problem

$$x = tx' + h(x'), \quad x(a) = b,$$
 (4.17)

- (1) there are points $(a, b) \in \mathbb{R}^2$ where there is a lack of uniqueness since (4.17) has two solutions—in particular, through any point of the singular solution passes the singular solution itself and the lines x = ct + h(c) tangent to the singular solution at that point;
 - (2) there are points $(a, b) \in \mathbb{R}^2$ such that (4.17) has no solution.

For example, let us solve the ivp $x = tx' - \frac{1}{2}(x')^2$, x(0) = b (see Example 4.8(i)). Inserting the initial condition into the general solution yields $b = -\frac{1}{2}c^2$ namely $c^2 = -2b$. Thus for b < 0 there are two solutions $x = \sqrt{(-2b)} \cdot t + b$ and $x = -\sqrt{(-2b)} \cdot t + b$; for b = 0 we find x = 0, to which we have to add the singular solution $x = \frac{1}{2}t^2$. Finally, for b > 0 there are neither solutions given by the general integral, nor the singular solution.

4.6 Exercises

4.6.1 Exercises on separable equations

- 1. Find the general solution of $x' = x^k$, k > 0.
- 2. Find the general solution of x' = x(x + 1).
- 3. Find the general solution of the logistic equation x' = x(1-x).
- 4. Find the general solution of $x' = \frac{2t^p+1}{3x^q+1}$, p, q positive numbers.
- 5. * Solve $xx' = \sqrt{x^2 1}$.
- 6. Solve $\sqrt{1-t^2}x' = x$.
- 7. Solve $x' = (1 + 2\tilde{t} t^2) \cdot \frac{x + x^2}{1 + 2x}$.
- 8. Solve $x' = \frac{x+1}{1+t^2}$.

see

- 9. Solve $x' = \frac{t-1}{t} \cdot \frac{x^3 x^2 + x 1}{x^2 + x}$.
- 10. Solve $x' = 4t\sqrt{x}, x > 0, x(0) = 1$.
- 11. Solve $x' = 4t^3 \sqrt{x}$, $x \ge 0$, x(0) = 1.
- 12. Find the limits as $t \to \pm \infty$ of the solution of $x' = t^{-2}x^2$, x(1) = -1.
- 13. Solve x' = x(2 x), x(0) = -1 and x(0) = 1. Draw the graphs of the solutions.

4.6.2 Exercises on homogeneous equations

14. Solve
$$x' = \frac{x}{t} - (\frac{x}{t})^2$$
.

15. Solve
$$x' = \frac{x}{t} + 2(\frac{x}{t})^3$$
.

16. Solve
$$x' = \frac{x}{t} + \tan(\frac{x}{t})$$
.

17. Solve
$$x' = \frac{x^2 + tx}{t^2}$$
.

18. Solve
$$x' = \frac{x^2 + tx + t^2}{t^2}$$

19. Solve
$$x' = \frac{x^3 - t^3}{tx^2}$$
.

4.6.3 Exercises on Bernoulli equations

- 20. Solve the Bernoulli equation $x' = 4x 2t \cdot \sqrt{x}$, $x \ge 0$.
- 21. Solve the Bernoulli equation $x' = x + 2tx^{-1}$, x(0) = 1.
- 22. Solve the Bernoulli equation $x' = \frac{x}{t} + 3x^3$.
- 23. Solve the Bernoulli equation $x' = -\frac{x}{t} + x^{-2}$, x(1) = 1.
- 24. Solve the Riccati equation $x' = -x + x^2 \frac{1}{t}$. [Hint: check that $z = -\frac{1}{t}$ is a particular solution.]

4.6.4 Exercises on Clairaut equations

- 25. Solve the Clairaut equation $x = (t-1)x' (x')^2$ and find the singular solution.
- 26. Solve the Clairaut equation $x = tx' \frac{1}{4}(x')^4$ and find the singular solution.
- 27. Solve the Clairaut equation $x = tx' e^{x'}$ and find the singular solution.
- 28. Solve the Clairaut equation $x = tx' + \frac{1}{3(x')^3}$ and find the singular solution.
- 29. Solve the Cauchy problem $x = tx' + (x')^2$, x(0) = b.
- 30. Solve the Cauchy problem $x = tx' + \frac{1}{x'}$, x(1) = b.