Lemma 9.29 Sia $\{f_k\}$ una successione non crescente di funzioni non negative in S(E). Allora

$$f_k \downarrow 0$$
 q.o. in $E \iff \lim_{k \to \infty} \int_E f_k = 0$. (9.38)

Dimostrazione Cominciamo con " \Longrightarrow ": Siano f_k , date come in (9.33), le funzioni a scalini tali che $f_k \downarrow 0$ q.o. in E. Sia $E_0 \equiv \bigcup_{i=1}^{N_1} \overline{R_i^{(1)}}$: tutti i rettangoli $R_i^{(k)}$ su cui le f_k sono strettamente positive sono contenuti in E_0 . Osserviamo anche che se $M = \sup f_1$ allora $f_k \leq M$ per ogni $k \geq 1$. Sia Q_0 l'insieme di misura nulla su cui f_k non converge a 0 e sia $Q \equiv Q_0 \cup \bigcup_{i,k} \partial R_i^{(k)}$, che, per il punto (ii) dell'Osservazione 9.7, è anch'esso un insieme di misura nulla. Fissiamo $\varepsilon > 0$. Essendo Q di misura nulla esiste una collezione \mathcal{R}_1 di cubi aperti la cui unione ricopre Q e la somma delle cui misure non eccede ε . Per ogni $x \in E_0 \setminus Q$, $f_k(x) \downarrow 0$, quindi esiste un intero k(x) tale che $f_{k(x)}(x) \leq \varepsilon$. Sia R(x) il più grande rettangolo aperto contenente x su cui $y \to f_{k(x)}(y)$ sia costante e sia \mathcal{R}_2 l'insieme dei rettangoli R(x) al variare di $x \in E_0 \setminus Q$. Chiaramente $\bigcup_{R \in \mathcal{R}_1 \cup \mathcal{R}_2} R$ è un ricoprimento aperto di E_0 e, per compattezza, esistono N rettangoli $R_i \in \mathcal{R}_1 \cup \mathcal{R}_2$ che ricoprono E_0 . Cambiando eventualmente nome a tali rettangoli possiamo assumere che per $1 \le i \le j$, $R_i \in \mathcal{R}_1$ mentre per $j+1 \leq i \leq N$, $R_i \in \mathcal{R}_2$. Si osservi che $\sum_{i=1}^j \min R_i \leq \varepsilon$, mentre i rettangoli R_i per i > j sono della forma $R_i = R(x^{(i)})$ per un opportuno $x^{(i)} \in E_0 \setminus Q$. Sia $k_0 \equiv \sup_{\{j+1 \le i \le N\}} k(x^{(i)})$ e si noti che $f_{k_0}(x) \le \varepsilon$ per ogni $x \in R_{j+1} \cup \cdots \cup R_N$. In conclusione, per ogni $k \ge k_0$ si ha

$$\int_{E} f_{k} \leq \int_{E_{0}} f_{k_{0}} \leq \int_{R_{1} \cup \cdots \cup R_{j}} f_{k_{0}} + \int_{R_{j+1} \cup \cdots \cup R_{N}} f_{k_{0}}
\leq M \sum_{i=1}^{j} \min R_{i} + \varepsilon \int_{E_{0}} 1 \leq \varepsilon \left(M + \min E_{0} \right).$$

Dimostriamo, ora, " \Leftarrow ": se Q' denota l'insieme di misura nulla $\bigcup_{i,k} \partial R_i^{(k)}$ basta dimostrare che l'insieme $\{x \in E \setminus Q' : \limsup f_k(x) > 0\}$ è di misura nulla. Tale insieme coincide con $\bigcup_j Q_j$ dove $Q_j \equiv \{x \in E \setminus Q' : \limsup f_k(x) \ge 1/j\}$ e dunque basterà mostrare che Q_j è di misura nulla per ogni $j \ge 1$. Dato $\varepsilon > 0$ sia \bar{k} tale che $\int f_k \le \varepsilon/j$ per ogni $k \ge \bar{k}$. Sia $\mathcal{R}_k \equiv \{R = \mathring{R}_i^{(k)} : c_i^{(k)} \ge 1/j\}$ la collezione di rettangoli aperti e disgiunti su cui f_k assume valore non inferiore a 1/j. Chiaramente (essendo $\{f_k(x)\}$ monotona)

$$Q_j = \{x \in E \setminus Q' : f_k(x) \ge 1/j , \forall k\} = \bigcap_{k \ge 1} \bigcup_{R \in \mathcal{R}_k} R \subset \bigcup_{R \in \mathcal{R}_{\bar{k}}} R$$
.

La tesi segue ora dal fatto che $\bigcup_{R \in \mathcal{R}_{\bar{k}}} R$ è un insieme elementare di misura piccola:

$$\frac{1}{j} \sum_{R \in \mathcal{R}_{\bar{k}}} \min R \le \int_{E} f_{\bar{k}} \le \frac{\varepsilon}{j} \quad \Longrightarrow \quad \sum_{R \in \mathcal{R}_{\bar{k}}} \min R \le \varepsilon \ . \quad \blacksquare$$