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1 The restricted three-body problem

Roughly speaking the restricted three-body problem is the problem of describing the
bounded motions of a “zero-mass” body subject to the gravitational field generated by
an assigned two-body system!. To describe mathematically such system, let Py, P, P,
be three bodies (“point masses”) with masses mg, my, ms interacting only through the
gravitational attraction. If u® € R3, i = 1,2, 3, denote the position of the bodies in some
(inertial) reference frame (and assuming, without loss of generality, that the gravitational
constant is one?), the Newton equations for this system have the form

d2u©) B _ml(u(o) _ u(l)) B m2(u(0) _ u(2))
de2 lu® — )3 |u® — ]3 ’
d?u® mo(u® — 4© ma(u
B of ) 2 (ul) — )
ez Ju® — O |u<2) y3 ’
Pu®  mp(u® — w0y my (u® — W) 11
ez [u® —uOp u® — y3 (1.1)

The restricted three-body problem (with “primary bodies” Py and P) is, by definition,
the problem of studying the bounded motions of the system (1.1) after having set ms = 0,

'For general references, see, e.g., V. Szebehely, Theory of orbits, Academic Press, New York and
London, 1967; A. E. Roy, Orbital Motion, Adam Hilger Ltd., Bristol, 1978.
2This amounts to re-scale the time.



i.e., of the system

@ my(ul® 1) Pu® mp(uM — u®)
a2 lu® — u(0)|3 ’ a2 @O —uOp

@ mo(u® 0)) B my(u® — u) (12)
ez u® — u(o 3 lu® — @3 :

Notice that the equations for the two primaries Py and P; decouple and describe an
unperturbed two-body system, which can be solved and the solution can be plugged into
the equation for u®, which becomes a second-order, periodically forced equation in R?.

2 Delaunay action-angle variables for the two-body
problem

In this section we review the construction of the classical Delaunay?® action-angle variables
for the two-body problem.
The equations of motion of two bodies F, and P; of masses my and m,, interacting

through gravitation (with gravitational constant equal to one) are given (as in the first
line of (1.2)) by

Pu® oy (u® — u) Pu® mg(u® — u©)

_ _ (@) 3
az [ —qOp az [ —qOp u” e R (2.3)

As everybody knows, the total energy, momentum and angular momentum are preserved.
We shall therefore fix an inertial frame {ky, ko, k3}, with origin in the center of mass and
with ks-axis parallel to the total angular momentum. In such frame we have

uy =0=wuy’ mou'® +mu =0 . (2.4)
We pass to a heliocentric frame by letting,
(2,0) == uM) —u® | reR?. (2.5)

In view of (2.3) and (2.4), the equations for x become

f:—M%, M = mo+m; . (2.6)

3C. Delaunay, Théorie du Mouvement de la Lune, Mémoires de 1’Académie des Sciences 1, Tome
XXVIII, Paris, 1860.



This equation is Hamiltonian: let g > 0 and set

| X|* pM .
Hyep(x, X) = -, X = , 2.7

then (2.6) is equivalent to the Hamiltonian equation associated to Hykep with respect to
the standard symplectic form dz A dX, the phase space being R*\{0} x R?; the (free)
parameter p is traditionally chosen as the “reduced mass” mom; /M.

The motion in the u-coordinates is recovered (via (2.4) and (2.5)) by the relation

u® = (_Wml:c,O) , uV = (%x,O) ,
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Figure 1: The geometry of the Kepler two—body problem

The dependence of Hke, on x through the absolute value suggests to introduce polar
coordinates in the z-plane: z = r(cos ¢, sin ) and, in order to get a symplectic transfor-
mation, one is led to the symplectic map ¢, : ((r, ¢), (R, ®)) — (x, X) given by

r =r(cose,siny) ,
Gpe X = (Rcosgp— 2 sing, Rsing + %cosgp) , (2.8)
da:l/\Xm—i—dxg/\ng:dr/\dR+d<p/\d<I)

The variables 7 and ¢ are commonly called, in celestial mechanics, the orbital radius and
the longitude of the planet P;.

