
Singular KAM Theory

L. Biasco & L. Chierchia

Dipartimento di Matematica e Fisica
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Abstract

The question of the total measure of invariant tori in analytic, nearly–integrable Hamiltonian
systems is considered. In 1985, Arnol’d, Kozlov and Neishtadt, in the Encyclopaedia of Mathe-
matical Sciences [4], and in subsequent editions, conjectured that in n “ 2 degrees of freedom
the measure of the non torus set of general analytic nearly–integrable systems away from critical
points is exponentially small with the size ε of the perturbation, and that for n ě 3 the measure
is, in general, of order ε (rather than

?
ε as predicted by classical KAM Theory).

In the case of generic natural Hamiltonian systems, we prove lower bounds on the measure of
primary and secondary invariant tori, which are in agreement, up to a logarithmic correction,
with the above conjectures.
The proof is based on a new singular KAM theory, particularly designed to study analytic prop-
erties in neighborhoods of the secular separatrices generated by the perturbation at simple reso-
nances.

MSC2010 numbers: 37J05, 37J35, 37J40, 70H05, 70H08, 70H15
Keywords: Nearly–integrable systems. Natural Hamiltonian systems. Singular KAM Theory.
Measure of invariant tori. Primary and secondary tori. Simple resonances. Hamiltonian perturba-
tion Theory. Kolmogorov’s non–degeneracy. Measure of the non–torus set.

Introduction

Classical KAM Theory1 deals with the persistence of Lagrangian invariant tori of integrable Hamilto-
nian systems under the effect of small perturbations. In the early 1980’s it was clarified that an analytic
integrable system, which is Kolmogorov non–degenerate (i.e., such that the action–to–frequency map
is a local diffeomorphism), preserves, under a perturbation of size ε ą 0, all its Diophantine La-
grangian invariant tori in a bounded domain up to a set of measure proportional to2

?
ε. In fact, this

estimate cannot be improved, since trivial examples – such as a classical pendulum with Hamiltonian
p2

2 ` ε cos q – show that, in bounded domains, the measure of the complement of persistent primary

1[27], [1], [32], [2], [33]; for a divulgative account, see [22].
2[28], [34], [35], [38]
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tori (i.e., tori which are a deformation of integrable ones) is exactly proportional to the square root of
the perturbing function – the rest of the phase space being filled, in the case of the pendulum, by sec-
ondary tori (curves) enclosed by the pendulum separatrix. In fact, positive measure sets of secondary
Lagrangian tori (i.e., tori, which are not a smooth deformation of integrable ones) appear in general
nearly–integrable systems, for example, near elliptic equilibria ([31]).

The natural question is therefore: What is the measure of all Lagrangian tori in general nearly–
integrable analytic Hamiltonian systems?

In 1985 Arnold, Kozlov and Neishtadt, motivated by the exponentially small splitting of separatrices
in general systems with two degrees of freedom, conjectured that3

“It is natural to expect that in a generic (analytic) system with two degrees of freedom and with
frequencies that do not vanish simultaneously the total measure of the ‘non-torus’ set corresponding
to all the resonances is exponentially small.”

In [5], again Arnold, Kozlov and Neishtadt, arguing on the basis of a simple rescaling argument in
neighbourhoods of double resonances4, conjectured that

“It is natural to expect that in a generic system with three or more degrees of freedom the measure
of the ‘non–torus’ set has order ε.”

In this paper, we develop a ‘singular KAM theory’ for generic analytic nearly–integrable natural
systems, apt to deal, in particular, with the construction of maximal KAM tori that live exponentially
close to the separatrices appearing near simple resonances, which are singularities of the action–angle
variables of the integrable secular (averaged) systems. As a consequence, we can prove lower bounds on
the total measure of KAM tori, which are in agreement with the above conjectures up to a logarithmic
correction | log ε|γ . We announced these results in 2015 in [9] (see also [13]), and it goes without saying
that to complete proofs took much longer than we thought.

