52. ON THE PRESERVATION OF CONDITIONALLY PERIODIC MOTIONS UNDER SMALL VARIATIONS OF THE HAMILTON FUNCTION *

We consider in the 2s-dimensional phase space of a dynamical system with s degrees of freedom a region G, represented as the product of an s-dimensional torus T by a region S in an s-dimensional Euclidean space. The points of the torus will be characterized by circular coordinates q_1, \ldots, q_s (the replacement of q_{α} by $q_{\alpha} + 2\pi$ does not change the position of the point q), and the coordinates of a point p belonging to S will be denoted by p_1, \ldots, p_s . Assume that in the region G the equations of motion in the coordinates $(q_1, \ldots, q_s, p_1, \ldots, p_s)$ have the canonical form

$$\frac{dq_{\alpha}}{dt} = \frac{\partial}{\partial p_{\alpha}} H(q, p), \quad \frac{dp_{\alpha}}{dt} = -\frac{\partial}{\partial q_{\alpha}} H(q, p). \tag{1}$$

In what follows, the Hamilton function H is assumed to depend on a parameter θ , defined for all $(q,p) \in G$, $\theta \in (-c;+c)$, and to be independent of time. In essence, the consideration below is related to real functions, but imposes rather strong conditions on the smoothness of the function $H(q,p,\theta)$, stronger than the condition of infinite differentiability. For simplicity, in what follows we assume that the function $H(p,q,\theta)$ is analytic in the variables (q,p,θ) jointly.

Below the summation over Greek subscripts extends from 1 to s. Ordinary vector notation is used: $(x,y) = \sum_{\alpha} x_{\alpha} y_{\alpha}$ and $|x| = +\sqrt{(x,x)}$. By an integral vector is meant a vector all components of which are integers. A set of points $(q,p) \in G$ with p=c is denoted by T_c . In Theorem 1 it is assumed that S contains the point p=0, that is, $T_0 \subseteq S$.

Theorem 1. Let

$$H(q, p, 0) = m + \sum_{\alpha} \lambda_{\alpha} p_{\alpha} + \frac{1}{2} \sum_{\alpha\beta} \Phi_{\alpha\beta}(q) p_{\alpha} p_{\beta} + O(|p|^{3}), \tag{2}$$

where m and λ_{α} are constants, and let the inequality

$$|(n,\lambda)| \ge c/|n|^2 \tag{3}$$

^{*} Dokl. Akad. Nauk SSSR 98:4 (1954), 527-530.

be fulfilled for a certain choice of the constants c > 0 and $\eta > 0$ and all integral vectors n. Moreover, let the determinant formed from the average values

$$\phi_{\alpha\beta}(0) = \frac{1}{(2\pi)^s} \int_0^{2\pi} \int_0^{2\pi} \Phi_{\alpha\beta}(q) dq_1 \dots dq_s$$

of the functions

$$\Phi_{\alpha\beta}(q) = \frac{\partial^2 H}{\partial p_{\alpha} \partial p_{\beta}}(q, 0, 0)$$

be non-zero:

$$|\phi_{\alpha\beta}(0)| \neq 0. \tag{4}$$

Then there exist analytic functions $F_{\alpha}(Q, P, \theta)$ and $G_{\alpha}(Q, P, \theta)$ defined for all sufficiently small θ and all points (Q, P) belonging to a neighbourhood V of the set T_0 that determine a contact transformation

$$q_{\alpha} = Q_{\alpha} + \theta F_{\alpha}(Q, P, \theta), \quad p_{\alpha} = P_{\alpha} + \theta G_{\alpha}(Q, P, \theta)$$

of V into $V' \subseteq G$ reducing H to the form

$$H = M(\theta) + \sum_{\alpha} \lambda_{\alpha} P_{\alpha} + O(P^{2})$$
 (5)

 $(M(\theta) \text{ does not depend on } Q \text{ or } P).$

The significance of Theorem 1 in mechanics can easily be understood. It shows that, under conditions (2) and (3), an s-parameter family of conditionally periodic motions

$$q_{\alpha} = \lambda_{\alpha} t + q_{\alpha}^{(0)}, \ p_{\alpha} = 0,$$

existing at $\theta=0$ cannot disappear under a small variation of the Hamilton function H; namely, the variation results only in a displacement of the s-dimensional torus T_0 , along the trajectories of the motions: it is transformed into a torus P=0, which is filled with trajectories of conditionally periodic motions with the same frequencies $\lambda_1, \ldots, \lambda_s$.

