

This is essentially a special case of “Euler-Lagrange equation” due to Percival[3]. 
However, Percival gives no proof. In fact, the usual argument applies as long as 4 is 
C’, with non-vanishing derivative, and fo(4(t)) < c$(t + w) <f,(4(t)), for all t E W. 

However, to prove our existence theorem, we need an extension of the usual 
argument which involves some (unfortunately lengthy) reasoning of the type which is 
familiar from elementary theory of functions of one real variable. 

Equation (1) follows easily from the “Euler-Lagrange equation”. From the definit- 
ion (1.1) of h and the definition (1.3) of V(& t), we get 

V(4, t) = - g’(f, x) + g(x, x’), (1.6) 

where x’, x, x’ are given by (1.4). Applying this with t + w in place of t, and using the 
“Euler-Lagrange equation” (l.S), we obtain 

g(4(t + WI, 4(r + 20)) = g’(ddt), 44t + w)). 

TOP Vol >I.No PI 



460 JOHN N. MATHER 

In view of our definition of q, this gives 

Hence 

q(t + w) = g’(+(t), +(t + w)). 

f(Nt), q(t)) = f(M), g(4(t), +(t + w))) 

= (40 + 4, gww, 40 + 64) 

= (b0 + 01, q(t + w)), 

where the second equation is a consequence of the definition of g and g’. 
Thus, once we have shown that F, takes a maximum on Y,, and satisfies the 

Euler-Lagrange equation whenever F, takes its maximum at 4, we obtain the 
Theorem of the introduction. 

We will prove the Addenda in 5 11-12. 

$2. X, f 0 IF AND ONLY IF pcfo, zs w s p(f,). 

Proof. “Only if.” Suppose 4 E Y,. If n > 0, then fon(4(t)) 5 &(t + nw) 5 f,“(b(t)), 
so 

lim fO”(4(t)) 5 lim 9tt + no) < lim fl”(4Ct)) 
n-rs n n-= n _“a n ’ 

or 

P(f0) 5 0 5 pcf,). 

Thus, (2.1) holds if Y, f 0. 
“If.” For 0 5 s 5 1, let g, : R + R be defined by 

(2.1) 

g,(t) = sfdt) + (I- s)foO). 

Obviously, g, is a homeomorphism of R and gs(t + 1) = g$(r) + 1. The quantity p(g,) is 
a non-decreasing function of s, so there is at least one value so of s for which 

ph0d = w, since 

Ago) = P(fo) 5 0 5 Pcfd = p(gJ. 

Set g = g,(,, and let g : R/Z + W/Z be the induced homeomorphism. 
We will construct 4 E X, in two different ways, according to whether o is rational 

or irrational. First, suppose w is rational, say w = p/q, p, q E Z, with p relatively 
prime to q. A theorem of PoincarC asserts that the set P of periodic points of g is 
non-empty. Let F = a-‘P, where v :R+R/Z denotes the projection. We define 4(O) 
to be the greatest non-positive element of p. Given t E R, we can write it in the form 

t=n 5 +m+r 0 
where n, mEZ, -$<rsO. Wedefine 

4(t) = g”(d4W + m. 

Since 4(O) E p, gq(4(0)) = 4(O) + p. It follows that 4 is well defined. 
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Using p(g) = E, we see that 4 is weakly order preserving. For, suppose n 
0 
;+ 

m>n’ P 
0 4 

+ m’, but g”(&(O)) + m I g”‘(+(O)) + m’. Then g”-“‘(4(O)) I m’ - m. In the 

case n - n’>O, we get 

Pk) 
&!!k?i<P 

n-n’ q’ 

In the case n - n’C0, we get 

>ml-m>>P 
P(g)- n_n’ 4* 

so either way, we have a contradiction. 

By definition, 4(O) 5 0, so 4(t) I 0, for t : 0, since 4 is weakly order preserving. 
For t > 0, d(t) E P and 4(t) # d(O). Since 4 is weakly order preserving and 4(O) is 
the greatest non-positive element of P, we get d(t) > 0. 

