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(b) Forawith|a| = 3choosea homogeneous harmonic polynomial Q of degree
3 with D*Q # 0. With », t, and ¢, as in part (a), define

u(x) = Z n(t)Q(x) = Z Ck(’?Q)(th)/tE-
0 0
Then
Au = g(x) = Z ¢ A(nQ) (L x)/1y-
0

Showthatg € C! butthatu ¢ C* !inany neighbourhood of the origin. Hence Lemma
4.4 is not valid for o = 1.

4.10. Let ue C(B)satisfy Au = fin B = Bg(x,). Show that
R2
(@) IMIoSEIro; (®) [Diulo < R[flo, i=1...,n

Hence in (4.14), [ul}, 5 < 3R?| flo; 5-

Chapter 5

Banach and Hilbert Spaces

This chapter supplies the functional analytic material required for our study of
existence of solutions of linear elliptic equations in Chapters 6 and 8. This material
will be familiar to a reader already versed in basic functional analysis but we shall
assume some acquaintance with elementary linear algebra and the theory of metric
spaces. Unless otherwise indicated, all linear spaces used in this book are assumed
to be defined over the real number field. The theory of this chapter, however, carries
over almost unchanged if the real numbers are replaced by the complex numbers.
Let ¥ be a linear space over R. A norm on ¥ is a mapping p: ¥~ — R (henceforth
we write p(x) = [|x]| = ||x|l,, x € ¥") satisfying

(i) |Ix]| =0 forall xe ¥, ||x|| =0 if and only if x=0;
(1) flax| =l |x|| forallae R, x € ¥;
(i1) | x+y<|x|+| y| forall x, y € ¥ (triangle inequality).

A linear space ¥~ equipped with a norm is called a normed linear space. A normed
linear space ¥ ' is a metric space under the metric p defined by

px, y)=llx=yl. x.ye¥.
Consequently a sequence {x,} = ¥" converges to an element x € ¥” if | x,— x|| — 0.

Also {x,} is a Cauchy sequence if | x,—x,,| — 0 as m, n — oco. If ¥" is complete,
that is every Cauchy sequence converges, then ¥ is called a Banach space.

Examples. (i) Euclidean space R" is a Banach space under the standard norm:

n 1/2
IIx1l =< Y xf) s X=(Xg, s X,)
i=1
(ii) For a bounded domain Q< R", the Hélder spaces C**(Q) are Banach
spaces under either of the equivalent norms (4.6) or (4.6) introduced in Chapter 4;
(see Problems 5.1, 5.2).
(iii) The Sobolev spaces W* 7(), Wk ?() (see Chapter 7).

Existence theorems in partial differential equations are often reducible to the
solvability of equations in appropriate function spaces. For the Schauder theory of
linear elliptic equations we will employ two basic existence theorems for operator
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equations in Banach spaces, namely the Contraction Mapping Principle and the
Fredholm alternative.

5.1. The Contraction Mapping Principle

A mapping T from a normed linear space ¥” into itself is called a contraction map-
ping if there exists a number 6 < 1 such that

(5.1) ITx—Ty|<8|x—y| forallx,ye¥ .

TheoremS.1. A4 contractionmapping T in a Banach space # has a unique fixed point,
that is there exists a unique solution x € B of the equation Tx=x.

Proof. (Method of successive approximations.) Let x, € # and define a sequence
{x,} =B by x,=T"xy, n=1,2,... Then if n>m, we have

%, =X, < Y lx;—x;-,| by the triangle inequality
j=m+1
= Y T %, =TI x|

j=m+1
< Y 07Yx, —x,l by(5.1)
j=m+1
Silxl—xo}lf?’"
1-0

— 0 asm— oo.

Consequently {x,} is a Cauchy sequence and, since 4 is complete, converges to an
element x € 8. Clearly T is also a continuous mapping and hence we have

Tx= lim Tx,= lim x,, , =x

so that x is a fixed point of 7. The uniqueness of x follows immediately from
(5.1). O

In the statement of Theorem 5.1, the space % can obviously be replaced by any
closed subset.