The transformation

$$(Q,P)=K_{\theta}(q,p)$$

whose existence is asserted in Theorem 1 can be constructed as the limit of transformations

$$(Q^{(k)}, P^{(k)}) = K_{\theta}^{(k)}(q, p),$$

where the transformations

$$(Q^{(1)}, P^{(1)}) = L^{(1)}(q, p), \quad (Q^{(k+1)}, P^{(k+1)}) = L_{\theta}^{(k+1)}(Q^{(k)}, P^{(k)})$$

are found by a "generalized Newton's method" (see [1]). In this paper we confine ourselves to the construction of the transformation $K_{\theta}^{(1)} = L_{\theta}^{(1)}$, which makes it possible to understand the role of conditions (3) and (4) of Theorem 1. We determine the transformation $L_{\theta}^{(1)}$ by means of the formulas

$$Q_{\alpha}^{(1)} = q_{\alpha} + \theta Y_{\alpha}(q),$$

$$p_{\alpha} = P_{\alpha}^{(1)} + \theta \left\{ \sum_{\beta} P_{\beta}^{(1)} \frac{\partial Y_{\beta}}{\partial q_{\alpha}} + \xi_{\alpha} + \frac{\partial}{\partial q_{\alpha}} X(q) \right\}$$
(6)

(it can be readily verified that this is a contact transformation) and find the constants ξ_{α} and ζ and the functions X(q) and $Y_{\beta}(q)$ by proceeding from the requirement that

$$H = m + \sum_{\alpha} \lambda_{\alpha} p_{\alpha} + \frac{1}{2} \sum_{\alpha,\beta} \Phi_{\alpha\beta}(q) p_{\alpha} p_{\beta} + \theta \{ A(q) + \sum_{\alpha} B_{\alpha}(q) p_{\alpha} \} + O(|p|^{3} + \theta |p|^{2} + \theta^{2})$$

$$(7)$$

should have the form

$$H = m + \theta \zeta + \sum_{\alpha} \lambda_{\alpha} P_{\alpha}^{(1)} + O(|P^{(1)}|^2 + \theta^2).$$
 (8)

Substituting (6) into (7) we find

$$H = m + \sum_{\alpha} \lambda_{\alpha} P_{\alpha}^{(1)} + \theta \left\{ A + \sum_{\alpha} \lambda_{\alpha} \left(\xi_{\alpha} + \frac{\partial X}{\partial q_{\alpha}} \right) \right\} +$$

$$+ \theta \sum_{\alpha} P_{\alpha}^{(1)} \left\{ B_{\alpha} + \sum_{\beta} \Phi_{\alpha\beta}(q) \left(\xi_{\beta} + \frac{\partial X}{\partial q_{\beta}} \right) + \sum_{\beta} \lambda_{\beta} \frac{\partial Y_{\alpha}}{\partial q_{\beta}} \right\} +$$

$$+ O(|P^{(1)}|^{2} + \theta^{2}).$$

Thus, condition (8) reduces to the requirement that the equations

$$A + \sum \lambda_{\alpha} \left(\xi_{\alpha} + \frac{\partial X}{\partial g_{\alpha}} \right) = \zeta, \tag{9}$$

$$B_{\alpha} + \sum_{\beta} \Phi_{\alpha\beta} \left(\xi_{\beta} + \frac{\partial X}{\partial q_{\beta}} \right) + \sum_{\beta} \lambda_{\beta} \frac{\partial Y_{\alpha}}{\partial q_{\beta}} = 0$$
 (10)

hold.

We introduce the function

$$Z_{\alpha}(q) = \sum_{\beta} \Phi_{\alpha\beta}(q) \frac{\partial}{\partial q_{\beta}} X(q). \tag{11}$$

Expanding the functions $\Phi_{\alpha\beta}$, A, B_{α} , X, Y_{α} , and Z_{α} into Fourier series of the form

$$X(q) = \sum x(n)e^{i(n,q)}$$

and putting, for the sake of definiteness,

$$x(0) = 0, \quad y_{\alpha}(0) = 0,$$
 (12)

we obtain the following equations for the unknown Fourier coefficients x(n), $y_{\alpha}(n)$, $z_{\alpha}(n)$ and the constants ξ_{α} and ζ :

$$a(0) + \sum \lambda_{\alpha} \xi_{\alpha} = \zeta, \tag{13}$$

$$a(n) + i(n, \lambda)x(n) = 0 \text{ for } n \neq 0, \tag{14}$$

$$b_{\alpha}(0) + \sum_{\beta} \phi_{\alpha\beta}(0)\xi_{\beta} + z_{\alpha}(0) = 0, \qquad (15)$$

$$b_{\alpha}(n) + \sum_{\beta} \phi_{\alpha\beta}(n)\xi_{\beta} + z_{\alpha}(n) + i(n,\lambda)y_{\alpha}(n) = 0 \text{ for } n \neq 0.$$
 (16)