In the new symplectic variables the Hamiltonian Hye, takes the form

1 H2 M
HpC(T’, ©s R’ q)) = HKEP © ¢pC(T7 @, R> CD) - Z(R2 + _) - 0 -

r2 r



The variable ¢ is cyclic (i.e., 0Hp./Op = 0 so that & = const), showing that the
system with Hamiltonian H,. is actually a one-degree-of-freedom Hamiltonian system
(in the symplectic variables (r, R)), and is therefore integrable. The momentum variable
® conjugated to ¢ is an integral of motion and

. OH, ®

T T

== ® = pr’p = const .

Remark 2.1 The total angular momentum, C', in the inertial frame (and referred to
the center of mass) is given by?

C = mou® x 4@ 4+ mu® x 4 |

Taking into account the inertial relation mou® = —m,u'") one finds that
€ = T, 0) X (,0) = SFEE (2,0) % (X,0)

and the evaluation of the angular momentum in polar coordinates shows that

C = thy 020 — 4 p, 0 Mg
Mp
thus if y4 is chosen to be the reduced mass ™7, then ® is exactly the absolute value of

the total angular momentum.

The analysis of the (r, R) motion is standard: introducing the “effective potential”

o2 uM
Via(r) 1= V(1 @) o= 5y =2

one is led to the “effective Hamiltonian” (parameterized by )

R? .
Heﬁ:ﬂ+‘/<3ff<r) ) (R::U’T) :

44x” denotes, here, the standard “vector product” in IR3.
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Figure 2: The effective potential of the two—body problem

The motion on the energy level H ' (E) is bounded (and periodic) if and only if

;L?’MQ @2
Tmin = .
202 WM

E e [Emina 0) ) Emin = eﬂ(rmin) - -

For E € (Ewin,0) the period T(E) is given by

_2/ o Veﬁ( S (2.10)

where ry(FE) = ro(E; ®) are the two positive roots of £ — Vig(r) =0, i.e.,

E = Vea(r) = —(ry =1)(r=7-) ,

uM £\ [(ud)? + 222

ri(E;®) = —F £, (2.11)

The integral in (2.10) is readily computed yielding Kepler’s second law
3/2
T(E) =2t M (— 2E) .

Let us now integrate the motion in the (r, ) coordinates. The equations of motion in
such coordinates are given by
o 2

p = R 72 = ;(E — Ve (1)) - (2.12)



By symmetry arguments, it is enough to consider the motion for 0 < t < T(FE)/2;
furthermore, we shall choose the initial time so that r(0) = r_ (i.e., at the initial time
the system is at the “perihelion”): the corresponding angle will be a certain ¢, and we
shall make the (trivial) change of variables

w=wo+ 1, sothat 7(0)=r_(E), f(0)=0. (2.13)

The angle f is commonly called the true anomaly; the angle g (i.e., the angle between
the perihelion line, joining the foci of the ellipse and the x; axis) is called the argument
of the perihelion (compare figure at page 3).

Equations (2.12) become

ur
2= 2(E = Ve(r)), r(0)=r_(E)
Eliminating time (for ¢t € (0, T(E)), 7 > 0) we find (recall the definitions in (2.9))
r 2 Tmin __ ]
f = @[ dp/p = Arccos —F=——=. (2.14)
) \/20(E — Via(p)) L= g
Setting
T (2.15)
€= - = Tmin , .
Emin ’ P
we get the classical focal equation
b b (2.16)

"Tltecosf 1 +ecos(p — o)
which shows that Py and P; describe two ellipses of eccentricity e € (0, 1) with common
focus in the center of mass (first Kepler law).

