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phenomenon and is much to be prized when it is available. Almost all
compactness results in such situations are obtained via two basic theorems.
Tychonoff’s theorem and the Ascoli-Arzela theorem, which we present in this
section. Our proof of Tychonoff’s theorem is based on the following result,
which is of independent interest.

(4.42) Alexander’s Lemma. Let X be a topological space whose topology is
generated by a family & of sets. If every cover of X by members of & has a

finite subcover, then X is compact. U M ugu CM% P X by med® éwt{ﬂ'b‘l

Proof. Suppose X is not compact, and let % be the collection of all open
covers of X with no finite subcovers./ 9 is partially ordered by inclusion. If
{ s }p < 5 is a linearly ordered subcollection of % and Uj,...,U, € U ge g
then U,,...,U, € o for some B, € B, so UJU, # X. It follows that Ug ¢ 557
€ U, so by Zorn’s lemma 9 has a maximal element &/, &/ is thus an open
cover of X with no finite subcover, and if U is open and U & &/, &/U {U}
has a finite subcover. Let & = /N &. We claim that % covers X; since no
finite subfamily of % covers X, this contradicts our hypothesis. :

Suppose to the contrary that there is a point x € X\ UZ. (Here, UZ is
short for Uy ¢ 5B.) Choose U € & with x € U. Since & generates the topol-
ogy, there exist V},...,V, € & with x € ﬂ{'Vj C U. None of the V’s is in &/
since x & UZ, so by maximality of &/, for each j there is a set W, which is a
finite union of sets in & such that ¥V; U W, = X. But then
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so that & has a finite subcover, contrary to assumption. O

(443) Tychonoff’s Theorem. If { X,},c, is any family of compact topo-
logical spaces, then X = [1,. ,X, (with the product topology) is compact.

Proof. The product topology is generated by the sets @, }(U) where ,:
X — X, is the projection, U is open in X,, and a € A. By Alexander’s lemma
it will suffice to prove that every cover ¥~ of X by such sets has a finite
subcover. For each @ € 4 let ¥, be the collection of all open U C X, such
that o }(U) € ¥". There must exist some B € 4 such that ¥ covers Xp
otherwise there would be a point x € X such that =,(x) & U7, for every a.
which would mean that x & U7". Since Xg is compact, there exist Uy, ..., U, €

¥, such that UfU, = X,. But then 73 '(U)) € 7" and Ujmg '(U)) = 75 '(Xp) T:'

X, so we are done.

We now turn to the Ascoli-Arzela theorem, which has to do with compact-
ness in spaces of continuous mappings. There are several variants of this resu}t.
of which the theorem below contains two of the most useful; see also Exercise

61.




