Theorem For every real x > 0 and every integer n > 0 there is one only one real y such that $y^n = x$.

This number y is written $\sqrt[n]{x}$ or $x^{1/n}$.

Proof That there is at most one such y is clear, since $0 < y_1 < y_2$ implies $y_1^n < y_2^n$.

Let E be the set consisting of all positive real numbers t such that $t^{*} < x$.

If t = x/(1+x) then 0 < t < 1. Hence t'' < t < x. Thus $t \in E$, and E is not empty.

If i > 1 + x then $t^n > t > x$, so that $t \notin E$. Thus 1 + x is an upper bound of E.

Hence Theorem 1.19 implies the existence of

$$y = \sup E$$
.

To prove that $y''_1 = x$ we will show that each of the inequalities y'' < x and y'' > x leads to a contradiction.

The identity $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \cdots + a^{n-1})$ yields the inequality

$$b^n - a^n < (b-a)nb^{n-1}$$

when 0 < a < b.

Assume $y^n < x$. Choose h so that 0 < h < 1 and

$$h < \frac{x - y^n}{n(y+1)^{n-1}}.$$

Put a = y, b = y + h. Then

$$(y+h)^n - y^n < hn(y+h)^{n-1} < hn(y+1)^{n-1} < x - y^n.$$

Thus $(y+h)^n < x$, and $y+h \in E$. Since y+h > y, this contradicts the fact that y is an upper bound of E.

Assume y'' > x. Put

$$k=\frac{y^n-x}{ny^{n-1}}.$$

Then 0 < k < y. If $t \ge y - k$, we conclude that

$$y^{n} - t^{n} \le y^{n} - (y - k)^{n} < kny^{n-1} = y^{n} - x.$$

Thus t'' > x, and $t \notin E$. It follows that y - k is an upper bound of E.

But y - k < y, which contradicts the fact that y is the *least* upper bound of E.

Hence $y^n = x$, and the proof is complete.