If a > b > 0 denote the semi-axis of the ellipse, from (2.16) it follows immediately that
__P

1Fxe
From the geometry of the ellipse (see Appendix A and in particular (A.45) and the figure
at page 18) one knows that

Ty o ry+ro=2a, p=a(l—€*), re=a(l+e). (2.17)

r=a(l —ecosu) , (2.18)

where u is the so-called eccentric anomaly. Then, from the definition of Fy,, (2.9), the
expression for £ — Vg in (2.11), the relations (2.15) and (2.17), one finds

M M
_M_7 EZ_M_? E_‘/;aﬁ: (
2p

(2.19)

esinu 2
min —

1 —ecosu



Remark 2.2 The circular motion for the two-body problem is obtained for the minimal

value of the energy F = E;, = —“; éf. In such a case
(I)Q
=0 =P = Tmin — ; 2.20
the constant angular velocity and the period are respectively given by
3072 3
w M P
Weire = F ) Tcirc = 27TW . (221)
Eliminating ® in (2.20) and (2.21) one gets
| M r3
Weire = T_S ) Tcirc =27 M .
The motion in the x-variables is given by
x(t) = r(cos(@o + Weire 1), 8I0(0 + Weire t)) : (2.22)

We turn to the construction of the action-angle variables. For E € (Ey,,0), denote by
Sg the curve (energy level) {(r, R) : Hez(r, R) = E} (at a fixed value of ®). The area
A(FE) encircled by such a curve in the (r, R)-plane is given by

r+(E)
A(E) = 2[ :E) \/ZM<E — V;;H(T))dr =21 uM % —21d .

Thus, (by the theorem of Liouville-Arnold) the action variable is given by

which, inverted, gives the form of the Hamiltonian H.g in the action-angle variables (6, I)
(and parameterized by ®):

N3M2

h(I) := h(I;®) := T

Furthermore (again by Liouville-Arnold), the symplectic transformation between (7, R)

(in a neighborhood of a point with R > 0) and the action variables, (0, I), for the

Hamiltonian H.g is generated by the generating function®
(r, Ry (ri1))

So(I, 7 ®) = X Cny RO Relrd) = V2u(h(I) = Via(r)) |

5Recall that the dependence upon @ is hidden in r_ and Vg.



where the integration is performed over the curve Sy, ;) oriented clockwise: the orientation
of Si(ry and the choice of the base point as (r_(h(/)),0) is done so that an integration
over the closed curve gives +A(FE) and so that § = 0 corresponds to the perihelion
position.

Thin r

Figure 3: Level curves of the effective Hamiltonian for F,;;, < £ <0

The full symplectic transformation (in the four dimensional phase space of Hp.)

QS . (97w7I7J)—><T7()07R7®>
@t dIAdI+dy AdJ =dr ANdR + dp A dP

will then be generated by the generating function
Sil,J,r) =S, m )+ Je,  (J=90).

The form of h(I) suggests to introduce one more (linear, symplectic) change of variables
given by

L [A=I+J, T=J,

i\ A=46, y=p—0.

The variables (A, v, A, T") are the celebrated Delaunay variables for the two-body problem.
If we set

¢D = prc o ¢aa o ¢lin (2.23)



by the above analysis we get
3 M2
P (2.24)

hicep © O (A, 7, A T) = hicep(A) = — 2A2

The symplectic transformation ¢,, o ¢y, is generated by (I' = J = ®)

So(A, T r ) = Se(A—=T,r 1)+ T
AM? o 2uPM T2
a K — E dp+ Ty

= — +
[(hKepm» \/ A? p

— Ll hiceo(A) — Vig(pi T) dp + T .
u[_(hKep(A))\/Kp( ) = Ver(p; 1) dp + T

Replacing E by hgep(A) and ® with I' in the expression for the eccentricity e in (2.15)

(recall the definition of E;, in (2.9)) one finds

e=e(A,T) = /1— (%)2 . (2.25)

Recalling also the second relation in (2.19) one finds that

AZ

Remark 2.3 Recall that
uM
motny

C := total angular momentum |,

1l

F:@:
so that
I'>0.

Recall also that 302
Emin = _M—
212

)

so that £ > FEy,;, means (by (2.24))
I'<A.

