5.6 Exercises == 71

Theorem 5.2 (Local existence and uniqueness for exact equations). Let M, N be con-
tinuous on S < R? and suppose that the equation M(x,y)dx + N(x,y)dy = O is exact.
Let Py = (xg,Yo) € S be such that N(xq,Y,) # 0, or M(xy,Y,) # O. Then the exact equa-
tion M(x,y)dx + N(x,y)dy = O has one and only one solution passing through P,.

Proof. Since Mdx + Ndy = 0 is exact, there exists a C* function F(x,y), such that
F(x,y) = M(x,y) and F,,(x,y) = N(x,y). If N(x, o) # O, then F,,(x,¥o) = N(xo,Yo) # 0
and we can apply the implicit function theorem to F(x,y) = ¢y = F(xp,)p) at Py =
(Xo»Yo)» vielding a unique differentiable function y = g(x), defined in a neighborhood
I of x, such that

F(x,g(x))=cq VxelI, g(xy)=Yo.

Differentiating the preceding identity we find F, (x, g(x)) + F;,(x,8(x)) 5%% = 0, namely
M(x,g(x)) + N (x,g(x))%g‘—) = 0, x € I. This shows that y = g(x) is a solution of (5.2).
Since, in addition, g(x,) = ¥o, it follows that y = g(x) is the unique solution of the ivp
for (5.1) at P, we were looking for.

Similarly, if M(xg,Y,) # O then F, (xo,Yo) = M(Xy,Yo) # 0 and the implicit function
theorem yields a unique x = h(y) such that F(h(y),y) = ¢g, h(y¥y) = Xo- Repeating the
previous arguments it follows that x = h(y) solves the ivp for (5.1) at P,,.

Notice that the result is local, in the sense that g(x), resp. h(y), is defined (in gen-
eral) near x, resp. ¥o. O

5.6 Exercises

1. Find the solution of cos xdx + €’dy = 0 passing through (0, 0) by solving it as an
exact equation.

2. Solve (4x> + 6x°)dx — 2ydy = 0, and find a such that there is a unique solution
passing through (0, a).

3. Solve 2axdx+2bydy = 0, a-b # 0, and find (x,, y,) through which passes a unique
solution.

4, Solve 2xy dx + (% +y*)dy = 0.

5. Solve (2x + y)dx + (x + 2y)dy = 0.

6. Solvex?+ye* +(y +€“)y' =0.

7. Solve (x* +2y)dx + (2x - y*)dy = 0.

8. Solve (12¢° - 2y)dx + (6y° — 2x)dy = 0.

9. Solve (y + 1)dx + (x - %)dy =0.

10. Find a number a such that (x> + 3axy?)dx + (x’y + y*)dy = 0is exact and solve it.

11. Find numbers a and b such that (xy + ay®)dx + (bx* + xy*)dy = 0 is exact and solve
it.

12. Find the solutions of 2xdx + 3(1 - y?)dy = 0 passing through (0, 2).

13. Solve 2xy® +1+ (3x¥2)y' =0,y(1) = 1.
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Solve (y + 8x>)dx + (x + 3y")dy = 0, y(1) = -1.

Find the solution of (x*> — 1)dx + ydy = 0 passing through (-1,b) with b > 0and
show that it can be given in the form y = y(x).

* Solve (3y* — 1)dy — (2x + 1)dx = 0, y(0) = 1 and show that, taking a sufficiently
small neighborhood of (0, 1), there exists a unique solution which can be written
asy = y(x) or as x = x(y).

* Find the solutions of 2xdx + 3(1 - y?)dy = 0 passing through (0, 1) and show that
it has a node.

Solve ydx - 3xdy = O.

Solve (y* + 1)dx + 3y’dy = 0.

Solve (x2y + x2)dx + x*dy = 0.

(A) Solve (xy + x)dx + x*dy = 0 by finding an integrating factor u(x).

(B) Solve (xy + x)dx + x*dy = 0 by finding an integrating factor u(y), and compare
the answer to that in part (A).

Solve (y + 3x7 + xX%y)dx + (x +y)dy = 0.

Solve y(cos x + sin” x)dx + sin xdy = 0.

Show that there exists an integrating factor u = u(y) for the equation (1+£(y))dx +
(xg(y) + y*)dy = 0, where f and g are some differentiable functions f+-L

Solve (3y + x)dx + xdy = 0.

Solve [(1 + x)y + x]dx + xdy = 0.

Solve (x — 2y)dx + (xy + 1)dy = 0.

Solve (y + xy + y?)dx + (x + 2y)dy = 0.

Solve 2ydx + (x + yy)dy = 0, (y = 0).

* Solve (2x + hy)dx — (kx + 2y)dy = 0, where h,k € R - {O}.