It follows immediately from the definition of 4 that g($4t)) = &(t + E). Hence, 

f,,(+(t)) 5 +(t + $) 1f!(4(t)). We have defined 4 so that it is continuous from the 

left. Thus, 4 E X,,,. - 

In the case o is irrational, there is a weakly cyclic order preserving continuous 
mapping h :R/Z+R/Z such that hg(8) = h(8) + o (mod. I.), for 8 E R/Z, where 
g :R/Z +R/Z is the mapping induced by g. Let h:R+R be a lifting of h, i.e. a 
continuous mapping such that ~6 = ha. There is some choice of h and also of h: 
altogether, we may add any constant to h. We make h’ unique by specifying h(O) = 0. 

Since h is weakly cyclic order preserving, h is weakly order preserving. Let 4(t) = inf 
h-‘(t). Obviously, 4 is weakly order preserving. Clearly, h has degree 1, so h(t + 1) = 

h(t) + 1, and 4(t + 1) = d(t) + 1. By definition, 4(O) I 0, and 0 is the greatest number t 

such that 4(t) 50. So, 4(t) SO, for t SO and d(t) 5 0 for t > 0. We have h(g(t)) = 
fi(t) + w, so the definition of r$ gives g(+(t)) = 4(t + 0). The definition of g then gives 

fo(Ht)) 5 g(W)) = +(t + w) = fl(cb(m. 

The definition of 4 implies that it is continuous from the left. Hence, $J E X,. 0 

83. TRANSLATION INVARIANCE OF F, 

It is obvious from the definitions of g and g’ that 

g(x+l,x’+l)=g(x,x’) 

g’(x + 1, x’ + 1) = g’(x, x’) 

Hence, h(x + 1, x’+ 1) - h(x, x’) is a constant C. We have 

(3.1) 

C = g(x, x’) dx - g(x, x’) dx’ 
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where y is any path in B connecting any poing (x0, x/J in B with (x0+ 1, xA+ 1). But 
along a path of the form y(t) = (t, fo(t)), the l-form under the integral sign vanishes 
identically. Hence C = 0, i.e. 

h(x + 1, x’ + 1) = h(x, x’). (3.2) 

From this formula, the definition of F,, and 4(t + 1) = b(t) + 1, it follows that F, is 
translation invariant, i.e. 

Fw(4Ta) = F,(4). (3.3) 

54. METRIC ON Y, 

For any weakly order preserving mapping 4 : R + R, we define 

graph 4 = {(x, y) E R* : 4(x -) I y zs 4(x +)}. 

If t):R +R is a second weakly order preserving mapping, we set 

d(~,JI)=max(s~pinfl5-~1,supi:f15-?I}, 
1 ? 

where 5 ranges over graph 4, q ranges over graph +, and I I denotes the Euclidean 
norm on R*. This may be infinite. 

If 4 C X,, then (O,O), (1, 1) E graph 4, and 4(t + 1) = +(t)+ 1. Consequently, for 4, 
4 E X,, d($, $L) is given by (4.1), where now 5 ranges over [O, 112 fl graph 4 and 7) 
ranges over [0, l]* n graph $. We then obtain d(+, 4) 9 1 for 4, 9 E X,. 

Obviously, d(4T,, 4) 5 a, for any a E R. Since for any 4 E Y,, there exists a E BP 
such that bT, E X,, we obtain from the triangle inequality for d that d(& 9) <a, for 
4, I,!J E Y,. It may be verified that d is a metric on Y,. One point to observe is that 
since every element of Y,,, is continuous from the left, d(d, $) = Oe 4 = IJ. 

55. X, IS COMPACT, WITH RESPECT TO d. 

Proof. Let S be the set of closed subsets of [0, l]* and let d’ be the Hausdoti 

metric. (S, d’) is compact ([21,3.16, problem 3). The mapping 4 --) graph 4 17 [0, l]* embeds 
X, isometrically as a closed subset of S, so X, is compact. 