The momentum space is therefore the positive cone {0 <T' < A}



The angle A is computed from the generating function S:

852 B u3M2

2 / \/hKe - eff P,F)

(226) | puM [
2a a \/hKep - eff par)

(2.19) /" 1 —ecosu

QJr_ esinu

A pu

dp

(2.18)

[ (1 —ecosu)du
= wu—esinuy

B Area(&E(f))
= M) (2.27)

where (compare Appendix A), £(f) is the area (on the ellipse (2.16)) “spanned by the
orbital radius”:

Ef)y={x=a(",{):0<r <r(f),0< " <f};

we have also used the fact that p as a function of u € [0, 7] is a strictly increasing function
and that p(0) =

In view of (2.27), A is called the mean anomaly. Analogously, the angle ~y is recognized
to be the argument of the perihelion ¢, introduced above (just before Remark 2.2):

05, _ dp
o F[ V2 hKep Ver(p)) P°

S (2.28)

10



Figure 4: The Delaunay angles

We conclude this classical section by giving analytical expressions for the eccentric
anomaly u, the true anomaly f, the longitude ¢ and the orbital radius r in terms of
the Delaunay variables.
The (Kepler) equation

A=u—esinu,

(see (2.27)) can be inverted, for |e| small enough, as
u = ug(Ae):= A+ eu(\e)

2 3
- )\+esin>\+%sin2)\+%(—sin)\+3sin3/\)+--- : (2.29)

where @ is analytic in A € T and |e| small enough; via (2.25), e = e(A,I') = /1 — (['/A)?,
the relation (2.29) yields an analytic expression of the eccentric anomaly as a function
of the Delaunay variables A, A, T".

From the geometry of the ellipse it follows that (compare (A.45) in Appendix A)
f I+e u

tan - = tan —
2 1—e 2

which can be written, for |e| small enough, as

f = fu,e):=u+ef(ue)
2 3

_ e? . e . :
= u+es1n(u)+zsm2u+ﬁ(3 smu+sm$u)+~-- ; (2.30)

11



where f is analytic in © € T and |e| small enough. Through (2.29) and (2.25), the
expression (2.30) yields an analytic expression of the true anomaly f in terms of A, A, I:

o= fy(\e) = fhug(\ e),e) = A+ef()e)
5 3

= At2esind+ e sin2)+ % (=3sinA+13sin3A) +--- . (2.31)
As above e = e(A, T).
The longitude ¢ by (2.28) is simply ¢ = v + f and can, therefore, be expressed as a
function of A, v, A, T'.
From the geometry of the ellipse it follows that (compare (A.45) in Appendix A) r is
related to a, e and u by

r=a(l —ecosu) .

Thus by (2.26), (2.25) and (2.29) we find

TO<)‘7€)
a
= 1—ecosup(A,e)
e? 3 4
= 1—€COS)\+§<1—C082)\)+§€ (cos)\—cos3)\)—|—--- . (2.32)

where e = ¢(A,T) and a = a(A) := A?/(u?M) (see (2.25) and (2.26)).

3 The restricted, circular, planar three-body prob-
lem viewed as nearly-integrable Hamiltonian sys-
tem

Let us go back to (1.2). Since we shall study the planar three-body problem, we assume

that the motion takes place on the plane hosting the Keplerian motion of Py and P;.
This amounts to require

WW=o0=4y, i=01,2. (3.33)

Observe that, since we are considering the restricted problem (i.e. we have set in (1.1)
mg = 0), the “conservation laws” are those of the two-body system Py — P;: in particular
the total angular momentum is parallel to the ug-axis (consistently with (3.33)) and the
center of mass (and hence the origin of the u-frame) is simply

mou® +myu =0 . (3.34)

12



Next, we pass, as in § 2, to heliocentric coordinates:
(@,0) = u) —u® | (@®,0)i=u® —u® (20,2 ¢ R?) |

which transform (1.2) into

- (1) z

X = —MOW s MO =My + My s (335)
(2) 1) (2) _ L@

7@ .= ’ ’ i (3.36)

e T Mpop T M@ — 0

In view of (3.34) the motion in the original u-coordinates is related to the motion in the
heliocentric coordinates by

0 — (2" W — (Mo @ _ (@ _ "™
U —(Mox,()), U —(Mox ,0), U —(x MOJ; ,O).
The equation in (3.35) describes the decoupled two-body system Py — P;, which has been
discussed in § 2.