5.2. The Method of Continuity

Let ¥, and ¥/, be normed linear spaces. A linear mapping 7: ¥, — ¥/, is bounded
if the quantity

I 7x ”v,

xe¥ 1, x#*0 ”xN'I’,

(52 17l =
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is finite. It is easy to show that a linear mapping T is bounded if and only if it is
continuous. The invertibility of a bounded linear mapping may sometimes be
deduced from the invertibility of a similar mapping through the following theorem,
which is known in applications as the method of continuity.

Theorem 5.2. Let # be a Banach space, ¥ a normed linear space and let L, L,
be bounded linear operators from & into ¥". For each t € [0, 1], set

L=(1-0Ly+tL,
and suppose that there is a constant C such that
(5.3) Ixllg<ClILx|,
fort€[0,1]). Then L, maps # onto ¥ if and only if L, maps # onto ¥".

Proof. Suppose that L_is onto for some s € [0, 1]. By (5.3), L, is one-to-one and
hence the inverse mapping L ': ¥ — & exists. For e [0, 1] and y € ¥, the
equation L x =y is equivalent to the equation

L(x)=y+(L,~L)x
=y+(t—=s)Lox—(t—s)L,x

which in turn, is equivalent to the equation
x=L'y+(t—s)L; "(Lo—L,)x

The mapping 7 from # into itself given by Tx=L'y+(t—s)L; "(L,—L,)x is
clearly a contraction mapping if

Is—fl<d=[CUIL I+ IL, ]

and hence the mapping L, is onto for all 7 € [0, 1], satisfying |s —f| < 4. By dividing
the interval [0, 1] into subintervals of length less than J, we see that the mapping
L, is onto for all 1 € [0, 1] provided it is onto for any fixed ¢ € [0, 1], in particular
fort=0ort=1. O

5.3. The Fredholm Alternative

Let ¥, and ¥, be normed linear spaces. A mapping 7: ¥", — ¥/, is called compact
(or completely continuous) if T maps bounded sets in ¥, into relatively compact sets
in ¥, or equivalently 7' maps bounded sequences in ¥’ into sequences in ¥, which
contain convergent subsequences. It follows that a compact linear mapping is also
continuous but the converse is not true in general unless ¥, is finite dimensional.



76 S. Banach and Hilbert Spaces

The Fredholm alternative (or Riesz-Schauder theory) concerns compact linear
operators from a space ¥~ into itself and is an extension of the theory of linear
mappings in finite dimensional spaces.

Theorem 5.3. Let T be a compact linear mapping of a normed linear space ¥~ into
itself. Then either (i) the homogeneous equation

x—Tx=0
has a nontrivial solution x € ¥~ or (il) for each y € ¥ the equation
x—Tx=y

has a uniquely determined solution x € ¥. Furthermore, in case (ii), the operator
(I—T)" ! whose existence is asserted there is also bounded.

The proof of Theorem 5.3 depends upon the following simple result of Riesz.

Lemma 5.4. Let ¥ be a normed linear space and M a proper closed subspace of
¥'. Then for any 0<1, there exists an element x,€ V" satisfying |xell =1 and
dist (x,, #A)= 8.

Proof. Let xe ¥ —.#. Since A is closed, we have

dist (x, #)= inf || x —y||=d>0.

yeM

Consequently there exists an element y, € # such that
I < d
X —yoll <=
Yo 8
so that, defining

= x"}‘a k]
“x_yg“

Xg
we have || x4l =1 and for any y€ A,

lx=yo =1l yo—xI »I
I yg—xll
?LZQ
II yo_x”

l1xp—yl =

The lemma is thus proved. 0O
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If ¥ '=R" it is clear that one can take =1 by choosing x, orthogonal to .#.
This will also be possible in any Hilbert space but in general Lemma 5.4, which
asserts the existence of a “‘nearly orthogonal™ element to .#, cannot be improved
to allow 6=1.

Proof of Theorem 5.3. It is convenient to split our proof into four stages.
(1) Let S=I1—T where I is the identity mapping and let .4 =S"'(0)=
{x € ¥ | Sx=0} be the null space of S. Then there exists a constant K such that

(5.4) dist (x, A7) K||SxI| forallxe?.

