Chapter Three
Stability

§ 25. The Function-Theoretic Center Problem

We begin with the definition of stability and instability. Let R be a
topological space whose points we denote by p, and let a be a certain
point in R. By a neighborhood here we will always mean a neighborhood
of a in R. Let p; = Sp be a topological mapping of a neighborhood M,
onto a neighborhood B,, whereby a=Sa is mapped onto itself. The
inverse mapping p_, =S~ 'p then carries B, onto U, , and in general
p,=8"p(n=0, +£1, +£2,...)is a topological mapping of a neighborhood
U, onto a neighborhood B,, having a as a fixed-point. For each point
p=p, in the intersection U, "B, =W we construct the successive
images py.,=Sp; (k=0,1,..)), as long as p, lies in U, and similarly
P_w_1=S"'p_,,aslongas p_, lies in B,. If the process terminates with a
largest k+ 1 =n, then p,, ..., p,_ all still lie in U, , but p, no longer does;
similarly for the negative indices. In this way, to each p in B there is
associated a sequence of image points p, (k=..., —1,0,1,...), which is
finite, infinite on one side, or infinite on both sides.

The mapping S is said to be stable at the fixed-point a if for each
neighborhood W ¢ Wthere exists a neighborhood B € U of a whoseimages
S"B (n= +1, +£2,...) all lie in . Instability on the other hand, is defined
not as the logical negation of stability, but in terms of the following
stronger requirement. The mapping S is said to be unstable at the fixed-
point a if there exists a neighborhood W C MW such that for each point
p +ain U at least one image point p, lies outside 2.

Let us restate the above definition in another form. A point set
I C W is said to be invariant under the mapping S if M = SIM. The fixed-
point a is, of course, trivially an invariant point set. We now show that S
is stable if and only if each neighborhood M contains an invariant
neighborhood B. If for each neighborhood U there exists a neighborhood
B =SB Y, then certainly B has the necessary property required in the
definition of stability, and consequently S is stable. Conversely, under
the assumption that S is stable, for each neighborhood U C 2B there exists
a neighborhood Q C U such that S"QCU (n=0, + 1, +2,...). The union
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B={)(5"Q) of all the "X is then invariant under S and is again a

neighborhood, whereby the assertion is proved. Correspondingly, let
us show that S is unstable if and only if there exists a neighborhood U
that contains no invariant subsets other than the fixed-point a. Indeed,
if such a neighborhood U exists then certainly the intersection YN8 has
the same property, and we may therefore assume that W C . If p is then
any point # a in 1, the images p, cannot all lie in U or else M= | ] p,

would be an invariant subset of Il that contains a point # a. Consequently
S is unstable. Conversely, if S is unstable, there exists a neighborhood
U C W such that for each p & a in U at least one image p, does not lie in
U. If p is now any point of an invariant subset I =SIM of U, all the
images p, of p must lie in 9 and therefore certainly in U, from which it
follows that p = a. This again proves the assertion.

A mapping S that is not unstable thus has the property that each
neighborhood contains an invariant point set with a as a proper subset,
while for a stable mapping S each neighborhood actually contains an
invariant neighborhood. Consequently a stable mapping is necessarily
not unstable, but a mapping that is not stable need not be unstable. A
mapping S is said to be mixed at a fixed-point a if it is neither stable nor
unstable there. That there actually exist mixed mappings is seen by the
simple example of the affine mapping x, = x + y, y, = y in the (x, y)-plane,
which has each point of the abscissa axis as a fixed-point. A bounded set
is invariant under this mapping if and only if it lies on the abscissa axis.
Since for arbitrary r>0 the disk x*+ y*><r* contains no invariant
neighborhood of (x,y)=(0,0) but contains the invariant interval
—r<x<r,y=0, at the origin this mapping is neither stabie nor unstable.

We carry over the definition of stability and instability to systems of
differential equations

1) Xo=filx) (k=1,...,m).