In the restricted, circular, planar three-body problem such motion is assumed to be
circular.

It is convenient to fix the measure units for lengths and masses so that the (fixed)
distance between the two primary bodies is one and the sum of their masses is one:

diSt(Po,Pl) =1 s MO =Mmg+m; = 1. (337)

Recalling Remark 2.2, one sees that the period of revolution of Fy and P, around their

center of mass (the “year”) is, in such units, 2m; the x(Y-motion is simply (compare
(2.22))

G () = wi(to +1) = (cos(to + 1), sin(te + 1)) .

Even though the system of equations (3.35) and (3.36) is not a Hamiltonian system of
equation, (3.35) and (3.36) taken separately are Hamiltonian: we have already seen that
(3.35) represent just the equations of a two-body system; equations (3.36) represent a
2%—degree—0f—freedom Hamiltonian system with Hamiltonian

Hy (2, X®) 1) = XOP o — + oy (2 - 250 (1)) — oy !
S =) 2@ — 2 ()]
(2P, X@) e R\{0} xR?*, teT, (3.38)

13



with respect to the standard symplectic form dz? AdX ?); here, 11 > 0 is a free parameter.
To make the system (3.38) autonomous, we introduce a linear symplectic variable T
conjugated to time 7 = ¢:

ﬁl('r@)?X(Q)yT) T)

xR 1 @ 1
o~ oy + T (5 ) — o
(P, X®) e RA\{0} xR?, (r,T) € T x R. (3.39)

Remark 3.1 In the limiting case of a primary body with mass m; = 0, the Hamiltonian
H, describes a two-body system as in (2.7) with “total mass”

M = myg ,
reflecting the fact that the asteroid mass has been set equal to zero.

If the mass m does not vanish but it is small compared to the mass of myg, the system
(3.39) may be viewed as a nearly-integrable system. This is more transparent if we use,
for the integrable part, the Delaunay variables introduced in § 2 (see in particular (2.23)).
Recall that the symplectic transformation ¢p, mapping the Delaunay variables to the
original Cartesian variables, depends parametrically also on p and M and that M is now
mg. Next, we choose the free parameter i so as to make the Keplerian part equal to
—1/(2A?) (see (3.41) below) and we introduce also a perturbation parameter € closely
related to the mass my of the primary body:
1 my my

= —7 , €= = . 3.40
S wd? (= w2 40

Now, letting

(A7 A T) = op' (@, X)) |
@D((/\, v, A, T), (7, T)) = (ngD()\, v, A, T), (T, T)) ,

we find that®

- - A 1 1) 1
Hy:=Hopp=—5+T+e(a® 2l (r) - : 3.41
2 1 ¢D 2A2 (Z‘ x01rc<7—> ’.36(2) . SU(I) (7_>’ ( )

circ

where, of course, z(? is now a function of the new symplectic variables.

6Recall (2.24).

14



Let us now analyze more in detail the perturbing function in (3.41).
Recalling the definition of ¢ in (2.8), one sees that the angle between the rays (0, 2()
and (0 2 )is @ —T.

» #circ

)

z1

Figure 5: Angle variables for the RCPTBP

Therefore, if we let
ry = |2,
we get
fy=— T+ (o—1) !
g = ———= e|rqgcos(p—1) — .
242 \/1 + 73 — 2rycos(p — 1)

Recall ((2.28)) that ¢ = v+ f and ((2.31)) that f = fy(\,e) := A + ef(\, ). Thus

p—T=Ff+y—T=A+y—1+ef()\e).