The reason for dealing with the special class of nearly–integrable natural systems, namely, Hamiltonian
systems on RnˆTn (endowed with the standard symplectic form dy^dx) with Hamiltonian given by

Hpy, x; εq :“ 1
2 |y|

2 ` εfpxq , py, xq P Rn ˆ Tn , 0 ă ε ă 1 ,
`

|y|2 :“ y ¨ y :“
ř

j |yj |
2
˘

, (1)

is twofold. On one side, this choice allows to avoid technical unessential details, which would make even
heavier the already highly technical methods. On the other hand, and more importantly, it allows to
formulate the generiticity condition (whose definition is part of the problem) in a simple way, singling
out a suitable class of generic analytic potentials f ’s (Definition 1.1), which guarantees, in particular, a
uniform behaviour of the secondary nearly–integrable structure at simple resonances with high modes
(compare Open Problems, (i) in § 1).

Let us informally discuss the overall picture.

Analogously to what is done in Nekhoroshev theory (compare, e.g., [36], and [5] for general informa-
tion), fixed a maximal size of resonances K to be taken into account5, one covers the action space

3Compare [4, p. 189] and [5, Remark 6.17, p. 285].
4From p. 285 of [5]: “Indeed, the Op

?
εq–neighbourhoods of two resonant surfaces intersect in a domain of measure

„ ε. In this domain, after the partial averaging taking into account the resonances under consideration, normalizing the
deviations of the “actions” from the resonant values by the quantity

?
ε, normalizing time, and discarding the terms

of higher order, we obtain a Hamiltonian of the form 1{2pAp, pq ` V pq1, q2q, which does not involve a small parameter.
Generally speaking, for this Hamiltonian there is a set of measure „ 1 that does not contain points of invariant tori.
Returning to the original variables we obtain a “non–torus” set of measure „ ε.”

5Actually, we will need to consider two orders of resonances Ko and K ą Ko; but for the purpose of this introduction
we call them both K.
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with three sets: a non–resonant set R0, a
?
εKc–neighbourhood6 R1 of simple resonances, and a neigh-

borhood R2 of double (and higher) resonances. Eventually, the number of resonances K is taken as a
suitable function of ε tending to `8 as εÑ 0 (e.g., K „ 1{εc, or K „ | log ε|).
The set R2, which has measure proportional to εKc, is a non perturbative set in the sense that the
dynamics ruled by Hpy, x; εq on R2ˆTn is essentially equivalent to the dynamics of the parameter free
Hamiltonian 1

2 |y|
2` fpxq (compare the argument given by Arnold, Kozlov and Neishtadt, reproduced

in footnote 4 above). Therefore, no further perturbative analysis on the set R2 ˆ Tn is possible.
On the non resonant phase space R0 ˆ Tn, after high order averaging, classical KAM theory yields
the existence of primary maximal KAM tori up to a set of measure Op

?
εe´cKq.

The main game has then to be played on the simple–resonance neighborhood R1 ˆ Tn.
R1 is defined as union of sets R1,k, which are

?
εKc–neighborhoods of simple resonances ty

ˇ

ˇ y ¨ k “ 0u
with k P Zn and co–prime entries. On R1,k high–order averaging theory can be applied so as to
remove, up to order εe´cK, the angle dependence, apart from the resonant combination k ¨x, obtaining
a symplectically conjugated real analytic Hamiltonian of the form

Hkpy, xq “
|y|2

2
` ε

`

gko pyq ` g
kpy, k ¨ xq ` fkpy, xq

˘

, fk „ e´cK . (2)

Now, all these Hamiltonian systems labelled by the simple–resonance index k (|k| ď K), have a sec-
ondary (secular) near–integrability structure, as, disregarding the exponentially small terms fk, they
are Arnol’d–Liouville integrable, depending effectively only on one resonant angle x1 “ k ¨ x P T1.
Then, the plan is obvious: Put all these systems into their Arnol’d–Liouville action–angle variables,
check twist (i.e., Kolmogorov’s non–degeneracy), and apply KAM so as to obtain Lagrangian primary
and secondary tori (with different topologies; compare Remark 5.3).
However, a considerable series of problems arise in trying to carry out such a plan. Let us try to
highlight the most important points.