Proof. Let 

56. F : Y, -* R IS CONTINUOUS 

M = s-wB max{L Isk x’)l, Ig’k x’>l). 

From (3.1), it follows that M < 01. From the definition of F, and the mean value 

theorem, it follows that 

F’,(4) - FAIL)\ 5 M j (14(t) - IL(t)] + 140 + w) - cL(t + o)() dt, 
1=0 

since ah/ax = g and ah/ax’ = - g’. 
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Let 12 E > 0. Let S = l ‘/1000 M2. Suppose d(r$, 4) < 6. We will show (F,(4)- 

F,(e) < E. 
From d(e, $> < S < 10d3, the periodicity property 4(t + 1) = 4(t) + 1 and Jl(t + 1) = 

$(t) + 1, and the fact that 4 and $ are weakly increasing, it follows easily that 

l+(t) - G(t)1 < fi < 2 for all t E R. 

Suppose a E R. Let 7~, denote the set of all t E (a, a + 1) such that I&(t) - tj~(t)l? 

&. From the assumption that d(4, I,/J) < 8, we obtain 

1996 
b(t + 6) 2 d(t) + 1OOOM 

in the case I/I(~) 2 4(t) + l /5M and 

(6.2) 

(6.3) 

in the case Q(t) 5 4(t) - E/SM. 
Let r:, (resp. ri) denote the set of &(a, a + 1) where (6.2) (resp. 6.3) holds. Then 

At any point r E r: the variation of & over the interval [t, r + S] is 2 a. Since 

the total variation of 4 over (a, a + 1) is 5 1, it follows that n:, can be covered by at 

most [T] + 1~ 7 t intervals of length 6 = E~/~OOOM~. Hence the measure p(.rrL) 

of r: is at most 7M61e < l /lOOM. Similarly, p(nE) 5 e/lOOM. Hence 

Since (4(t) - $(t)l G 2 for all t E R and /4(t) - q(t)/ c E/~M 

te(o, w + 1) - 7rU, we obtain from (6.1) that 
for te(0, 1)-q, and for 

P,(4) - R($)l~ MUdnJ + 3.47~) + $3 

<E. 

COROLLARY. F, takes a maximum value on Y, at a point which lies in X,. 

Proof. Since F,,, is a continuous function on the compact space X,, it takes a 
maximum value on X,. Since F, is translation invariant and Y, = U T,X,, the 

4ER 

maximum value for F, on X, is also a maximum value for F,,, on Y,. ‘Cl 

97. COMPUTATION OF THE VARIATION OF F, 

LEMMA. Suppose a 5 0 I b and a c b. Suppose an element & of Y, is given for 

a 5 s d b, 4,(t) is a C2 function of s for each fixed t, and - am, a2~,(t) are uniformly 
as 3 a2 
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bounded and measurable for a 5 s 5 b, t E R. Then 

where 

(7.1) 

Proof. From the definition of F, and the assumption that 4,(t) is a C* function of 
s for each fixed t, we obtain 

Fu(d’~s) - F,(6) 
As 

= $(&A,(t), +,As(t + d&As(t) 
t=o u=o 

+ ah jg (dhA&), +,.A& + +buAs(f + 0) I du dt. 

Since 5% and ah * a24 
ax z are uniformly continuous on B, and as , as’ are uniformly 

bounded, it follows that the quantity under the integral sign converges uniformly, as 
As +O. Going to the limit As = 0, we obtain 

+ $, (4(t), +(t + 4)&r + w) 3 dt 

= I[ g (WA 4ct + 0)) + $, (40 - oh WN]dU) dt 
0 

= 
I 

V(+, t) b(t) dt. 
0 

08. ONE PARAMETER FAMILIES 

We fix to E R, 4 E Y, and we will construct three l-parameter families &, &, & in 
this section. The constructions depend on a choice of a C” function on p on R/Z with 
values in [0, 11. We will suppose p is identically 1 in a neighborhood of r(to), where 
IT : R + R/Z denotes the projection. 

