(31/10/19)

Risultati dimostrati in classe

Sia $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$ e sia $\sigma(A) = \{\lambda_j \mid 1 \leq j \leq m\}$ il suo spettro $(\lambda_i \neq \lambda_j \text{ se } i \neq j)$. Sia

$$K_{j,p} := \operatorname{Ker}(A - \lambda_j I)^p . \tag{1}$$

Lemma 1 Per ogni j e p, $K_{j,p}$ è un sottospazio vettoriale invariante per A. Inoltre, per ogni j esiste un unico intero $1 \le d_j \le n$ tale che¹

$$K_{i,1} \subseteq \cdots \subseteq K_{i,d_i-1} \subseteq K_{i,d_i} = K_{i,p} , \forall p \ge d_i .$$
 (2)

Chiamiamo tale numero d_j "indice di nilpotenza" dell'autovalore λ_j . Lo spazio vettoriale

$$K_j := \operatorname{Ker}(A - \lambda_j)^{d_j} \tag{3}$$

prende il nome di autospazio generalizzato (relativo all'autovalore λ_i) e i suoi elementi autovettori generalizzati.

Lemma 2 Se d_j è l'indice di nilpotenza di λ_j , esiste $u \in K_j$ tale che i d_j vettori

$$u, (A - \lambda_j)u, ..., (A - \lambda_j)^{d_{j-1}}u$$

sono linearmente indipendenti. In particolare,

$$d_i \le k_i := \dim(K_i) \le n \ . \tag{4}$$

Lemma 3 $\mathbb{C}^n = \bigoplus_{j=1}^m K_j$.

Lemma 4 Sia $\sigma(A) = \{\lambda\}$ e $k := \dim(K_1) =: d = n$. Esiste u tale che la matrice

$$U = [(A - \lambda)^{d-1}u, ..., (A - \lambda)u, u]$$

è invertibile² e A ha forma normale di Jordan data da:

$$U^{-1}AU = J_n(\lambda) := \lambda I_n + N_n .$$

Lemma 5 (Polinomio minimo) Esiste un unico polinomio monico $p_A := p_{\min,A}$ su $\mathbb C$ di grado minimo tale che $P_A(A) = 0$. Infatti,

$$p_A(z) = \prod_{j=1}^m (z - \lambda_j)^{d_j} .$$

 $^{^{1}}$ Se $d_{j}=1,\,K_{j,1}=K_{j,p}$, $\forall p\geq1.$ 2 Segue dal Lemma 2.

Esercizi

1. Sia $A \in \operatorname{Mat}_{\mathbb{C}}(n \times n)$. Dimostrare (per induzione su n) il teorema di Jordan nel caso $\sigma(A) = \{\lambda\}$, dimostrando le seguenti affermazioni:

Sia $N:=A-\lambda I$. Se $1\leq p\leq n-1$ e $u\in\mathbb{C}^n$ sono tali che $N^{p-1}u\neq 0$ e $N^pu=0$, i p vettori N^ju con $0\leq j\leq p-1$ prendono il nome di catena di Jordan di lunghezza p.