First of all, as already mentioned, the resonance cut–off K will go to `8 as ε Ñ 0 and therefore one
has to deal, de facto, with infinitely many Hamiltonian systems and unless there is some uniform way
of treating them, there is no hope. The idea, here, has been suggested in [11] and refined in [15]:
The secular Hamiltonians Hkpy, x1q, i.e., the integrable Hamiltonians in (2) obtained disregarding fk

and setting x1 “ k ¨ x, are one–degree–of–freedom Hamiltonians, with external parameters, and with
potentials gkpy, x1q, which are close to the projections pπZkfqpx1q over the Fourier modes proportional
to k of the potential fpxq; compare (7) below. Now, one can show that for high Fourier modes |k| ą N

(N suitable but independent of ε), pπZkfqpx1q behaves generically as a shifted cosine7

2|fk|ε cospx1 ` θkq

for a suitable θk P R; where ‘generically’ means that f belongs to a suitable class of generic real–analytic
potential, whose Fourier coefficients, for large k’s with co–prime entries, behave as e´|k|s|k|´n for a
suitable s ą 0. Incidentally, to obtain such a result, one has to use a non–standard averaging theory,
allowing for essentially no analyticity loss in the angle variables; for more information on this point,
see the Introduction in [11].

6In this introduction, we indicate with ‘c’ various different constants, which are independent of ε. In general, keeping
track of the quantities, on which the various constants appearing in singular KAM Theory depend, is a somewhat
important matter (for example, from the constructive point of view) and we try to devote some care to it; compare,
e.g., Remark (R5) in § 1.

7Compare item (iii) in Theorem 2.1 below.
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Analytic properties of the action–angle variables for the pendulum are quite well known, and this is
encouraging (and it was also the basis for the optimistic 2015 announcement [9]).
However, for low modes |k| ď N, the secular leading potentials pπZkfqpx1q are, in general, quite arbitrary
functions, and one needs, therefore, a general holomorphic, quantitative theory of action–angle variable
for one–degree–of freedom systems containing parameters. Such a theory is discussed in [14] for a
special class of real analytic Hamiltonians – called there Generic Standard Form Hamiltonians – given
by

H5pp, q1q “
`

1` νpp, q1q
˘

p2
1 ` Gpp̂, q1q , (3)

where p “ pp1, p̂q, p1 is the momentum conjugated to the angle q1 and p̂ “ pp2, ..., pnq are the ‘external
parameters’; see Definition 2.1 for specifications. In particular, the properties of the energy–to–action
functions are discussed in the limit as the energy approaches the critical values (i.e., the energy levels
of the hyperbolic points and the associated separatrices): It turns out that such functions have the
form

I1pEcrit ˘ εzq “ apzq ` bpzq z log z (4)

where ε is a suitable reference energy, Ecrit is a fixed critical energy level of some equilibrium of the
secular system, a and b are analytic functions of z (and, of course, everything depends on other pn´1q
dumb action; compare Theorem 2.3 below). This representations will play a crucial rôle in studying the
twist of the secular Hamiltonians at simple resonances in their Arnold-Liouville action–angle variables.
Now, one can prove ([15]) that all secular Hamiltonians Hk can be put into standard form as in (3),
so that the main rescaling properties are controlled by one single parameter κ, which is independent
of ε and k (compare Theorem 2.2 below). The draw back of this uniformization is that the symplectic
transformations performing the task are not well defined in the fast angle–variables px2, ..., xnq, and
preserves periodicity only in the resonant angle x1.

This is the starting point of this paper.

In § 3 we show how to overcome the homotopy problem of the uniformization of [15]: Exploiting
the particular group structure of the various symplectic transformations involved, we show that,
introducing a special ad hoc symplectic ‘semi–conjugacy’, one can indeed obtain, for all |k| ď K,
well defined symplectic action–angle maps φik, which conjugate the original Hamiltonian H in (1) on
R1,k ˆ Tn to the nearly–integrable form

Hi
k :“ H ˝ φikpI, ϕq “ hikpIq ` εf

i
kpI, ϕq , f ik „ e´cK ,

where i labels the various regions in which the phase spaces of the secular Hamiltonians Hk are split
by their separatrices (compare Theorem 3.1 below).