Let x = £* be an equilibrium solution, so that f,(£*) =0, and assume that
a Lipschitz condition holds in a neighborhood of x=¢&*. We again
denote by x(t, &) the solution to (1) with initial values x, =&, at t=0.
Passage from £ to x(t, £) then defines for each fixed t a topological
mapping S, in a neighborhood of the fixed-point x = £*. The definitions
of stability and instability of the system (1) at the given equilibrium point
are then obtained by taking for a,p, ", and p,=8"p (n=0, £ 1,...) in
the previous definitions the corresponding quantities &*,&,S,, and
&, = x(t, €) ast varies over the reals. By introducing the modification that
only positive values of ¢ are permitted, one may speak also of stability
or instability with respect to future time. This notion has, of course,
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significance in problems dealing with mechanics. Also the definition of
the mixed case carries over in an obvious way.

Before turning to problems relating to stability for differential
equations, we will look at the particular case when S is a conformal
mapping in the plane. Already here some of the characteristic difficulties
show up, although they can still be overcome by the available methods
of analysis. Without loss of generality the fixed-point may be taken as the
origin of the complex z-plane. The conformal mapping is then given by a
power series

) zy=f@=Az+a,2" a2+ (A+0)

with complex coefficients, which converges in a neighborhood of z=0.
We wish to investigate when this mapping is stable, unstable, or mixed
at z=0. Assume first that § is stable. The circle of convergence K for the
series (2) then contains an invariant neighborhood B =SB of the origin.
This neighborhood may not be connected, but it does contain a connected
invariant neighborhood; indeed, if £ is an open disk in B containing the
origin, the union of all the images §"{ (n=0, +1,...) has the desired
property. We may therefore assume that B is already connected. Our
aim here is to find an invariant neighborhood in & that can be mapped
conformally onto the unit disk. This can be achieved in, say, one of the
following two ways. Perhaps B is not simply connected. Then one adds
to B all points that lic in the interior of any simple closed curve € con-
tained in B. The resulting set U is then again a connected neighborhood
within R, and is easily seen to be simply connected. Because of the
invariance of B, together with € also S belongs to B, from which it
follows that U is invariant. Now, by the Riemann mapping theorem, U
can be mapped conformally onto a disk |{| <g so that z=0 goes into
{=0 and the derivative z, at { =0 has the value 1. Let

€) z=¢Q)=C{+b0+ (<o)

be the inverse conformal mapping, whereby the series converges certainly
in the circle |{| <. We denote the mapping (3) by C and consider
T=C"1SC. Since the region i was invariant under S, the disk |{| <o
is evidently invariant under the conformal mapping T, which has the
center { =0 as a fixed-point. It follows from a well-known theorem in
function theory that T is a linear mapping of the form

“ Li=pl (ul=1),

that is, a rotation about the origin. One can also arrive at (4) as follows,
without constructing the set U. One constructs for B the universal
covering surface B, which by definition is simply connected. It has more
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than one boundary point, since this is already true of B. The conformal
mapping S can now be extended to B so that SB =B and a fixed-point
lies over the point z=0 of B. By the uniformization theorem one can
then again map ‘B conformally onto a circle in the {-plane and set up the
expression (3), where z now varies over the covering surface as { runs over
|¢} < @. The subsequent conclusion then follows as before.

The relation T=C"1SC can be expressed in the form CT=SC,
whereupon (2), (3), (4) combine into the identity ¢(u) = f(#()). Thisis the
Schréder functional equation [1]. By comparison of the linear terms it
follows that A = pu. Denoting the two conformal mappings determined in
the previous paragraph by C, and C,, one sees from C;{'SC,=T
=C;'SC, that C{*C,=C, commutes with T. If 1 is not a root of
unity, by inserting the respective power series into the relation C, T= T C,
one finds that C, is the identity mapping, so that C, = C,. In particular,
this implies that 8 = B = W is simply connected, although this will not be
used subsequently.