Proof. Suppose the result is not true. Then there exists a sequence {x,}c ¥’
satisfying ||Sx,| =1 and d,=dist (x,.. ¥ ) — oc. Choose a sequence {y,jc. A
such that d,< || x,— y,ll <2d,. Then if

— xVI ‘.~V'I
=yl
we have |z, =1, and || Sz, <d, ' — 0 so that the sequence {Sz,} converges to
0. But since 7 is compact, by passing to a subsequence if necessary, we may assume
that the sequence {7z,} converges to an element y, € ¥ Since z,=(S+ T)z,, we
then also have {z,} converging to y, and consequently y, € 4. However this leads
to a contradiction as

dist (z,, #)= inf |lz,— |
yeN
=|lx,—y, 17" inf Jx,—y,—lx, =yl ¥l
yeN

=|x,—y,I "' dist (x,, #7)=1. O
(2) Let #=S(¥ ") be the range of S. Then R is a closed subspace of ¥'.

Proof. Let {x,] be a sequence in ¥~ whose image {Sx,} converges to an element

ve Y. To show that & is closed we must show that y=Sx for some element

x € ¥ . By our previous result the sequence {d,} where d, = dist (x,, .#") is bounded.
Choosing y, € .4 as before and writing w, = x, — y,,, we consequently have that the
sequence {w,} is bounded while the sequence {Sw,} converges to y. Since T is com-
pact, by passing to a subsequence if necessary we may assume that the sequence
{Tw,} converges to an element w, € ¥". Hence the sequence {w,} itself converges
to y+w, and by the continuity of S. we have S(y+w,)=y. Consequently Z is
closed. O

(3) If A'={0}, then #=1% . That is, if case (i) of Theorem 5.3 does not hold,
then case (i1) is true.

Proof. By our previous result the sets #; defined by %J.:S’H V=12,
form a non-increasing sequence of closed subspaces of ¥. Suppose that no two of
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these spaces coincide. Then each is a proper subspace of its predecessor. Hence by
Lemma 5.4, there exists a sequence {y,} < such that y,€£,, | y,|=1 and
dist (y,, #,, )= Thusif n>m,

Tym=T9,= Yt (=0, = Sy + 5y,
=y,—y forsomeye#,, .

Hence ||Ty,,—Ty,| =% contrary to the compactness of 7. Consequently there
exists an integer k such that #,=#, for all j>k. Up to this point we have not
used the condition: A ={0}. Now let y be an arbitrary element of ¥" Then
Sty e R, =R, , and so S*y=S5**"'x for some x € ¥ Therefore S*(y—Sx)=0
and so y = Sx since S™%0)=S"'(0)=0. Consequently R=R;=¥ forallj. O

(4) If R=7", then A" ={0}. Consequently either case (i) or case (ii) holds.

Proof. This time we define a non-decreasing sequence of closed subspaces {45
by setting .A";=S7/(0). The closure of ./ follows from the continuity of S. By
employing an analogous argument based on Lemma 5.4 to that used in step (3).
we obtain that #;=.4 for all j>some integer /. Then if Z=7", any element
y € A, satisfies y = S'x for some x € ¥ Consequently S*'x=0s0 that x € #,,= ¥,
whence y=S'x=0. Step (4) is thus proved. O

The boundedness of the operator S™'=(/—T7)""! in case (ii) follows from
step (1) with 4" ={0}. Note that a slight simplification could be achieved by taking
A ={0} at the outset in steps (1) and (2) and that step (4) is independent of the
previous steps. Theorem 5.3 is thus completely proved. O

Certain aspects of the spectral behaviour of compact linear operators follow
from Theorem 5.3 and Lemma 5.4. A number A is called an eigenvalue of T if there
exists a non-zero element x in ¥~ (called an eigenvector) satisfying Tx=Ax. It is
clear that eigenvectors belonging to different eigenvalues must be linearly inde-
pendent. Also the dimension of the null space of the operator S, =AI— T is called
the multiplicity of A. If A#0, € R is not an eigenvalue of T, it follows from Theorem
5.3 that the resolvent operator R, =(1/—T) ! is a well defined, bounded linear
mapping of ¥~ onto itself. From Lemma 5.4 we may deduce the following result.