- (i) Le catene di Jordan formano p vettori indipendenti e $N^{p-1}u$ è un autovettore. Una catena di Jordan di lunghezza 1 è un autovettore.
- (ii) Dimostrare il teorema di Jordan è equivalente a dimostrare che esiste una base di \mathbb{C}^n formata da catene di Jordan.
- (iii) Nel caso n=1 il teorema è banale. Si assuma il teorema vero per $n-1\geq 1$.
- (iv) $1 \leq \dim \operatorname{Rank} N \leq n 1$.
- (v) Per l'ipotesi induttiva, esistono $k \geq 1$ catene di Jordan $\{u_1, ..., N^{p_1-1}u_1\}, ..., \{u_k, ..., N^{p_k-1}u_k\}$ che formano una base per Rank N. Siano $v_i \in \mathbb{C}^n$ tali che $u_i = Nv_i$: $B_i := \{N^jv_i | 0 \leq j \leq p_i\}$ sono catene di Jordan lunghe $p_i + 1$. I vettori in $B := \bigcup_i B_i$ sono linearmente indipendenti.
- (vi) Sia $\langle B \rangle$ il sottospazio generato da B. Se dim $\langle B \rangle = n$ il teorema è dimostrato. Se dim $\langle B \rangle < n$, sia $\mathbb{C}^n = \langle B \rangle \oplus \{\tilde{w}_1, ..., \tilde{w}_s\}$, con $s \geq 1$. Allora, esistono s vettori $\hat{w}_j \in \langle B \rangle$ tali che $N\tilde{w}_j = N\hat{w}_j$ e i vettori $w_j := \tilde{w}_j \hat{w}_j$ sono autovettori. Il teorema è dimostrato prendendo come base di \mathbb{C}^n i vettori $B \cup \{w_1, ..., w_s\}$.
- 2. Dimostrare il teorema di Jordan.
- **3.** Sia $A \in \operatorname{Mat}_{\mathbb{C}}(N \times N)$ in forma normale di Jordan e sia $\sigma(A) = \{\lambda_j \mid 1 \leq j \leq m\}$ $(\lambda_i \neq \lambda_j \text{ se } i \neq j)$. A meno di riordinare i blocchi di Jordan, si ha

$$A = \beta \big(J_{n_1^{(1)}}(\lambda_1),...,J_{n_{s_1}^{(1)}}(\lambda_1),...,J_{n_1^{(j)}}(\lambda_j),...,J_{n_{s_j}^{(j)}}(\lambda_j),....,J_{n_1^{(m)}}(\lambda_m),...,J_{n_{s_m}^{(m)}}(\lambda_m)\big)$$

dove
$$m \ge 1$$
, $s_j \ge 1$, $n_i^{(j)} \le n_{i+1}^{(j)}$, $N = \sum_{i,j} n_i^{(j)}$.

Determinare (motivando) a_j, g_j, d_j, k_j (ossia, rispettivamente, la molteplicità algebrica di λ_j , la molteplicità geometrica di λ_j , l'indice di nilpotenza di λ_j e la dimensione di K_j).

4. Trovare la forma normale di Jordan (e la matrice che la realizza) delle seguenti matrici

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ -1 & -1 & -2 \end{pmatrix} , \qquad B = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 1 & 3 \\ 0 & -2 & 1 \end{pmatrix} .$$

Calcolare i polinomi minimi.

5. (Forma canonica di Jordan reale). Sia $A \in \operatorname{Mat}_{\mathbb{R}}(n \times n)$ e denotiamo con $K(\lambda)$ l'autospazio generalizzato associato all'autovalore λ .

Dimostrare quanto segue.

- (i) Se $\lambda \in \sigma(A)$ ha parte immaginaria diversa da zero, allora anche $\bar{\lambda} \in \sigma(A)$ (e quindi oltre il blocco di Jordan $J(\lambda)$ compare anche il blocco $J(\bar{\lambda})$.
- (ii) $u \in K(\lambda)$ se e solo se $\bar{u} \in K(\bar{\lambda})$.
- (iii) Se $\lambda \in \mathbb{R}$, è possibile trovare una base reale di $K(\lambda)$.

(iv) Sia Im $\lambda \neq 0$ e sia $W := K(\lambda) \oplus K(\bar{\lambda})$. Dimostrare che è possibile trovare una base di W tale che, in tale base, A|W assume la forma canonica

$$\widetilde{J}_{2n}(\lambda) := \begin{pmatrix} a_{\lambda} & I_2 & 0 & 0 & \dots \\ 0 & a_{\lambda} & I_2 & 0 & \dots \\ & \ddots & \ddots & \\ & & \dots & a_{\lambda} & I_2 \\ & & \dots & 0 & a_{\lambda} \end{pmatrix} , \quad a_{\lambda} := \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} , \quad (\lambda = \alpha + i\beta) .$$

(v) Calcolare $\exp(\widetilde{J}_{2n})$.