We let U, : R + R, be the unique family of diffeomorphisms, defined for s E W, and 

au(t) depending smoothly on s E R and t E R such that uo = id, as - = Pmu,(f). Such a 

0 

family exists and is unique by the fundamental existence and uniqueness theorem for 
ordinary differential equations. 

We define & = u,& It is not necessarily the case that +s E Y, for IsI sufficiently 
small. However, if for some a I 0 5 b, and a < b, we have +s E Y, for a 5 s 5 b then 
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the other hypotheses of the Lemma in 97 are satisfied. Formula (7.1) gives 

I 

$ FJ4dl,=o = I V(4, thM(t) dt. 
I=0 

We let t, = sup 4-‘(4(to) + f). We define 

&(t) = u,+(t), if 3n E Z, to+ n 5 t < t, + n 

= b(t), otherwise, 

(8.1) 

&(t) = b(t), if 3n E Z, to+ n 5 t C t, + n 

= u&(t), otherwise. 

Again, it is not necessarily the case that JIS and & are in Y, for IsI small. But, if for 
some a I 0 I b and a < b, we have I/J~ (resp. &) E Y, for a 5 s I b, then the other 
hypotheses of the Lemma in 97 are satisfied. Formula (7.1) gives 

$ E,(Jls)ls=o = I V(4, t)pWf) dt 

10 

(8.2) 

‘0 

$ RMIs=o = j- V(4, t)pm#dt) dt. 
1,-l 

(8.3) 

99. CONDITIONS WHICH CANNOT BE SATISFIED AT A MAXIMUM 

In this section, we will show that if any one of the conditions (9.1-9.4) is satisfied 
at t = to and to - o, to, and to+ w are all points of continuity of 4, then F, does not 
take its maximum at 4. 

440 = fob0 - o) and +(t + W) > fo+(t), 

or 

4(t) < fdt - 01 and ~$0 + w) = f&(t), 

or 

d(t) > f&t - w) and 40 + CO)= fo4(t), 

(9.1) 

(9.2) 

(9.3) 

or 

4(r) = f,d(r - w) and d(f + O) <fl+(t). (9.4) 

LEMMA. If (9.1) or (9.2) is satisfied then V(+, f) > 0. If (9.3) or (9.4) is satisfied, 
then V(+, t) < 0. 
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Proof. From the definition of g and g’, we see 

x’ = fo(x)eg(x, x’) = O*g’(x, x’) = 0 

x’ = f,(x)eg(x, x’) = lesg’(x, x’) = 1. 

From (1.6), these equivalences, and the fact that 0 5 g(x, x’) 15 1, 0 5 g’(x, x’) 5 1, the 
conclusions of the Lemma follow immediately. 0 

Suppose to = 4-‘$(to). Provided that p has support in a sufficiently small interval 
about @(to), we have that 4, E Y, for s 10 sufficiently small (resp. s 50 of 

sufficiently small absolute value) and, by (8.1) and the above Lemma, $ F,(+,)(,=, > 0 

(resp. CO), if (9.1) or (9.2) (resp. (9.3) or (9.4)) is satisfied for t = to. Hence F does not 
take its maximum at 4. 

If to f 4-‘r$(to), then 4-‘$(to) is an interval. Let LY, /3 be its endpoints, where a! < b. 
If (9.1) or (9.2) is satisfied for t = to, it is satisfied for all t E [to, p). Moreover, V(& t) 
is an increasing function of t in (a, /3), by (1.6), the fact that g(x, x’) is an increasing 
function of x’ and the fact that g’(X, x) is a decreasing function of 2. It is easily seen 
that if p has support in a sufficiently small neighborhood of r+(f,,), then $, E Y, 

for s L 0 sufficiently small, and by (8.2) and the above Lemma, $ UW(s=o > 0. 