As in all KAM applications, the main problem is to prove (a suitable) non–degeneracy of the frequency
map I Ñ ω “ BIh

i
k.

It should be clear from the context, that the original non–degeneracy of H|ε“0 plays a little rôle here,
as the action–structure depends on analytic properties of the secular potentials. Indeed, it is a fact
that in the phase space of standard Hamiltonians (3) there are, in general, points where the twist
vanishes. For instance, points of vanishing twist appear always in regions bounded by two separatrices
(with different energy); but they appear also in very simple examples with only one separatrix near
the elliptic equilibrium enclosed by the separatrix, like, e.g., in the case of the Hamiltonian

p2
1 ` cos q1 ´

1
8 cosp2q1q ;
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compare Remark 4.1 below. Furthermore (and more seriously), when the distance in energy from the
separatrices goes to zero, the problem becomes a singular perturbation problem with dramatic singu-
larities.
Therefore, entirely new methods have to be developed in order to prove that the measure where the
twist vanishes is actually exponentially small in the whole phase space of all Hamiltonians Hi

k. This
is the main result of the paper; compare the Twist Theorem 4.1 in § 4.
The proof of the Twist Theorem is based on two different approaches according to whether one con-
siders regions far from separatrices or regions close to separatrices.
In regions far from separatrices the analysis is significantly simpler, since it is partly perturbative.
In such a case, one fist proves that the (normalized) second derivative of the action–to–energy func-
tions are non–degenerate (i.e., at each point of their domains, some derivative is different from zero);
then, uniform estimates can be worked out and, using standard tools from the theory of Diophantine
approximations ([37], [23]), one can show that η–sub–levels of the twist determinant have measure
smaller than ηc, which easily yields the claim.
The real heart of the matter is the analysis of the twist in regions close to separatrices, where no
perturbative arguments can be used, nor uniform estimates hold. The proof, in this case, rests on the
construction of a suitable differential operator with non–constant coefficients, which, exploiting in a
subtle way the analytic structure (4), can be shown not to vanish on a suitable regularization of the
twist determinant. This is good enough to prove that the twist determinant is non–degenerate also
near separatrices, and to conclude the proof of the Twist Theorem.

At this point, choosing carefully the various free parameters of the game, a suitable KAM Theorem
(Theorem 5.1 below) yields the existence of maximal primary and secondary KAM tori, which fill the
complementary phase set of R2 ˆ Tn up to a very small set A. How small is A – which dynamically
is very rich and where, e.g., Arnol’d diffusion can take place – depends on how big is chosen the
order K of resonances considered. For example, if K is chosen as | log ε|2, then measpAq will be almost–
exponentially small (i.e., smaller than any power of ε), while measpAq is actually exponentially small
in 1{εc, if K is taken to be an inverse power of ε; compare Remark (R2) in § 1.
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1 Results, Remarks, and Open Problems

In order to state the main results of this paper, we recall a few standard definitions.

‚Maximal KAM tori: A set T Ă M “ B ˆ Rn is called a maximal KAM torus for a real analytic
Hamiltonian H : M Ñ R if there exist a real analytic embedding φ : Tn Ñ M and a Diophantine
frequency vector8 ω P Rn such that T “ φpTnq, and for each z P T , ΦtHpzq “ φpx ` ωtq, where9

x “ φ´1pzq and tÑ ΦtHpzq denotes the standard Hamiltonian flow governed by H starting at z PM.

‚Generators of 1d maximal lattices: Let Zn› be the set of integer vectors k ‰ 0 in Zn such that the
first non–null component is positive:

Zn› :“
 

k P Zn : k ‰ 0 and kj ą 0 where j “ minti : ki ‰ 0u
(

.