15



Such relation suggests to make a new linear symplectic change of variables, by setting

g [ L=A G=T, —T4+T
fin* =X, g=7—T, =T.

b ﬂ)

Now, recalling (2.26), (3.40) and (3.37) we see that
a=L*/(1*M) =mg°L?
so that, by (2.32), in the new symplectic variables, it is:
p—T=Ff+g=1f(le)+g=C(+g+ef(le),

T =1o(l,€) = mé/gLQ(l —ecosug(l,e)) .

where, as above, e = e(L,G) = /1 — (G/L)?.
/3

Notice that the positions (3.40) and (3.37) define implicitly my and hence my'® as a
(analytic) function of" &:

2 1
mo(e) :1—5+§52—§53+--- :
1 2
m0(€)1/3:1—§+§€2—8—153+"' .

Thus, introducing the functions
a. = a.(L):=mo(e)?L*,
p. = p:({,L,G):=a.(L) (1 —ecosug(l,e(L, G))) :

o = ol,L,G):=e(L,G) f(l,e(L,Q)),
we get

. - 1 .
Hs Z:H20¢lin:_m_'_T_G‘i‘gFE(gvg’L’G)’

where
1

F.:=p.cos({+g+0)— .
\/1—|—p§—2pacos(€+g—|—a)

(3.42)

The variable 7 is cyclic (this is the reason for having introduced ngﬁhn) and the linear
constant of motion T can be dropped from Hj. The final form of the Hamiltonian for
the restricted, circular, planar, three-body-problem is:

1
Hprc(&gaL)G;g) = _m -G+ 5FE<€ang7G) ; (343)

In fact, from (3.40) one can invert the function m; — e(my) = my /(1 —m)?/3 and check that the
inverse function m1(g) = 1 — mg(e) has radius of convergence (27/4)% = 1.889881....

16



the phase space is the two-torus T? times the positive cone {0 < G' < L}; the symplectic
form is the standard two-form d¢ A dL 4 dg N dG.

From the point of view of KAM theory, the integrable part of (3.43)

1
Ho(L, G) = Hprcla:O = _ﬁ -G 5
is iso-energetically non-degenerate since

&0 A

Hl H| 3

det =det| 0 0 -1 :§>O'

H) 0

= -1 0

A The ellipse

In this appendix we recall a few classical facts about ellipses.

Cartesian equation. An ellipse is a set of points in a plane with constant sum of
distances from two given points, called foci. The Cartesian equation of an ellipse, with
respect to a reference plane (z1,2,) € R? with origin chosen as the middle point of the
segment joining the two foci, is given by

B+ (2 -1

where 2a is the (constant) sum of distances between x and the foci and

(£ay/1-(2)"0) (A.44)

are the coordinates of the foci. The positive numbers a and b are called, respectively, the
magjor and the minor semi-axis of the ellipse; the number

== ()

is called the eccentricity of the ellipse. As it follows from (A.44), the distance ¢ between
one focus and the center x = 0 of the ellipse is given by

c=ea.

17



X2

X1

d+d = cost = 2a

Figure 6: Ellipse of eccentricity 0.78

Focal equation. Introducing polar coordinates (f,r) in the above z-plane taking as
pole the focus O = (¢, 0), as f the angle between the x;-axis and the axis joining O with
the point x on the ellipse and r = r(f) as the distance |z — O| one finds the following
focal equation

p
r=r(f) 1+ecosf’
where p is called the parameter of the ellipse and is given by
b
=a(l—¢e%) = — .
p=a(l—e)=—

The angle f is called the true anomaly.

Parametric representation. The above ellipse is also described by the following para-
metric equations
T1 = acosu , To = bsinu .

The angle u is called the eccentric anomaly.

18



Tf acosu = ea+rcosf
U

P _ 4 _
Tre — @ —ac

Figure 7: Ellipse parameters

Thus a point z on the ellipse has the double representation:
x = (acosu,bsinu) = (ea + rcosf,rsinf) ,
which relates the true and the eccentric anomalies. In particular, one finds:

rcosf =a(cosu —e)
rsinf = bsinu = avV'1 — e2sinu ,
r=a(l —ecosu) ,
f 1+e u
tan - = an — ,
2 1—e 2

Area(E(f)) = %b(u —esinu) ,

where

E(f) ={z=x( ") 0<r <r(f),0< " <f}.
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