Theorem 5.5. A compact linear mapping T of a normed linear space into itself pos-
sesses a countable set of eigenvalues having no limit points except possibly A=0. Each
non-zero eigenvalue has finite multiplicity.

Proof. Suppose that there exists a sequence {4,} of not necessarily distinct eigen-
values and a sequence of corresponding linearly independent eigenvectors {x,}
satisfying 4, — 2#0. Let .#, be the closed subspace spanned by {x,,...x,}.
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By Lemma 5.4, there exists a sequence {y,} such that y,e .# .| y,l=1 and
dist (y,, #,_ )= (n=2,3...). If n>m, we have

A Ty A TV = Yot (= V= A ' Si Yut 4 'Sy V)
=y,—z whereze A, _,.

For, if y,= ¥ B;x;then y,—4,'Ty,= ¥ B(1—A;'2)x;€ #,_, and similarly
j=1

i=1 i=

S Vm€ H,,. Therefore we have
1Ay Tyu= A Tymll 23

which contradicts the compactness of 7 combined with the hypothesis 4, — A#0.
Hence our initial supposition is false and this implies the validity of the theorem. [

5.4. Dual Spaces and Adjoints

For the sake of completeness we mention a few results here that will be proved and
applied in this book only in Hilbert spaces. Let ¥~ be a normed linear space. A
functional on ¥" is a mapping from ¥~ into R. The space of all bounded linear
functionals on ¥ is called the dual space of ¥" and is denoted by ¥"*. It can be
shown easily that ¥"* is a Banach space under the norm:

(5.5) 1f 1. = sup LN

x#0 “X”

Example. The dual space of R" is isomorphic to R” itself.

The dual space of ¥ *, denoted ¥ **, is called the second dual of ¥". Clearly the
mappingJ: ¥~ — ¥ **givenby Jx( /) =f(x)forfe ¥ *isanorm preserving, linear,
one-to-one mapping of ¥~ into ¥ **. If J¥" =¥ ** then we call ¥~ reflexive. Re-
flexive Banach spaces have certain properties that make them more amenable to
applications to differential equations than Banach spaces in general. The Sobolev
spaces W*?(Q) introduced in Chapter 7 are reflexive for p>1 but the Hélder
spaces C**(Q) of Chapter 4 are nonreflexive.

Let 7 be a bounded linear mapping between two Banach spaces #, and £,.
The adjoint of T, denoted T*, is a bounded linear mapping between #% and 2%
defined by

(5.6) (T*g)x)=g(Tx) forge #%, xe4X,.
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Letting A", #, A" *, A* denote the null spaces and ranges of 7, T* respectively,
the following relations hold provided £ is closed,

R=N*={yeB,g(y)=0 forallge & *},
R¥=N*={fe B¥fix)=0 forall xe #}.

Also the compactness of 7 implies the compactness of 7*. These two results are
proved for example in [YO]. Consequently we see that if case (i) of the Fredholm
alternative holds for a Banach space 4, then the equation x— Tx =y is solvable
for x € 4 if and only if g( y)=0 for all g € #* satisfying T*g=g. This last result
will be established directly in Hilbert spaces.

5.5. Hilbert Spaces

We develop here the Hilbert space theory required for our treatment of linear
elliptic operators in Chapter 8. A scalar (or inner) product on a linear space ¥~
is a mapping ¢: ¥ x ¥ — R (henceforth we write g(x, y)=(x, ») or (x, y)y,
x, y € ¥") satisfying

(i) (x,y)=(y, x)forall x,ye ¥,
(i) (Ayx,+Ax5, )=A,(x(, Y)+A,(x,, p) forall 1, 4, e R, x|, x,, ye ¥,
(1ii) (x, x)>0 for all x#0, € ¥

A linear space ¥~ equipped with an inner product is called an inner product space or
a pre-Hilbert space. Writing || x|l =(x, x)'/* for x € ¥, we have the following
inequalities:

Schwarz inequality

(5.7 o, I Nyl

Triangle inequality

(5.8) x4yl + 1 pls

Parallelogram law

(5.9 x4+ 12 +1x =y 2 =201 x 12 + 1 pI12).