In view of (4) one has |A| = 1, which therefore is a necessary condition
for stability of S. We will now show that § is stable if and only if |1]=1
and the Schroder functional equation

() (A0 =f(¢()

has a convergent power series solution ¢({)={+---. The necessity
of this condition is precisely what was shown in the preceding argument.
Conversely, if there exists a convergent solution ¢({) to (5) with jA|=1,
then the substitution z = ¢({), z, = $({,) transforms the given mapping
z,=f(z) into the rotation {, =A{ which trivially is stable, since as
invariant neighborhoods one can take all circles in the {-plane with center
at the origin { =0. Because ¢({), as well as its inverse series, converges
in a sufficiently small neighborhood of the origin, it follows that also
the given mapping S=CTC™! is stable. This proves the assertion.
The name “center problem” is derived from the fact that in case of
stability the family of concentric circles about the origin in the {-plane
gives rise to the invariant neighborhoods of z=0.

To investigate whether the mapping S is stable 1t is therefore enough
to discuss whether Schroder’s functional equation can be solved by a
convergent power series ¢p({)={_+ ---. Setting up ¢({) as a series with
undetermined coefficients, we first seek a solution to (5) in terms of a
formal power series. Under the assumption that 1 is not a root of unity,
comparison of coefficients will give rise to exactly one solution, which we
will call the Schréder series. Let n> 2, and assume that the coefficients
b, (1 <k <mn) in (3) have already been determined so that both sides of
(5) agree in terms of order k<n. For n=2 the assumption is valid.
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Expressing (5) in the form

(A —Ap() = () — 1)

we have

(©)

a0

W=)bhl= 3 a0,

1=2

iMs

1

and consequently the coefficient of {” on the right is a polynomial in the
a; I=2,...,n) and the already known b, (k=2,...,n— 1) with integral
coefficients, while the corresponding coefficient on the left side of (6)
is equal to (A" — A) b,. Since A is not a root of unity and +0 we have
A"—A+0(rn=2,3,...), and consequently b, is uniquely determined. In
this way one obtains recursively the coefficients of the Schroder series
&()={+b,(*+--- which formally satisfies the Schréder functional
equation (5).

Before investigating convergence of the above series ¢({), we will
consider the case when A is a root of unity. Let 1"=1 (n> 0), where also
n=1 is admitted. If § is stable, then T= C~!SC again has the normal
form {; = A{, and T*= C~18*C is the mapping {, = A*{. Consequently
T" is the identity mapping E, and therefore also $"= E. Conversely, if
S"=E and U is a neighborhood of z =0 within the circle of convergence
K of f(z), one selects any sufficiently small neighborhood B of z=0
for which the n images $*8 (k=0,...,n— 1) are still completely con-
tained in U. Because S"B =B, the union of the S*¥B is an invariant
neighborhood within U, and it follows that S is stable. Thus, in the case
A*=1 (n>0) the mapping S is stable if and only if S" = E. As an example
we consider the mapping

z 2
= = e :1
0= z+z5+ -, A=1,
for which S" is given by
Zy= o (n=%1,42,..)
" 1—nz T =meh

and consequently is never the identity. Because S+ E and A=1, this
mapping is necessarily not stable. This can also be seen directly by
setting z = 1/n, where the natural number n can be arbitrarily large. On
the other hand, if one sets z=ir,0 <r< 1, then |z,| <r and the totality
of images of z together with z form an invariant set within the circle
jz| £r. This shows that S is not unstable, and is therefore mixed. It is
not known, however, whether it may happen that 1 is a root of unity
and S is unstable. From now on we will assume throughout that 4 is
not a root of unity.
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We next investigate convergence of the formally constructed Schréder
series ¢(z) for the case |A|+ 1. This can be readily accomplished by the
usual method of majorants. From the convergence of the series (2) there
exists a positive number a such that |a,,,|<a" (n=1,2,...). If az;,az
are introduced as variables in place of z,,z in the transformation (2),
one obtains again a conformal mapping of the form (2) with the same
value for A, but for which now

(7) |an+1|<1 (n=1,2a-~')-

For the investigation of convergence we may therefore assume (7) at
the outset. Moreover, since |4| =+ 1, there exists a positive constant ¢ such
that

@) I A>e>0 (n=1,2,..).

