Theorem 5.2 (Local existence and uniqueness for exact equations). Let M, N be continuous on $S \subseteq \mathbb{R}^2$ and suppose that the equation M(x,y)dx + N(x,y)dy = 0 is exact. Let $P_0 = (x_0, y_0) \in S$ be such that $N(x_0, y_0) \neq 0$, or $M(x_0, y_0) \neq 0$. Then the exact equation M(x,y)dx + N(x,y)dy = 0 has one and only one solution passing through P_0 .

Proof. Since Mdx + Ndy = 0 is exact, there exists a C^1 function F(x,y), such that $F_x(x,y) = M(x,y)$ and $F_y(x,y) = N(x,y)$. If $N(x_0,y_0) \neq 0$, then $F_y(x_0,y_0) = N(x_0,y_0) \neq 0$ and we can apply the implicit function theorem to $F(x,y) = c_0 = F(x_0,y_0)$ at $P_0 = (x_0,y_0)$, yielding a unique differentiable function y = g(x), defined in a neighborhood I of x_0 such that

$$F(x,g(x))=c_0, \quad \forall x\in I, \quad g(x_0)=y_0.$$

Differentiating the preceding identity we find $F_x(x,g(x)) + F_y(x,g(x)) \frac{dg(x)}{dx} = 0$, namely $M(x,g(x)) + N(x,g(x)) \frac{dg(x)}{dx} = 0$, $x \in I$. This shows that y = g(x) is a solution of (5.2). Since, in addition, $g(x_0) = y_0$, it follows that y = g(x) is the unique solution of the ivp for (5.1) at P_0 we were looking for.

Similarly, if $M(x_0, y_0) \neq 0$ then $F_x(x_0, y_0) = M(x_0, y_0) \neq 0$ and the implicit function theorem yields a unique x = h(y) such that $F(h(y), y) = c_0$, $h(y_0) = x_0$. Repeating the previous arguments it follows that x = h(y) solves the ivp for (5.1) at P_0 .

Notice that the result is local, in the sense that g(x), resp. h(y), is defined (in general) near x_0 , resp. y_0 .

5.6 Exercises

- 1. Find the solution of $\cos x dx + e^y dy = 0$ passing through (0,0) by solving it as an exact equation.
- 2. Solve $(4x^3 + 6x^5)dx 2ydy = 0$, and find a such that there is a unique solution passing through (0, a).
- 3. Solve 2axdx + 2bydy = 0, $a \cdot b \neq 0$, and find (x_0, y_0) through which passes a unique solution.
- 4. Solve $2xy dx + (x^2 + y^2)dy = 0$.
- 5. Solve (2x + y)dx + (x + 2y)dy = 0.
- 6. Solve $x^2 + ye^x + (y + e^x)y' = 0$.
- 7. Solve $(x^2 + 2y)dx + (2x y^3)dy = 0$.
- 8. Solve $(12x^5 2y)dx + (6y^5 2x)dy = 0$.
- 9. Solve $(y + \frac{1}{x})dx + (x \frac{1}{y})dy = 0$.
- 10. Find a number a such that $(x^3 + 3axy^2)dx + (x^2y + y^4)dy = 0$ is exact and solve it.
- 11. Find numbers a and b such that $(xy + ay^3)dx + (bx^2 + xy^2)dy = 0$ is exact and solve it
- 12. Find the solutions of $2xdx + 3(1 y^2)dy = 0$ passing through (0, 2).
- 13. Solve $2xy^3 + 1 + (3x^2y^2)y' = 0$, y(1) = 1.

- 14. Solve $(y + 8x^3)dx + (x + 3y^2)dy = 0$, y(1) = -1.
- 15. Find the solution of $(x^2 1)dx + ydy = 0$ passing through (-1, b) with b > 0 and show that it can be given in the form y = y(x).
- 16. * Solve $(3y^4 1)dy (2x + 1)dx = 0$, y(0) = 1 and show that, taking a sufficiently small neighborhood of (0,1), there exists a unique solution which can be written as y = y(x) or as x = x(y).
- 17. * Find the solutions of $2xdx + 3(1 y^2)dy = 0$ passing through (0, 1) and show that it has a node.
- 18. Solve ydx 3xdy = 0.
- 19. Solve $(y^3 + 1)dx + 3y^2dy = 0$.
- 20. Solve $(x^2y + x^2)dx + x^2dy = 0$.
- 21 (A) Solve $(xy + x)dx + x^2dy = 0$ by finding an integrating factor $\mu(x)$. (B) Solve $(xy + x)dx + x^2dy = 0$ by finding an integrating factor $\mu(y)$, and compare the answer to that in part (A).
- 22. Solve $(y + \frac{1}{2}xy^2 + x^2y)dx + (x + y)dy = 0$.
- 23. Solve $y(\cos x + \sin^2 x)dx + \sin xdy = 0$.
- 24. Show that there exists an integrating factor $\mu = \mu(y)$ for the equation $(1+f(y))dx + (xg(y) + y^2)dy = 0$, where f and g are some differentiable functions $f \neq -1$.
- 25. Solve (3y + x)dx + xdy = 0.
- 26. Solve [(1+x)y + x]dx + xdy = 0.
- 27. Solve (x 2y)dx + (xy + 1)dy = 0.
- 28. Solve $(y + xy + y^2)dx + (x + 2y)dy = 0$.
- 29. Solve $2ydx + (x + \sqrt{y})dy = 0$, $(y \ge 0)$.
- 30. *Solve (2x + hy)dx (kx + 2y)dy = 0, where $h, k \in \mathbb{R} \{0\}$.