In particular an inner product space ¥ is a normed linear space. A Hilbert space
is defined to be a complete inner product space.
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Examples. (1) Euclidean space R" is a Hilbert space under the inner product

o)=Y x5y, X=(X,....x) y=(Vi.. ..V

(ii) The Sobolev spaces W* %(Q): (see Chapter 7).

5.6. The Projection Theorem

Two elements x and v in an inner product space are called orthogonal (or perpen-
dicular) if (x, y)=0. Given a subset .# of an inner product space we denote by .#*
the set of elements orthogonal to every element of .# . The following theorem asserts
the existence of an orthogonal projection of any element in a Hilbert space onto a
closed subspace.

Theorem 5.6. Let .# be a closed subspace of a Hilbert space . Then for every
X€ N we have x=y+z where y € M and z e M*.

Proof. If xe .#. we set y=x, z=0. Hence we may assume . # ¥ and x ¢ ./ .
Define

d=dist (x, #)= inf |x—y|>0

yeM

andlet { v,} = ./ bea minimizing sequence, thatis || x — y,|| — d. Using the parallelo-
gram law we obtain

4% =3V VI H 1 V=l 2= 201X = 3|2+ X =3, 11%)
so that, since }(y,+»,) € .#, also we have ||y, — .| — 0 as m, n— oo; that
is the sequence { v,} converges since # is complete. Also, since # is closed,
y=limy, e # and ||x—y| =d.
Now write x=y+z where z=x—y. To complete the proof we must show
ze . #*. Forany y e .# and a € R we have y+ oy’ € # and so
dr<lix—y-ap'P=(z—ay’, z—ay’)

=lzll2=2a(y’, )+ a?| y?).

Therefore, since | z|| =d, we obtain for all a>0
o
Vo< = I p?
Iy, 2) Zil) I

so that (y', z)=0forall y' e #. Hence ze #*. 0O
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The element y is called the orthogonal projection of x on #. Theorem 5.6 also
shows that any closed proper subspace of J# is orthogonal to some element of .

5.7. The Riesz Representation Theorem

The Riesz representation theorem provides an extremely useful characterization
of the bounded linear functionals on a Hilbert space as inner products.

Theorem 5.7. For every bounded linear functional F on a Hilbert space # . there
is a uniquely determined element f e # such that F(x)=(x,f) for all x e # and
WE=1 11

Proof. Let #°={x|F(x)=0} be the null space of F. If #"= #, the result is proved
by taking f=0. Otherwise, since .4" is a closed subspace of #, there exists by
Theorem 5.6 an element z#0, € # such that (x, z)=0 for all x e /. Hence
F(z)#0 and moreover for any x € #,

FOON pg F0 po
F( —mz>—F(x)—F(z) F(z)=0
F(x)

F(x) _
<x—m z, z>~0,

that is, that

so that the element x — z e A . This means that

_E0
(x. Z)_F(Z) Izl

and hence F(x)=(f, x) where f=2zF(z)/||z||>. The uniqueness of f'is easily proved
and is left to the reader. To show that ||F]=|| /|, we have first, by the Schwarz
inequality,

|(X»f)|< [l 1l

[|Fll= su < su -
U T

=Ifl:

and secondly,
112 =N =FNO<SIFIILL
so that || | <[ FIl, and hence | F||=| f||. O

Theorem 5.7 shows that the dual space of a Hilbert space may be identified with
the space itself and consequently that Hilbert spaces are reflexive.
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5.8. The Lax-Milgram Theorem

The Riesz representation theorem suffices for the treatment of linear elliptic equa-
tions that are variational, that is, they are the Euler-Lagrange equations of certain
multiple integrals. For general divergence structure equations we will require a
slight extension of Theorem 5.7 due to Lax and Milgram. A bilinear form B on a
Hilbert space # is called bounded if there exists a constant K such that

(5.10) IB(x, )| <Kjx|| [y forallx,ye#

and coercive if there exists a number v>0 such that

(5.11) B(x, x)>v|x|? forall xe #.

A particular example of a bounded, coercive bilinear form is the inner product
itself.