If the coefficients b,,, in the Schréder series are determined by the
recursive procedure associated with (6), it follows from (7), (8) that the
formal solution ®({)={+c,{*+ --- to the functional equation

©) c(@-= ) o
1=2
is a majorant for ¢({). On the other hand, the series

{=@—c71 ) &,
=2

which converges for || < 1, has an inverse that converges in a neighbor-
hood of { = 0. This completes the convergence proof. As in §17, one can
also readily obtain from this a lower bound for the radius of convergence.
We already know from |A| &1 that the mapping S is not stable. Because
of the convergence of C just proved, we can construct the normal form
C™'SC=T, and it is immediately evident that the mapping {, = A{ is
actually unstable. Indeed, if one considers any point { # 0 in an arbitrary
bounded neighborhood U of { =0, then because || + 1, for n sufficiently
large, positive or negative, the point {, = A"{ will no longer lie in . The
instability of T implies that of S=CTC™!, and consequently for |4| = 1
the mapping S is necessarily unstable. This can also be shown directly
without use of the normal form T.

For future discussion we may restrict ourselves to the case where 4
is in absolute value 1, and is not a root of unity. In this case the inves-
tigation of convergence of the Schrider series requires finer estimates,
to which we now turn. We first show that the set of A for which there
exists a convergent power series f(z)=Az+ --- whose Schroder series
diverges form a dense set on the unit circle |A| = 1 [2]. For this divergence
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proof it will be enough to consider only series f(z) whose coefficients
| L
a,(n=2,3,...) are always equal to * P with the choice in sign deter-

mined recursively. In particular, such f(z) converge everywhere. We
turn once more to the determination of the b, from equation (6). By com-
parison of coefficients one obtains for each n>1 the expression
(A"— A)b,—a, as a polynomial in the a,b, with 1<k<n, and it is

therefore obviously possible to choose a,= + %‘— recursively in such

a way that
10 bz tproai= Lot (=23,
"= nl T on! T

Suppose now that for a given 4 the inequality -
(11) A*—1 <@ ?

is satisfied for infinitely many natural numbers n, and let f(2) be a power
series whose coefficients a,, as, ... have been determined in the above
manner. Then on the one hand the series in z is everywhere convergent,
while on the other hand the corresponding Schroder series ¢({) diverges
for each {+0, since by (10),(11) the general term b,{" does not even
tend to 0. The mapping z, = f(z)=A4z+ --- therefore is not stable.
However, it is not known whether it is mixed or unstable.

It remains to show that there is a dense set of values A on the unit
circle that are not roots of unity and that satisfy the inequality (11) for
infinitely many n. If one sets A =¢>"* (0<a<1) and for each natural
number n chooses the integer m so that

(12) —i<na—m<

N

B

then
1= e2mine _ 1| = |emine — e~ mina|
= 2|sin (nna)| = 2sin(z|ne—m|) .
Because |no—m|=9<4, it follows that 23 <sin (mr9) <Y and therefore
(13) 43I —1|£279<73.
Consequently it is enough to construct a set of irrational numbers a,
dense in the interval' 0<a< 1, for which the inequalities

(14) o — m| < n>0

1
T(n!)*”’
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have infinitely many integral solutions n, m. This can be readily accom-
plished as follows, using the representation of real numbers in terms of
simple continued fractions. As is well known, to each irrational number «
in the interval 0 <o < 1 one can associate a sequence of natural numbers

152, ... 8O that the sequence of fractions&(k=0, 1,...), recursively
k

defined according to the prescription
Po=0, g=1, p;=1, g =ry,
Pr=TePr-1+DPr-2 G=Tidk—1+T-2 (k=2,3,..),

converges to o. The numbers r,,7,, ... are uniquely determined by o and
are known as the partial quotients of a. Moreover from the theory of
continued fractions one obtains the inequality

1 1

Qr+1 Te+14x T+

as |

fIA

(16) |0t — pel < k=1,2,..)).
Conversely, corresponding to each such sequence r,r,, ... there is an
irrational number « in the interval 0 < o < 1 with these prescribed partial
quotients in its continued fraction representation.