Hence F, does not take its maximum at r#~ = ljlo. 
If (9.3) or (9.4) is satisfied for t = to, similar reasoning shows that if p has support 

in a sufficiently small neighborhood of @(to), then & E Y, for s 5 0 of sufficiently 

small absolute value, and d F,(&)(,=o ~0. Hence F, does not take its maximum at 
ds 

9 = 50. 0 

$10. PROOF OF THE EULER-LAGRANGE EQUATION 

In Ehis section we will prove (1.5), under the assumption that F, takes its 
maximum at 4. It is enough to prove (1.5) when t - o, t, and t + o are the points of 
continuity of 4, since this is the case for all but at most countably many t E R and 
V(& t) is continuous from the left. 

From 59, we know that none of the conditions (9.1-9.4) can be satisfied (when 
t - w, t, and t + w are points of continuity of I$). This means that 4(t) = 

fod(t - ~)ed(t + W) = fog and 4(f) = fl4(t - wW$(t + 0) = {,4(t). If either of 
these conditions holds, V(C$, t) = 0 by the reasoning used in the proof of the Lemma in 

59. 
Hence, it is enough to consider a point to E R such that fo4(to- w) < +(to) < 

fddto- o) and fo4(to) < r$(to+ o) <f,+(r,), and to- o, to, and to+ w are points of 
continuity of 4. 

Suppose to = 4-‘+(to). Then, if p has support in a sufficiently small neighborhood 
of @(ro), we have & E Y, for s I sufficiently small, and (8.1) holds. The hypothesis 

that F takes its maximum at 4 = C#J~ implies -$ Fw(t$,)(,=o = 0. Since V(+, t) is 

continuous at r = to (by the hypothesis that t - co, t, and t + o are continuous at t = to), 

4(t) is continuous at to, and to= 4-‘+(to), the fact that 

I V(4, t)pm#4~) dt = 0, 
t=o 

for all p of the type we consider, implies V(+, to) = 0. 
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If to f c#J-‘&(@, then $-‘4(to) is an interval. Let (Y and /3 be its endpoints with 
a < /3. Then V(4, t) is an increasing function of t in (C-X, p), by (1.6), the fact that 
g(x, x’) is an increasing function of x’ and the fact that g’(R, x) is a decreasing function 
of f. It is easily seen that if p has support in a sufficiently small neighborhood of 
a+(t& then $s E Y, for s 2 0 sufficiently small and & E Y, for s 5 0 sufficiently 
small. Hence (8.2) and (8.3) hold. The assumption that F, takes its maximum at 
C#I = CL0 = to implies 

In view of the fact that V(C$, t) is increasing on ((Y, p), (8.2) gives V(4, to) 50 and (8.3) 
gives V(d, to) 10. Hence V(C#J, to) = 0. 0 

This completes the proof of the Theorem stated in the introduction. 

911. PROOF OF ADDENDUM 1 

In view of (1.6), the fact that g(x, x’) is an increasing function of x’, and the fact 
that g(Z, x) is a decreasing function of f, it follows that if 4 is continuous at t, then 
V(C#J, t +) 2 V(C$, t -), and we have equality if and only if 9 is continuous at both I - o 
and t + o. Since (1) is equivalent to the Euler-Lagrange equation V(C$, t) = 0, we have 
equality, and C#I is continuous at t - o and t + CO. Cl 

$12. PROOF OF ADDENDUM 2 

We have already seen that if C#I is constant in an interval (a, /3), then V(C#J, t) is 
increasing in that interval. Moreover, the argument which proved that (09) also shows 
that V(C#J, t) is constant if and only C#J is constant on (a -0, /3 -w) and on ((Y + o, 
p + 0). Since V(& r) = 0 identically, we have that 4 is constant on ((u - w, p - w) and 
(a + o, p f w). By iterating this argument and using +(t + 1) = 4(t) + 1, we get that 4 
is constant on the interval (a + nw + m, /3 + no + m) for any n, m E Z. Since OE Q, 
this implies 4 is constant on R, whit contradicts +(t + 1) = 4(t) f 1. 

Hence 4 is not constant in any interval. cl 
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