Theorem 5.8. Let B be a bounded, coercive bilinear form on a Hilbert space # .
Then for every bounded linear functional Fe #*, there exists a unique element

f€ S such that

B(x, f)=F(x) forallxe .

Proof. By virtue of Theorem 5.7, there exists a linear mapping T: # — #
defined by B(x, f)=(x, Tf) for all x € #. Furthermore | Tf || <K| f| by (5.10)
so that T is bounded. By (5.11) we obtain v| f|2<B(f. f)=(f. TOIFI TS,
so that

VISISITANSKI S forallfe #.

This estimate implies that T is one-to-one, has closed range (see Problem 5.3) and
that 7~ !isbounded. Suppose that Tisnot onto # . Then there exists an element z # 0
satisfying (z, 7f) =0 for all fe »#. Choosing f=z, we obtain (z, Tz)=B(z, 2)=0
implying z=0 by (5.11). Consequently 7~ ! is a bounded linear mapping on .
We then have F(x)=(x, g)=B(x, T~ 'g) for all x € # and some unique g € #
and the result is proved with f=7"'g. O

5.9. The Fredholm Alternative in Hilbert Spaces

Theorems 5.3 and 5.5 are of course applicable to compact operators in Hilbert
spaces. Let us derive now for Hilbert spaces our earlier remarks concerning adjoints
in Banach spaces. In light of Theorem 5.7, we define the adjoint slightly differently.
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If T is a bounded linear operator in a Hilbert space J#, its adjoint T* is also a
bounded linear mapping in J# defined by

(5.12) (T*y, x)=(y, Tx) forall x,ye#.

Clearly (| 7*||=||T|l, where | T|l= sup | Tx||/|x|.
x#0

Lemma 5.9. [f T is compact, then T* is also compact.

Proof. Let {x,} be a sequence in J# satisfying ||x,|| <M.
Then
I T*x"Hz=(T*xn, T*x,)=(x,, TT*x,)
SUx I ITT*x, |l
SMIT|IT*x,l,

so that || T*x,|| <M | T|; that is, the sequence {T*x,} is also bounded. Hence,
since T is compact, by passing to a subsequence if necessary, we may assume that
the sequence {TT*x,} converges. But then

NT*(x, — x )2 = (T*(x,— x,,). T*(x,—x,,))
=(X,—X,,, TT*(x,—x,,))

<2M|TT*(x,—x,)| — 0 asm, n— oo.

Since # is complete, the sequence {7*x,} is convergent and hence T* is compact.O

Lemma 5.10.  The closure of the range of T is the orthogonal complement of the null
space of T*.

Proof. Let #=the range of T, .4 *=the null space of T*. If y=Tx, we have
(3. f)=(Tx, f)=(x, T*/)=0 for all fe 4 * so that #<=.4#"**, and since & ** is
closed, 2 4 **. Now suppose that y ¢ &. By the projection theorem, Theorem
5.7, y=y,+y, wherey, € #,y, € #* — {0}. Consequently (y,, Tx)=(T*y,, x)=0
for all x € 5#, so that y, € 4" *. Therefore (y,, ¥)=(),, ¥+l ¥,1I*=1 »,l* and
hence y ¢ /' *. [0

Note that Lemma 5.10 is valid whether or not T is compact. By combining
Lemmas 5.9 and 5.10 with Theorems 5.3 and 5.5, we then obtain the following
Fredholm alternative for compact operators in Hilbert spaces.

Theorem 5.11. Let 5 be a Hilbert space and T a compact mapping of 5 into itself.
Then there exists a countable set A< R having no limit points except possibly A=0,

such that if 1+#0, A ¢ A the equations

(5.13) Ax—=Tx=ypy, Ax—T*x=y
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have uniquely determined solutions x € ¥ for every y € 3, and the inverse mappings
(Al = T)" ', (Al — T*)" Y arebounded. If 2 € A, the null spaces of the mappings Al — T,
Al — T* have positive finite dimension and the equations (5.13) are solvable if and
only if y is orthogonal to the null space of A — T* in the first case and Al — T in
the other.