Let  now be an arbitrary irrational number in the interval 0 < < 1
with sy, 55, ... the partial quotients in its continued fraction expansion.
For [ an arbitrary fixed natural number one defines

17 n=s O<k=D, rnu=7gY) *zD),

where ¢, g4, --., g, are again recursively determined in accordance with
(15). For the continued fraction o with partial quotients ry, r,, ... we have
inequality (16), and since the first [ partial quotients in the continued
fractions of « and f agree, also |q,8 — p,| <g; . It follows that

a — .B—l_.

le— Bl = <2q7*g2072,

D
+ |f——
l q

1

while on the other hand, by (16),(17), the infinitely many pairs n=gq,,
m=p,(k=1L1+1,...) satisfy (14). Since ! can be chosen arbitrarily large,
the corresponding numbers « = o; accumulate at f, and j being arbitrary,
we have shown that the set of values « in question form a dense set in
the unit interval.

Let 4 denote the set of values A = ¢>™** on the unit circle such that for
each power series f(z)=Az+a,z*+ --- convergent in a neighborhood
of z=0 the corresponding solution ¢({)={ + b,{* + -+- to the Schroder
functional equation converges in a neighborhood of { =0. We will now
prove that A, as a subset of the unit circle, has linear Lebesgue measure
27, or, equivalently, that the set A of the corresponding values a in the



§25. The Function-Theoretic Center Problem 191

unit interval has Lebesgue measure 1. This will show that the set of
irrational o for which there is at least one convergent series f(z), with
leading coefficient 4 = e2**, whose Schroder series ¢({) diverges, is a set
of measure zero. In particular, this says that generally the mapping S is
stable, provided that the necessary condition || =1 is satisfied.

For two given positive numbers &, 4 we consider the set B(g, ) of all
numbers « in the unit interval E for which the inequalities

(18) [ne—mj<en™#, n>0
have at least one integral solution n, m. Obviously

B(e,/)CBe,p) (€= pn=p).

If one permits k to range over all natural numbers and considers the
intersection

(19) B= (B(k™,2)
k

of all the B(k™1, 2), then certainly
(20 BCB(s,2)

for each &. We denote the Lebesgue measure of a measurable set I by
m(I') and estimate the measure of B(g, 2) from above. By (18), this set is
a countable union of intervals, and therefore measurable, while by (19)
then also B is measurable. For each solution n, m of (18) we have

(21) —g<m<n+e

whenever « is in E, while on the other hand for given n, m the interval
for o defined by (18) has length 2en™*~!. Noting that for each fixed
natural number n the number of integers m satisfying (21) is smaller than
n+2e+ 1, and keeping in mind (20), we finally have

m(B(e,2))< Y 2e(n+2e+n 3 <de(e+1) Y, n~?
n=1 n=1
2

3

and since ¢ can be arbitrarily small, it follows that m(B) =0. If 4 denotes
the set of all « in E for which (18) has a solution for each choice of ¢, y,
then by (19) the set A is contained in B, so that certainly m(4) =0. The
complementary set I' = E — A4 thus has m(I')=1, and I' is characterized
by the property that for each number « in I' there exist two positive
numbers &, 4 such that for all natural numbers n and integers m we have

m(B) < 2 ee+1),

(22) lno—m|>en"*.
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We will show in the next section that for all « in I" the Schréder series
of any convergent series f(z) = Az + ---, with A = ¢*>"*, is also convergent.
In that case, by definition, we have ADT, so that also m(4)=1, as
asserted.

