Corso di Analisi

prima parte

Una introduzione rigorosa all'analisi matematica su $\mathbb R$

Errata Corrige alla Prima Edizione McGraw-Hill, 2019 ISBN 978-88-386-9543-8 https://www.mheducation.it/corso-di-analisi-prima-parte-9788838695438-italy

(Aggiornamenti. 27 Marzo, 2022)

Luigi Chierchia – Università degli Studi Roma Tre

Pag. 38, formula in display a fine pagina,

Errata:

$$a_i := a_i^{(1)},$$
 $1 \le i \le N_1 = n_1$
 $a_i := a_i^{(2)},$ $N_1 + 1 \le i \le N_2$
......
 $a_i := a_i^{(k)},$ $N_{k-1} + 1 \le i \le N_k$
.....

Corrige:

$$a_i := a_i^{(1)},$$
 $1 \le i \le N_1 = n_1$ $a_i := a_{i-N_1}^{(2)},$ $N_1 + 1 \le i \le N_2$ $a_i := a_{i-N_{k-1}}^{(k)},$ $N_{k-1} + 1 \le i \le N_k$

Pag. 39, prime due righe della dimostrazione della Proposizione 1.60,

Errata: Sia $e^n = \{e_k^{(n)}\}$ la successione tale che $e_k^{(n)} = 1$. Se k = n e $e_k^{(n)} = 0$ se $k \neq n$, Corrige: Sia $e^n = \{e_k^{(n)}\}$ la successione tale che $e_k^{(n)} = 1$, se k = n e $e_k^{(n)} = 0$ se $k \neq n$,

Pag. 89, riga 11 della dimostrazione della Proposizione 2.41,

```
Errata: x \in U \setminus \{y\}
Corrige: x \in E \cap U \setminus \{y\}
```

Pag. 89, riga 12 della dimostrazione della Proposizione 2.41,

Errata: $x_n \in U_n \setminus \{y\}$ Corrige: $x_n \in E \cap U_n \setminus \{y\}$

Pag. 97, riga 4,

Errata: f(a) < 0 **Corrige:** $f(c_0) < 0$

Pag. 97, riga 4,

Errata: f(a) > 0Corrige: $f(c_0) > 0$

Pag. 97, riga 5,

```
Errata: f(a_1) < 0 < f(b_1)
Corrige: f(a_1) > 0 > f(b_1)

Pag. 97, riga 8,

Errata: f(a_n) < 0 < f(b_n)
Corrige: f(a_n) > 0 > f(b_n)

Pag. 97, riga 9,

Errata: \lim f(a_n) \le
Corrige: \lim f(a_n) \le

Pag. 97, riga 10,

Errata: 0 \le \lim f(b_n)

Corrige: 0 \ge \lim f(b_n)

Pag. 110, riga 1,

Errata: \lim_{y\to 0} (1 \pm |y|)^r = 0

Corrige: \lim_{y\to 0} (1 \pm |y|)^r = 1
```

Pag. 167, sostituire le righe da 8 a 12 ("Infine dimostriamo che") cons

Infine dimostriamo che $\bar{\ell} \leq \overline{\lim} a_n$: per far questo basta trovare una sottosuccessione $\{a_{n_k}\}$ tale che $a_{n_k} \to \bar{\ell}$ (infatti, in questo caso, $\bar{\ell} \in \mathcal{L}$ e quindi $\bar{\ell} \leq \max \mathcal{L} = \overline{\lim} a_n$). Per ogni n sia $m_n \geq n$ tale che $\bar{a}_n - \frac{1}{n} < a_{m_n} \leq \bar{a}_n$ (tale m_n esiste poiché $a_n = \sup\{a_k \mid k \geq n\}$). Poiché $\bar{a}_n \to \bar{\ell}$, dal teorema del confronto segue $a_{m_n} \to \bar{\ell}$. Prendendo una sottosuccessione strettamente crescente $\{n_k\}$ di $\{m_n\}$ si ha la tesi.

Pag. 220, seconda riga della nota 26 a piè di pagina,

```
Errata: R_f(x_1,x_0)
Corrige: R_f(x_2,x_0)

Pag. 234, formula (7.106)

Errata: \lim_{x\to 0}
Corrige: \lim_{x\to x_0}
```

Pag. 236, prima riga del Lemma 7.79

Errata: $f, g: I \to \mathbb{R}$

Corrige: $f, g: I \to \mathbb{R}, I$ intervallo,

Pag. 271, formula in display dopo la (8.68)

Errata:
$$\sum_{n=N}^{M} f(n+1) = \sum_{n=N-1}^{M-1} f(n)$$

Corrige:
$$\sum_{n=N}^{M} f(n+1)$$