5.10. Weak Compactness

Let ¥ be a normed linear space. A sequence {x,} converges weakly to an element
x € ¥ if f(x,) = f(x) for all fin the dual space ¥ *. By the Riesz representation
theorem, Theorem 5.7, a sequence {x,} in a Hilbert space # will converge weakly
to x e & if (x,, ¥) — (x, y) for all y e #. The following result is useful in the
Hilbert space approach to differential equations.

Theorem 5.12. A4 bounded sequence in a Hilbert space contains a weakly convergent
subsequence.

Proof. Let us assume initially that #' is separable and suppose that the sequence
{x,) = satisfies ||x,| <M. Let {y,} be a dense subset of #. By the Cantor
diagonal process we obtain a subsequence {x,, } of our original sequence satisfying
(Xp+ V) = %, € Rask — oo. The mapping/: { y,,} — Rdefined by f( y,) =0, may
consequently be extended to a bounded linear functional fon # and hence by the
Riesz representation theorem, there exists an element x € J# satisfying (x,, . y) —
fly)=(x, y) as k — oo, for all y e #. Hence the subsequence {x, } converges
weakly to x.

To extend the result to an arbitrary Hilbert space #, we let # , be the closure of
the linear hull of the sequence {x,}. Then by our previous argument there exists a
subsequence {x, | <, and an element x € ) satisfying (x,, , y) — (x, y) for all
y€ ¥, But by Theorem 5.5, we have for arbitrary ye #, y=),+y,, where
Yo € Ko, ¥, € #y. Hence (x,, . ¥)=(x, . o) = (x, yo)=(x, y) for all ye # so
that {x,, } converges weakly to x, as required. 0O

The first part of the proof of Theorem 5.12 extends automatically to reflexive
Banach spaces with separable dual spaces (see Problem 5.4). The result is true
however for arbitrary reflexive Banach spaces (see [YO]).

Notes

The material in this chapter is standard and can be found in texts on functional
analysis such as [DS], [EW] and [YO].
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Problems

5.1. Prove that the Holder spaces C* %), introduced in Chapter 4, are Banach
spaces under either of the equivalent norms (4.6) or (4.6)".

5.2. Prove that the interior Holder spaces C% %) defined by
ChXQ)={ue C*X Q) |ul} . o< x|
are Banach spaces under the interior norms given by (4.17).

5.3. Let 4 be a Banach space and T be a bounded linear mapping of 4 into itself
satisfying

IxI<K|Tx| forall xe %,
for some K € R. Prove that the range of T is closed.

5.4. Prove that a bounded sequence in a separable, reflexive Banach space con-
tains a weakly convergent subsequence.

Chapter 6

Classical Solutions ; the Schauder Approach

This chapter develops a theory of second order linear elliptic equations that is
essentially an extension of potential theory. It is based on the fundamental observa-
tion that equations with Holder continuous coefficients can be treated locally as a
perturbation of constant coefficient equations. From this fact Schauder [SC 4, 5]
was able to construct a global theory, an extension of which is presented here. Basic
to this approach are apriori estimates of solutions, extending those of potential
theory to equations with Holder continuous coefficients. These estimates provide
compactness results that are essential for the existence and regularity theory, and
since they apply to classical solutions under relatively weak hypotheses on the
coefficients, they play an important part in the subsequent nonlinear theory.

Throughout this chapter we shall denote by Lu=fthe equation
6.1) Lu=a"(x)Dju+b(x)Du+ c(x)u=f(x), a’=d”,

where the coefficients and f are defined in an open set Q< R" and, unless other-
wise stated, the operator L is strictly elliptic; that is,

(6.2) ai(x)EEZAE?, VxeQ, & e R,

for some positive constant 4.

Equations with constant coefficients. Before treating equation (6.1) with variable
coefficients, we establish a necessary preliminary result that extends Theorems 4.8
and 4.12 from Poisson’s equation to other elliptic equations with constant coef-
ficients. We state these extensions in the following lemma, recalling the interior and
partially interior norms defined in (4.17), (4.18) and (4.29). Here and throughout
this chapter all Holder exponents will be assumed to lie in (0, 1) unless otherwise
stated.

Lemma 6.1. In the equation

(6.3) Lou=AD u=f(x), Ai=A%,