It is easy to see that the system of equations (11)-(16) possesses a unique solution under conditions (3) and (4). Condition (3) is important when finding x(n) from (14) and $y_{\alpha}(n)$ from (16). Condition (4) is important for the determination of ξ_{β} from (15). Since the coefficients of the Fourier series of the analytic functions $\Phi_{\alpha\beta}$, A, and B_{α} decrease at least as rapidly as ρ^h ($\rho < 1$) with increasing |n|, condition (3) implies not only the formal solvability of equations (13)-(16) but also the convergence of the Fourier series of the functions X, Y_{α} and Z_{α} and the analyticity of these functions. The construction of further approximations encounters no new difficulties. Only the application of condition (3) in the proof of the convergence of the mappings $K_{\theta}^{(k)}$ to an analytic limit mapping K_{θ} is somewhat more intricate.

The condition of absence of "small divisors" (3) should be presumed to be fulfilled "in general" since for any $\eta > s - 1$ there exists $c(\lambda)$ such that

$$|(n,\lambda)| \ge c(\lambda)/|n|^{\eta}$$

at all points of the s-dimensional space $\lambda = (\lambda_1, \ldots, \lambda_s)$, except at a set of Lebesgue measure zero, for any integers n_1, n_2, \ldots, n_s (see [2]). It is natural to assume that, "in general", condition (4) is also fulfilled. Since

$$\phi_{\alpha\beta}(0) = \frac{\partial \lambda_{\beta}}{\partial p_{\alpha}}(0),$$

where

$$\lambda_{\beta}(p) = \frac{1}{(2\pi)^s} \int_0^{2\pi} \cdots \int_0^{2\pi} \frac{dq_{\beta}}{dt} dq_1 \ldots dq_s,$$

is the "average frequency" corresponding to the coordinate q_{β} for fixed momenta p_1, \ldots, p_s , condition (3) means that the Jacobian of the average frequencies with respect to the momenta is non-zero.

We now proceed to the consideration of the special case when H(p,q,0) depends only on p, that is, H(q,p,0) = W(p). In this case, for $\theta = 0$ each torus T_p consists of entire trajectories of conditionally periodic motions with frequencies

$$\lambda_{\alpha}(p) = \partial W/\partial p_{\alpha}.$$

If the Jacobian

$$J = \left| \frac{\partial \lambda_{\alpha}}{\partial p_{\beta}} \right| = \left| \frac{\partial^{2} W}{\partial p_{\alpha} \partial p_{\beta}} \right| \tag{17}$$

is non-zero, then Theorem 1 can be applied to almost all tori T_p . There arises the natural conjecture that for small θ the "displaced tori" appearing in accordance with Theorem 1 occupy a major part of the region G. This fact is confirmed by Theorem 2 below. When stating the latter theorem, we assume that the region S is bounded and consider the set M_{θ} of those points $(q^{(0)}, p^{(0)}) \in G$ for which the solution

$$q_{\alpha}(t) = f_{\alpha}(t; q^{(0)}, p^{(0)}, \theta), \quad p_{\alpha}(t) = g_{\alpha}(t; q^{(0)}, p^{(0)}, \theta)$$

of the system of equations (1) with initial conditions

$$q_{\alpha}(0) = q_{\alpha}^{(0)}, \quad p_{\alpha}(0) = p_{\alpha}^{(0)}$$

has trajectories not falling outside the region G for t varying from $-\infty$ to $+\infty$ and is conditionally periodic with periods $\lambda_{\alpha} = \lambda_{\alpha}(q^{(0)}, p^{(0)}, \theta)$, that is, has the form

$$f_{\alpha}(t) = \phi_{\alpha}(e^{i\lambda_1 t}, \dots, e^{i\lambda_s t}), \quad g_{\alpha}(t) = \psi_{\alpha}(e^{i\lambda_1 t}, \dots, e^{i\lambda_s t}).$$

Theorem 2. If H(q, p, 0) = W(p) and the determinant (17) is non-zero in the region S, then for $\theta \to 0$ the Lebesgue measure of the set M_{θ} tends to the total measure of the region G.

It seems that, in a sense, the "general case" is the case when the set M_{θ} has an everywhere dense complement for all positive θ . Complications of this kind appearing in the theory of analytic dynamical systems were indicated in my paper [3] in connection with a more specific situation.

31 August 1954

References

- 1. L.V. Kantorovich, 'Functional analysis and applied mathematics', *Uspekhi Mat. Nauk* 3:6 (1948), 163 (in Russian).
- 2. J.F. Koksma, Diophantische Approximationen, Springer, Berlin, 1936.
- 3. A.N. Kolmogorov, 'On dynamical systems with an integral invariant on a torus', *Dokl. Akad. Nauk SSSR* 93:5 (1953), 763-766 (in Russian). (See No. 51.)