Gn denotes the set of generators of 1d maximal lattices in Zn, namely, the set of vectors k P Zn› such
that the greater common divisor (gcd) of their components is 1:

Gn :“ tk P Zn› : gcdpk1, . . . , knq “ 1u ; (5)

for K ě 1, we set10:
GnK :“ Gn X t|k|

1
ď Ku . (6)

‚1d Fourier projectors: Given a zero–average real analytic periodic function

f : x P Tn :“ Rn{p2πZnq ÞÑ fpxq :“
ÿ

Zn z t0u

fke
ik¨x

and fixed a vector k P Zn z t0u, we denote by πZkf the (real analytic) periodic function of one variable
θ P T given by

θ P T ÞÑ πZkfpθq :“
ÿ

jPZ

fjke
ijθ . (7)

Notice that one has the following (unique) decomposition:

fpxq “
ÿ

kPGn
πZkfpk ¨ xq .

‚Resonances: Given k P Gn, a resonance Rk with respect to the free Hamiltonian 1
2 |y|

2 is the set
ty P Rn : y ¨ k “ 0u. We call Rk,` a double resonance if Rk,` “ Rk XR` with k and ` in Gn linearly
independent; the order of a double resonance is given by maxt|k|1 , |`|1u.

8A vector ω P Rn is called Diophantine if there exist α ą 0 and τ ě n ´ 1 such that |ω ¨ k| ě α{|k|τ
1
, for any non

vanishing integer vector k P Zn, where |k|1 :“
ř

|kj |.
9In particular, maximal KAM tori are minimal invariant invariant sets for ΦtH .

10As usual |k|1 :“
řn
j“1 |kj |.
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‚Morse functions with distinct critical values: A C2–function of one variable θ Ñ F pθq is a Morse
function if its critical points are non–degenerate, i.e., F 1pθ0q “ 0 ùñ F 2pθ0q ‰ 0; ‘distinct critical
values’ means that if θ1 ‰ θ2 are distinct critical points, then F pθ1q ‰ F pθ2q.

‚Banach spaces of real analytic periodic functions: For s ą 0 and n P N “ t1, 2, 3...u, consider the
Banach space of zero–average real analytic periodic functions on Tn with finite norm

}f}s :“ sup
kPZn

|fk|e
|k|

1
s , (8)

and denote by Bns its closed unit ball.

Now we are ready to introduce a suitable generic class of potentials f and state the main result of
this paper concerning the typical dynamics of nearly–integrable natural systems with Hamiltonian H

as in (1).

Definition 1.1 (The class of potentials Gns ) We denote by Gns the subset of functions f P Bns such
that the following two properties hold:

lim
|k|1Ñ`8

kPGn

|fk|e
|k|1s|k|n

1
ą 0 , (9)

@ k P Gn , πZkf is a Morse function with distinct critical values . (10)

Remark 1.1 (i) For natural systems – whose natural phase space is RnˆTn – any ball in action space
can be transformed (by translation and rescaling) to the unit ball; thus, rescaling time and renaming
the smallness parameter one can always restrict oneself to study the Hamiltonian H in (1) on the unit
ball in Rn and with }f} “ 1.

(ii) The requirement in (10) that the projections πZkf have different critical values is not really
necessary, but it is generic and it simplifies the proof.

Main Results

Theorem 1.1 Let n ě 2, s ą 0, B :“ ty P Rn : |y| ă 1u, γ :“ 11n` 4, f P Gns with }f}s “ 1. Then,
there exist a constant c ą 1, such that for all K and ε ą 0 satisfying

K ě c , ε Kγ ď 1 , (11)

the following holds. There exist three sets R2 Ď B, A Ď Bˆ Tn, T Ď Rn ˆ Tn such that:

(i) Bˆ Tn Ď pR2 ˆ Tnq YAY T ;

(ii) R2 is a neighborhood of double resonances of order smaller than K satisfying the measure estimate

measR2 ď c
‹
ε Kγ ,

where c
‹

is a suitable constant depending only on n;

(iii) A is exponentially small with respect to K:

measA ď e´K{c ;
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(iv) T is union of maximal KAM tori for the natural Hamiltonian Hpy, x; εq :“ 1
2 |y|

2 ` εfpxq.