§ 26. The Convergence Proof

In the previous section we saw that Schroder’s functional equation
has a unique formal power series solution ¢({)={+ ---. To prove con-
vergence of this series we will begin with a new construction of ¢ using
an iteration process that converges rapidly enough to be insensitive to
the effect of the small divisors A" — 1.

Using the notation of the previous section, we consider an « in T,
which by (25; 22) is irrational. Consequently A=e?"* is not a root of
unity, and we set

e,=A"=1"" (=12.).

With m as in (25; 12), we obtain from (25; 13), (25; 22) the estimate

1 n* con*
< lpg—mlls—— =29
(1) e= [na—m|™" =< 4 1

where y is a natural number and ¢, 4 may depend on . Here ¢y = u!/4e
and ¢y, ¢,, c; will denote positive constants that depend only on .

In the construction to follow we will obtain ¢ not by comparison of
coefficients but by an iteration process consisting of a repeated sub-
stitution of variables. To describe this process, we denote the given
transformation (25; 2) symbolically by S, and recall that our aim is to
find a substitution C such that T= C~'§,C is the linear transformation
{; = A{. Rather than do this directly, we will first construct a substitution
Cosuch that C5'S,C, =S, is merely closer to the linear transformation T
than was S,. Then, starting with S,, we will repeat this process to construct
a substitution C, leading to a transformation

B

52=C1—151C1=C1—1C5150C0C1

that approximates T even more closely. Inductively, this process will
lead to substitutions C, (v=0, 1,2, ...) and transformations

Sv+1 = Cv_lsvcszV_ISOBva
with
0) B,=C,C, ... C,
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converging to the desired substitution. For the success of this method
it will be important that the composition of Cy, Cy, ..., C, is well de-
fined, i.e. that the range of C, lies in the domain of definition of C,_,,
and that the sequence B, converges in some fixed neighborhood of the
origin to an invertible substitution B of the form z=¢({)={+ ---, while
S,—» T as v— 0.

If we assume the above statements to be true, it follows that

T=B"1S,B,

so that B will be the desired substitution. The uniqueness of the formal
power series for ¢ then assures us that B is represented by the Schréder
series, which therefore must converge, since B is analytic near {=0.

To carry out the above procedure, we begin with a transformation S
expressed in the form

z,=f(@)=Az+1(2)

where f is a convergent power series starting with the quadratic term.
The derivative f” is also analytic in some disk about the origin, and
given § >0 we can find r> 0 such that

3) If1<é in |zl<r.

The substitution z = ¢({) = { + ¢ that linearizes the above transformation
satisfies Schréder’s functional equation (25; 5), which can be expressed
in the form

(D) —1d(0 = f($(©D).

Rather than solve this equation, we define the substitution z = { + ({),
with y a power series beginning with the quadratic term, as the solution
to the linear equation

@ WD -0 =fO= 3 al.

This substitution, which we denote by C, forms the basic step in the
iteration process. Defining S, = C™'SC and expressing it as

©) §=9()=2{+30,

we will show that, with &,r suitably chosen, the function §, which
measures the deviation of S, fromAthe linear transformation, is indeed
smaller than the previous function f.

To this end we choose constants 8, 8 so that

6) 0<0<i, c6<0*?, 0<d<0,
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and then take r > 0 sufficiently small so as to satisfy (3). First we estimate
the solution v of (4) given by the series
(=]
G
‘ll) =
,;::2 -

Since f is analytic in |z| <r, by Cauchy’s estimate we have

o

o
kla| £ —-,
‘ kl = rk— 1
and in view of (1) the series y is seen to converge in |{| <r. Indeed, in
the somewhat smaller domain |{] <r({1 — 6) one obtains, using (1), the
estimate ‘

o

kla,|
! < _
le‘kzzllk—ll

© (k+ )
<o Z( #)(1—9)"=—§?—+T,
k=0 \ H

which together with (6) gives
(7 [w]<6 in [{<r(1-9),

s o 3w o
Y ok=1

whereupon integration yields
Cod .
(8) [w] < Wr<9r in |{j<r(1-6).
This inequality shows that the substitution C maps the disk
[l <r(l —46) into |z| <r(1 — 30), for by (8) we have
2l W +pl<r(1 —40)+ 70 =r(1 —306).

