Complemento 9

Alcune proprietà di \mathbb{R}^2

1. (\mathbb{R}^2 come spazio vettoriale) \mathbb{R}^2 , ossia l'insieme delle coppie ordinate (x,y)con x e y in \mathbb{R} è uno spazio vettoriale su \mathbb{R} cioè è possibile definire la somma di due elementi (o "vettori") di \mathbb{R}^2 ed il prodotto di un vettore $(x,y) \in \mathbb{R}^2$ con uno "scalare" $a \in \mathbb{R}$:

•
$$(x_1, y_1) + (x_2, y_2) := (x_1 + x_2, y_1 + y_2)$$
 (S)

$$\bullet \ a(x,y) := (ax,ay) \tag{P}$$

È immediato verificare che

la somma in (S) è commutativa e associativa; l'elemento neutro è 0 := (0,0); per ogni vettore $(x,y) \in \mathbb{R}^2$ esiste l'opposto -(x,y) := (-x,-y) tale che (x,y) + (-(x,y)) = 0; vale la proprietà distributiva.

2. (Coordinate polari) $\forall (x,y) \in \mathbb{R}^2 \setminus \{0\} \exists ! (r,t) \in (0,\infty) \times [0,2\pi) \text{ tale che}$

$$x = r \cos t$$
, $y = r \sin t$; (1)

infatti: $r:=\sqrt{x^2+y^2}$ cosicché $(x/r,y/r)\in S^1$ e t è l'unico numero in $[0,2\pi)$ (vedi Proposizione 21) tale che $(x/r, y/r) = (\cos t, \sin t)$.

Definizione 1 Se $z=(x,y)\in\mathbb{R}^2\setminus\{0\}$ e $(r,t)\in(0,\infty)\times[0,2\pi)$ sono le sue coordinate polari, r prende il nome di norma di z, e si denota r := ||z||, e t prende il nome di argomento principale di z e si denota con t = Arg(z).

3. (Prodotto scalare e disuguaglianza di Cauchy–Schwartz) Se $z_1 =$ (x_1,y_1) e $z_2=(x_2,y_2)$ sono due elementi di \mathbb{R}^2 si definisce il loro prodotto scalare come

$$z_1 \cdot z_2 := x_1 x_2 + y_1 y_2 \ . \tag{2}$$

È immediato verificare che

il prodotto scalare è commutativo $(z_1 \cdot z_2 = z_2 \cdot z_1)$ ed è lineare in ogni componente

$$(a_1z_1 + a_2z_2) \cdot z_3 = a_1(z_1 \cdot z_3) + a_2(z_2 \cdot z_3)$$
, $(\forall z_i \in \mathbb{R}^2, a_i \in \mathbb{R})$,

(ed analogamente per la seconda componente).

Osservazione 2 (i) $z \cdot z = ||z||^2$ per ogni $z = (x, y) \in \mathbb{R}^2$.

(ii) Il prodotto scalare ha una semplice interpretazione geometrica. Siano $z_i := (x_i, y_i) \neq 0$ due vettori in \mathbb{R}^2 non nulli, e siano (r_i, t_i) le coordinate polari di z_i . Dalle formule di addizione per il coseno otteniamo:

$$z_1 \cdot z_2 = r_1(\cos t_1, \, \sin t_1) \cdot r_2(\cos t_2, \, \sin t_2)$$

$$= r_1 r_2(\cos t_1 \cos t_2 + \sin t_1 \sin t_2)$$

$$= r_1 r_2 \cos(t_1 - t_2) . \tag{3}$$

Da tale relazione segue in particolare la seguente **disuguaglianza di Cauchy**—**Schwartz**:

$$|z_1 \cdot z_2| \le ||z_1|| ||z_2||, \quad \forall z_i \in \mathbb{R}^2.$$
 (4)

- (Si noti che se uno dei vettori z_i è nullo tale disuguaglianza è ovviamente verificata col segno =).
- (iii) Vista la grande importanza della disuguaglianza di Cauchy–Schwartz , ne diamo una seconda dimostrazione algebrica (ossia che non fa uso delle funzioni trigonometriche). Riscriviamo la (4) ponendo $z_i = (x_i, y_i)$:

$$|x_1x_2 + y_1y_2| \le \sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}$$
 (5)

Dividendo per r_1r_2 i termini nella (5) ed usando (2), si ha che (5) è equivalente

$$|(\bar{x}_1, \bar{y}_1) \cdot (\bar{x}_2, \bar{y}_2)| < 1 \tag{6}$$

dove $\bar{x}_i := x_i/r_i$ e $\bar{y}_i := y_i/r_i$, cosicché $(\bar{x}_i, \bar{y}_i) \in S^1$. Si osservi che,

$$ab \le \frac{a^2 + b^2}{2}$$
, $\forall a, b \in \mathbb{R}$, (7)

poiché tale relazione è equivalente alla relazione $(a-b)^2 \ge 0$. Dunque,

$$|(\bar{x}_1, \bar{y}_1) \cdot (\bar{x}_2, \bar{y}_2)| \leq |\bar{x}_1||\bar{x}_2| + |\bar{y}_1||\bar{y}_2| \leq \frac{\bar{x}_1^2 + \bar{x}_2^2}{2} + \frac{\bar{y}_1^2 + \bar{y}_2^2}{2}$$

$$= \frac{\bar{x}_1^2 + \bar{y}_1^2 + \bar{x}_2^2 + \bar{y}_2^2}{2} = 1.$$

4. (Disuguaglianza triangolare) Per ogni $z_i := (x_i, y_i) \in \mathbb{R}^2$ si ha

$$||z_1 + z_2|| \le ||z_1|| + ||z_2||. (8)$$

Dimostrazione Elevando al quadrato e "cancellando termini uguali" si vede che la relazione (8) è equivalente a

$$x_1 x_2 + y_1 y_2 \le \sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2}$$

che è implicata immediatamente dalla disuguaglianza di Cauchy–Schwartz (5).

- 5. (Norma e distanza) Dalla definizione di norma e dal punto 4 segue subito che la norma verifica le seguenti proprietà ("assiomi della norma"):
- (n_1) $||z|| \ge 0, \forall z \in \mathbb{R}^2 \text{ e } ||z|| = 0 \text{ se e solo se } z = 0$
- (n_2) ||az|| = |a|||z||, $\forall z \in \mathbb{R}^2 \in a \in \mathbb{R}$
- (n_3) $||z_1 + z_2|| \le ||z_1|| + ||z_2||, \forall z_i \in \mathbb{R}^2$

Definizione 3 Se z_1 e z_2 sono due elementi di \mathbb{R}^2 si definisce la **distanza** (o "distanza euclidea") di z_1 da z_2 il numero non negativo

$$d(z_1, z_2) := ||z_1 - z_2|| . (9)$$

Dalle prorpietà della norma (i) \div (iii) segue immediatamente che la distanza verifica le seguenti proprietà ("assiomi della distanza"):

- $(d_1) \quad d(z_1,z_2) \geq 0, \, \forall \ z_i \in \mathbb{R}^2 \ \mathrm{e} \ d(z_1,z_2) = 0$ se e solo se $z_1 = z_2$
- (d_2) $d(z_1, z_2) = d(z_2, z_1), \forall z_i \in \mathbb{R}^2$
- (d_3) $d(z_1, z_2) \le d(z_1, z_3) + d(z_3, z_2), \forall z_i \in \mathbb{R}^2.$