An immediate corollary of this theorem is that the measure of the ‘non–torus set’ for H does not exceed
Opε| log ε|γq:

Corollary 1.1 Under the assumptions of Theorem 1.1, there exists 0 ă εo ă 1 such that for ε ă εo,
all points in BˆTn lie on a maximal KAM torus for H, except for a subset whose measure is bounded
by c̄ ε| log ε|γ where c̄ “ 1` p2πqnc

‹
cγ .

In particular, this corollary implies the theorem announced in [9, p. 426].
Indeed, from items (i), (ii) and (iii) of Theorem 1.1, there follows

meas
`

pBˆ Tnq z T
˘

ď p2πqnc
‹
εKγ ` e´K{c , (12)

and Corollary 1.1 follows immediately by choosing K :“ c| log ε| (and εo small enough).

The two degrees of freedom is special: in this case the only double resonance is the origin and one can
take as R2 a disk of measure εa with any 0 ă a ă 1 getting a set of KAM tori of exponential density
in the complementary of R2 ˆ T2. This is the content of next corollary (compare, also, [12]).

Corollary 1.2 Let the assumptions of Theorem 1.1 hold and let n “ 2. Then, there exists 0 ă εo ă 1,
such that for ε ă εo and 0 ă a ă 1, all points in the set ty P B : |y| ą εa{2u ˆ T2 lie on a maximal

KAM torus for H in (1), except for an exponentially small set of measure bounded by e´1{p2cεâq, with
â :“ p1´ aq{24.

Remarks and Open Problems

First, we briefly discuss the class of potentials Gns , for which the above results hold; for more informa-
tion on Gns and complete proofs, see [15, Sect. 2].

It is very simple to give explicit examples of functions in Gns , a prototype being11

fpxq :“ 2
ÿ

kPGn
e´|k|1s cos k ¨ x , (13)

which (as it is trivial to verify) satysfies

}f}s “ 1 , lim
|k|

1
Ñ`8

kPGn

|fk|e
|k|

1
s|k|n

1
“ `8 , πZkfpθq “ 2e´|k|1s cos θ .

The class of potentials Gns is quite general from various points of view. For example, the following
result (proven in [15, Sect. 1]) holds:

Proposition 1.1 (i) The class Gns contains an open and dense set in Bns .

(ii) Let F denote the weighted Fourier isometry F : f P Bns Ñ
 

fke
|k|

1
s
(

kPZn›
P `8pZn› q. Then FpGns q is

a set of probability 1 with respect to the standard product probability measure on FpBns q.

11Recall the definitions given in (5), (8) and (7).
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We shall not use this proposition here, however, we shall often use a suitable quantitative characteri-
zation of Gns .
To state such a characterization one needs to make quantitative the notion of Morse functions with dif-
ferent critical values and to introduce a uniform Fourier cut–off function, depending on the dimension
n and on two parameters 0 ă δ ď 1 and s ą 0.

Definition 1.2 (β–Morse functions) Let β ą 0. F P C2pT,Rq is called β–Morse, if

min
θPT

`

|F 1pθq| ` |F 2pθq|
˘

ě β , min
i‰j

|F pθiq ´ F pθjq| ě β , (14)

where θi P T are the critical points of F .

Definition 1.3 (The cut–off function N) Given 0 ă δ ď 1 and n, s ą 0 define the following
‘Fourier cut–off function’:

N “ Npδ; s, nq :“ 2 max
!

1 ,
1

s
log

c
n

sn δ

)

, c
n

:“ 244 p2n{eqn . (15)

Then, the following elementary result holds:

Lemma 1.1 Let n, s ą 0. Then, f P Gns if and only if f P Bns and there exist 0 ă δ ď 1 and β ą 0
such that

|fk| ě δ|k|´n
1

e´|k|1s , @ k P Gn , |k|
1
ě N , (16)

πZkf is β´Morse , @ k P Gn , |k|
1
ď N . (17)

The proof of this lemma is given in Appendix.

Remarks

(R1) By item (i) in Theorem 1.1, we see that the phase space of a generic nearly–integrable natural
system can be covered by two ‘small’ sets, namely, R2 ˆ Tn and A, and one ‘large’ set, namely, T .
Such sets exhibit quite different dynamics and satisfy the following properties.