Moreover, we claim that C™* is defined in |z] < r(1 —26) and maps this
disk into |{|<r(1 —6). To prove this, we have to show that for z in
|z <r(1 —20) the equation

{+y)=z

has a unique solution in |{|<r(1 — 6). This follows, for example, from
the explicit construction of { as lim (,, where {,=0 and

C"+1—j-w(Cn)=z (n=0,1,2,...).

Indeed, the above defines a sequence {, of analytic functions of z which,
by (7), satisfies

|Cn+1 - Cn‘ = hp({n) - 1*/)(Cn—--l)l § BlCn - Cn—l‘ )
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and hence

[as1— Gl S 018 — Lol = 0"zl ,
provided that |{|<r(1—8) (k=0,1,...,n). Thus, for |z] <r(1 —260) we
have

n+1 1___

[Cnsl S kz = Ceoql < (1 —0) 2l <
=1

26
o r<(1-0r,
which shows that the functions {, are defined and analytic for |z} < (1 — 26)r
(n=0,1,2,...). Since 6 < 1, the sequence {, converges for |z| <(1 —20)r
to { ={(z), the desired inverse function of {+ y({).

This allows us to define the transformation S, = C~!SC in the disk
|¢| <r(1 —48), since C maps this disk into |z| <r(1 —36) which, in view
of (3), (6), is mapped by S into

|z, 1zl + | f] < || + dr <r(1 —20)

and, finally, the latter is mapped by C™! into the disk |{;| <r(1—9).
Consequently the function § in (5) is certainly analytic for |{|<r(1 —40),
and we will estimate it in this region. To this end we express the relation
CS, =SC in the form

g +v@=fC+vy)

or
JO+vAl+d=2w+fC+v),
whereupon subtracting the defining relation (4) for p we obtain
GO =) — vl +8) + fC+v) - O

We now use the mean value theorem to estimate y=sup|g({)| over
[{l < r(1 —40), obtaining

y <suply'|y +sup| f¢ +v)— Q)
<0y +sup| fC+v)— F O,

and since 0 <1, from (3), (8) we have

y< > supl fC+9)~ {0

5 2
é z—ésuplw|<clwr.
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Finally, applying Cauchy’s estimate to |§'| in a somewhat smaller domain,

we get
g 2

o o
) 91 <ei gz for |<r,=r(1-56).

The essential feature of this estimate is the quadratic dependence of
|§'] on the previous deviation J, which gives rise to very fast convergence.
We now iterate the above construction with §,,C,,S,,, in place of
S, C, S, taking care that the quantities r,, 6,, , appearing in place of
r, 8, 6, which now depend on v (v=0, 1,2, ...), are chosen so that (6), (9)
hold at each step, and that the successive domains do not shrink to a
point. This is achieved by making the initial choice of J, sufficiently
small and then setting

rv=%(1+2-“) v=0,1,...),

while defining @, by the relation

Dtt _q_sp,.
r\l

This last choice, which gives

50,

_ 1
T2+ 1)
is motivated by the need to replace |z} <r by |{] < #(1 — 58) when passing

from the estimate of S to that of S, in (9). The quantity d,,,, which
will estimate the deviation of S, from T, is now defined by

¢, 85 v+152
(10) 6V+I=W<cz 62 (v=0,1,..).

Observing that the sequence 1, = ¢4+ 24, satisfies

0<’7v+1 <’73

and therefore tends to zero faster than exponentially, provided that
no < 1,we see that for

dp<c;?
the sequence J, tends to zero as v— co. One readily verifies that also (6)
holds for 6=4,6=0, (v=0,1,2,...), provided that §, is chosen
sufficiently small.

