COGNOME E NOME:

Data di nascita e n. matricola:

ATTENZIONE: consegnare solo il foglio dell'Es 1 e questo foglio (fronte/retro) con le risposte e le relative spiegazioni sintetiche. SCRIVERE CHIARAMENTE E IN ORDINE (Fare calcoli, prove, etc. su fogli di brutta copia da non consegnare). Per superare l'esame è necessario riportare almeno 6 all'Es.1, 12 all'Es. 2 e 51 punti in totale.

Per superare l'esame e necessario riportare almeno o all'Es.1, 12 all'Es. 2 e 51 punti in totale.
Es 2 [Pt. 20] Una risposta esauriente ad ognuno dei seguenti quesiti vale 4 punti. (i) Enunciare l'assioma dell'estremo superiore (definendo i termini usati).
(ii) Dare la rappresentazione trigonometrica di un numero complesso. Enunciare la formula di De Moivre ed usarla per descrivere le radici ennesime di unumero complesso $z_0 \neq 0$.
(iii) Definire e dare esempi di: punto di accumulazione, insieme aperto, insieme chiuso, frontiera di un insieme non vuoto.
(iv) Enunciare e dimostrare il teorema di permanenza del segno per funzioni continue.
(v) Definire e discutere la serie armonica generalizzata.
(vi) Definire: una primitiva di una funzione $f:(a,b)\to\mathbb{R}$ ed una sua funzione integrale. Enunciare e dimostrare il teorema fondamentale del calcolo.
(vii) Sia f derivabile in $(0,1)$. Dimostrare che $f' \geq 0$ se solo se f è non decrescente.
(vii) bit y derivable in (0,1). Dimostrate the y = 0 se solo se y e non decrescence.
(viii) Scrivere la formula di Taylor in 1 di ordine 4 con resto di Lagrange per una funzione C^5 in un intorno di 1 .
(ix) Definire la somma superiore ed inferiore di Riemann di una funzione limitata $f:[0,1]\to\mathbb{R}$ e dare un esempio di somma inferiore con $f=x^2$.

(x) Trovare la soluzione del seguente problema di Cauchy: $\ddot{x}+4x=0,\,x(0)=-1,\,\dot{x}(0)=1.$

Es 4 [Pt. 25] (I limiti valgono 5 punti le serie 10 punti)

Calcolare: (i) $\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n + \sqrt{n}}}$; (ii) $\lim_{x \to 0} \frac{\log(1 + x^3) \cdot \sin x}{1 - \cos x^2}$. Studiare: (iii) $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$; (iv) $\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n}$; (v) $\sum_{n=1}^{\infty} \frac{(x+2)^{n^2}}{n^n}$.

 $\underline{\mathrm{Es}\ 5\ [\mathrm{Pt.}\ 20]}$ (Ogni quesito vale 10 punti)

Calcolare: (i) $\int \frac{dx}{x^2+7}$; (ii) $\int \frac{dx}{\sqrt{e^x-1}}$; (iii) $\int_2^3 \frac{x^3-1}{4x^3-x} dx$. (iv) Discutere la convergenza di $\int_0^1 \left(e^{-x}-1\right) \cdot (\log x)^{10} dx$.

Es 6 [Pt. 15] Studiare e disegnare il grafico di $f(x) = \frac{\log x}{x}$.