contained in Ω , which is impossible by assumption (a). Then one can prove that (9.8) possesses a closed orbit (hence a periodic solution) such that the nearby trajectories look like spirals approaching the closed orbit from outside and from inside, which is therefore a limit cycle.

For example, Theorem 9.6 might be used to find the periodic solution of van der Pol equation.

For a broader treatment of the Poincaré-Bendixon theory, we refer, e.g., to the aforementioned book by H. Amann.

9.7 Exercises

1. Using the phase plane analysis, show that the solution of $x'' - 3x^2 = 0$ x(0) = 1, x'(0) = 0 is positive, has a minimum at t = 0 and is convex. Sketch a qualitative graph of the solution. [Hint: see Example 9.1.]

$$\frac{1}{2}y^2-x^3=-1\Rightarrow yy'=3x^2x'\Rightarrow x'x''=3x^2x'\Rightarrow x''=3x^2\quad (\text{if }x'\neq 0).$$

- 2. Using the phase plane analysis, show that the solution of $x'' 4x^3 = 0$ x(0) = 0, x'(0) = -1 is increasing, convex for t < 0 and concave for t > 0. Sketch a qualitative graph of the solution.
- 3. Show that the solution of $x'' + x + 4x^3 = 0$, x(0) = 1, x'(0) = 0 is periodic.
- 4. Show that the solution of $x'' x + 4x^3 = 0$, x(0) = 1, x'(0) = 0 is periodic.
- 5. Prove that the solutions of the nonlinear harmonic oscillator $x'' + x x^3 = 0$ with energy c = 1 are monotonic and unbounded.
- 6. Let $x_a(t)$ be the solution of the nonlinear harmonic oscillator $x'' + \omega^2 x x^3 = 0$, $x_a(0) = 0$, $x_a'(0) = a$. Find a > 0 such that $x_a(t)$ is periodic.
- 7. Knowing that the boundary value problem $x'' + x^3 = 0$, x(-1) = x(1) = 0 has a solution x(t) such that $M = \max_{[-1,1]} x(t) = 3$, find x'(-1).
- 8. Show that the system

$$\begin{cases} x' = x + 2y, \\ y' = -2x - y, \end{cases}$$

is a hamiltonian system and prove that all non-trivial solutions are periodic.

9. Let $x_a(t)$, $y_a(t)$ be the solution of the hamiltonian system

$$\begin{cases} x' = ay + y, \\ y' = -x - ax, \end{cases}$$

such that x(0) = 0, y(0) = 1. Find a such that $x_a(t)$, $y_a(t)$ is periodic.

- 10. Show that for a > 0 the equation $x'' + ax^3 = 0$ has no homoclinic.
- 11. Show that $x'' = x x^5$ has a positive and a negative homoclinic at $x^* = 0$ and find its maximum, resp. minimum, value.

- 12. Find k such that the equation $x'' = k^2x x^3$ has a homoclinic x(t) to 0 such that $\max_{\mathbb{R}} x(t) = 2$.
- 13. Show that $x'' = x x^4$ has one and only one positive homoclinic at $x^* = 0$.
- 14. Show that for k < 0 the equation $x'' = kx x^3$ has no homoclinic at 0.
- 15. Show that x'' + V'(x) = 0 cannot have homoclinics if V' does not change sign.
- 16. Show that if x'' + V'(x) = 0 has a homoclinic to 0, then V cannot have a minimum or a maximum at x = 0.
- 17. Show that for $p \ge 1$ the equation $x'' + x^p = 0$ has no heteroclinic.
- 18. Find *a* such that $x'' + 2x 2x^3 = 0$, x(0) = 0, x'(0) = a is a heteroclinic.
- 19. Find the integers k > 1 such that $x'' + x x^k = 0$ has a heteroclinic.
- 20. * Let T = T(a) the period of the periodic solution of the nonlinear harmonic oscillator $x'' + \omega^2 x x^3 = 0$ such that x(0) = 0, x'(0) = a > 0. Show that $\lim_{a\to 0} T(a) = \frac{2\pi}{a}$.
- 21. * Show that there exists a unique $\lambda > 0$ such that the boundary value problem $x'' + \lambda x^3 = 0$, $x(0) = x(\pi) = 0$ has a positive solution.
- 22. * Describe the behavior of the solution of the Kepler problem with energy (i) $c = U_{\text{eff}}(r_0) = \min U_{\text{eff}}(r)$, (ii) c = 0 and (iii) c > 0.
- 23. Find *a*, *c* such that the equilibrium of the Lotka–Volterra system

$$\begin{cases} x' = ax - 3xy, \\ y' = -cy + xy, \end{cases}$$

is (2, 3).

24. Let $x_0(\epsilon)$, $y_0(\epsilon)$ be the equilibrium of

$$\begin{cases} x' = ax - bxy - \epsilon x, \\ y' = -cy + dxy - \epsilon y. \end{cases}$$

Show that if $\epsilon > 0$ then $x_0(\epsilon) > x(0)$, $y_0(\epsilon) < y(0)$. Explain this result in terms of prey and predators.

25. Using Theorem 9.6, prove that the system

$$\begin{cases} x' = -y + x(1 - (x^2 + y^2)), \\ y' = x + y(1 - (x^2 + y^2)), \end{cases}$$

has a unique limit cycle and find it.

26. Given $f, g \in C^1(\mathbb{R}^2)$ consider the planar system

$$\begin{cases} x' = f(x, y), \\ y' = g(x, y), \end{cases}$$

and suppose that the vector field F = (f,g) is such that $\operatorname{div} F > 0$. Prove that the system has no periodic solution.