Test in aula -2/11/2007

- N.B. Il punteggio totale è in trentesimi; il punteggio di ogni singolo esercizio è indicato tra parentesi quadrate.
- È vietato: parlare, scambiarsi informazioni; consultare testi, appunti, etc.; l'uso del cellulare, calcolatrici, etc.
- Le risposte vanno sempre motivate chiaramente e sinteticamente! Risposte senza giustificazioni non danno punteggio.
- Es 1 [Pt. 6] Calcolare i seguenti limiti

$$\begin{array}{lll} [\mathbf{1.1}] & \lim_{n \to \infty} 3.3^n \ ; & [\mathbf{1.2}] & \lim_{n \to \infty} 3.3^{\frac{1}{2n}} \ ; & [\mathbf{1.3}] & \lim_{n \to \infty} (\sqrt{10})^{-n} \ ; \\ [\mathbf{1.4}] & \lim_{n \to \infty} \log_2 \sqrt{10^{n!}}; & [\mathbf{1.5}] & \lim_{n \to \infty} \frac{\log_2 n^{\sqrt{2}}}{n^{0.01}} \ . \end{array}$$

Es 2 [Pt. 8] Calcolare, al variare di x, i seguenti limiti

[2.1]
$$\lim_{n\to\infty} \frac{|x|^n}{n^x}$$
, [2.2] $\lim_{n\to\infty} \frac{(xn)^5}{(n+\sqrt{2})^5}$.

Es 3 [Pt. 10] Studiare il comportamento (al variare di x qualora appaia) delle seguenti serie

$$[\mathbf{3.1}] \sum_{n=2}^{\infty} \frac{n^2 + 1}{n^5 - 1} , \qquad [\mathbf{3.2}] \sum_{n=2}^{\infty} \frac{x^n}{(\log_2 n)^2} , \qquad [\mathbf{3.3}] \sum_{n=1}^{\infty} \frac{n^x}{\sqrt{5n} - \sqrt{n}} .$$

Es 4 [Pt. 4] Dare la definizione di limite per una successione di numeri reali e trovare L ed N tale che $\left|\frac{n+1}{n+2}-L\right|<\frac{1}{1000}$, per ogni $n\geq N$.

Es 5 [Pt. 4] Dimostrare la formula per una somma geometrica di ragione $a \neq 1$ e calcolare $\sum_{n=1}^{100} 10^{-n}$.

Es 6 [**Pt. 6**] (i) Definire $2^{2\sqrt{5}}$.

(ii) Dare uno schema della dimostrazione (max 4 righe) della formula $2^{x+y} = 2^x 2^y$ con $x, y \in \mathbb{R}$.

Risposte 1.1: ∞ . **1.2**: 1. **1.3**: 0. **1.4**: ∞ . **1.5**: 0.

^{2.1}: 0 per $x \in (-1, 1], +\infty$ altrimenti. **2.2**: x^5 .

^{3.1}: converge. **3.2**: per |x| < 1 converge assolutamente; per x = -1 converge (Leibnitz); per $x \ge 1$ diverge; per x < -1 non converge. **3.3**: converge per x < -1/2, diverge altrimenti.

⁴: L = 1 e N = 999. **5**: $\frac{1}{9}(1 - 10^{-100})$.