With the above choice of r,, 8,, §,, we proceed with our construction.
We assume that S, is represented in the form

5 =f@)=4z+ 1)
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with
If1<6, in |d<r,,
whereupon the previous considerations lead to a substitution C=C,

transforming S, into §,,; = C, 'S, C,, which we express in the form (5).
By (9), (10) we have

|gll<5v+l l]] |C|<rv+ls
and we may therefore proceed inductively.
It is now easy to show that the sequence B, in (2) converges to the

desired substitution in |{] < r/2. First we recall that C,,; maps the disk
of radius r, . ,(1 — 48, ) into that of radius

rv+1(1 - 36\'-&-1) <Iy41= rv(l - 59\1) < rv(l - 49\:) »
so that C,C, , , is defined for |{| <7, (1 —48,,,). It follows by induction

that B, is defined in |{| <r,(1 —48,), and since this radius is larger than

(1= 56)=ry01> -,
2
each substitution B, maps |{| <r/2 into |z| <r. Moreover, since each of
the factors C, in B, is a substitution of the form z=x,({) ={+ v, with
the identity as its linearized part, the same is true of each B,.
To show convergence of the sequence B, in |{| <r/2, we express B,
in the form z=f,((), with B, defined inductively by B(0) = xo({) and

BO=B,-1(,0) (=12,..).

Using ||, to denote the maximum of |8;| in |{|<r,(1 —0,), we have in
this domain

BA 1By -1l L+ Twil) s

which in conjunction with (7) gives

BN < 1Bl (146)
<[ a+6)s [T A+6)=cs,
*=0 x=0

where the infinite product is readily seen to converge. This together
with (8) shows that

1By+1(0) = B (Ol = 1B.(xv+1 (D) — BLO)

é C3IXV+1 - cl = C3|'Pv+1| < C36v+1r s
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from which it follows that as v— oo the sequence §, converges in |[{| <r/2
to an analytic function S({). Since f, transforms §, into S, ,,, we have
B,S,.,=SyB, or, writing S, in the form z=f,({) (x=0,1,...),

Bu{fv1©) = fo(BuD)

with | f, ()~ A{| <6,,,r—0 as v—o0. Consequently, letting v—co, we
obtain

B = fo(BQ)),

so that f§ is a solution to Schrdder’s functional equation. Moreover,
since uniform convergence of analytic functions implies convergence of
derivatives in the interior, we have f'(0)=1, f(0)=0. Thus, the power
series for f must agree with the unique formal expansion of ¢. This
completes the convergence proof.

The basic idea of using such a sequence of substitutions to prove
convergence was introduced by A. N. Kolmogorov [1, 2] in a different
context. The crucial point in this method is to find an iteration scheme
in which the new error depends quadratically on the previous one, as
in the case of Newton’s method for finding roots of a function. This
suffices to counteract efficiently the growth factors due to the small
divisors 2" — 1, as seen in (10), where the effect of the small divisors is
reflected in the coefficient ¢3*'. For a discussion of this method in the
problem of transforming mappings into normal form we refer to [3].

In his original proof of this theorem, Siegel [4] actually succeeded
by direct estimates of the coefficients, as in Cauchy’s method of majorants.
This, however, required more delicate estimates on the small divisors
than (1) and, in particular, it was necessary to use the fact that the ex-
pressions A"—1 are small for only relatively few integers n. On the
other hand, for the theory of stability, to be developed in this chapter,
it will be essential to have a quadratically convergent scheme, for which
cruder estimates of the small divisors suffice.

§ 27. The Poincaré Center Problem

We consider a system of differential equations

1) : %=flx) (k=1...m

for which x =0 is an equilibrium solution, whereby the functions f,(x)
are convergent power series in a neighborhood of x=0 with real
coefficients and without constant term. If x(z, £) denotes the solution
to (1) with initial condition x(0, £) =&, the association of x(t, &) to ¢ for