‚ R2 ˆ Tn is contained in a tubolar neighborhood of double resonances Rk,` X B of order not
exceeding K; compare (25) and (26) below. As mentioned in the Introduction, the set R2 ˆ Tn

contains a set of measure ε where the dynamics is not perturbative in the sense that, as long
as trajectories lie in this set, the dynamics is ruled by an effective Hamiltonian having no small
parameters.

‚ The set A, which has measure „ e´K{c, is dynamically very interesting. For example, it is where
the asymptotic manifolds of lower dimensional tori break up (‘exponentially small splitting
of separatrices’) giving rise, e.g., to local horse shoe dynamics and, most likely, to Arnol’d
diffusion12.

‚ In the complement of the two above small sets, namely in T X pB ˆ Tnq, all trajectories lie on
maximal KAM tori for H and the dynamics is quasi–periodic (with possibly exponentially small
Diophantine constant).

12This statement has not yet been proven in any generality in the analytic class; for references to Arnol’d diffusion
see, e.g., [3], [18], [8], [39], [20], [40], [30], [7], [21], [17], [25], [26].
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(R2) The sets R2 and A depend, in particular, upon ε and K and choosing K as a suitable function of
ε so as to obtain larger neighborhoods of double resonances, leads to different coverings of the phase
space with improved measure estimates on A. For example:

‚Almost–exponential density outside a region of measure Opε| log ε|2γq:
Letting K “ log2 ε in Theorem 1.1 with ε small enough (so that (11) is met), the sets R2 and A satisfy
the estimates

measpR2 ˆ Tnq ď c
‹
ε | log ε|2γ , measA ď εplog |ε|q{c .

In other terms, outside a neighborhood of Opε | log ε|2γq of double resonances, the ‘non–torus set’ is
almost exponentially small (i.e., smaller than any power of ε).

If we allow for a neighborhood of double resonances of size εa with a ă 1, we get a pure exponential
density of KAM tori outside R2 ˆ Tn:

‚Exponential density outside outside a region of measure Opεaq:
Let 0 ă a ă 1 and choose K “ 1{εā with ā :“ p1 ´ aq{γ in Theorem 1.1 and let ε be small enough.
Then, the sets R2 and A satisfy the estimates

measpR2 ˆ Tnq ď c
‹
εa , measA ď e´1{cεā . (18)

In other terms, outside a neighborhood of Opεaq of double resonances, the ‘non–torus set’ is exponen-
tially small in 1{ε.

(R3) As anticipated in the Introduction, Corollary 1.2 and Corollary 1.1 prove – or, more precisely,
are in agreement with – the conjectures made by Arnol’d, Kozlov and Neishtadt mentioned in the
Introduction. Notice, however, that the argument sketched by Arnol’d, Kozlov and Neishtadt in [5] to
support their conjecture for n ě 3 (reported in footnote 4 above) only suggests a lower bound on the
measure of the non–torus set, while, here, we provide a rigorous upper bound on it.
We also mention that that Corollary 1.2 is a particular case (with slightly better constants) of (18),
but, since we are in two action–dimensions, it is possible to take R2 simply as a small ball around the
origin (while for n ě 3 it is a more complicate set).

(R4) The ‘Kolmogorov’s set’ T if formed by primary and secondary tori: Such secondary tori are not
deformation of integrable tori and, in particular, they are never graphs over Tn.
We remark also that the set T is not contained in BˆTn, and indeed many of the invariant tori in T
(corresponding to a set of measure „

?
ε) have oscillations outside B ˆ Tn; this fact is unavoidable,

as near the boundary tori do oscillate by a quantity of order
?
ε.

(R5) In Theorem 1.1 there appear two constants c and c
‹

(the other constants appearing in the
corollaries of Theorem 1.1 are simply related to such two constants). The constant c

‹
depends only on

the action–dimension n (compare Lemma 2.1 below). More relevant for measure estimates in phase
space is the constant c.
The constant c can be calculated in terms of a few analytic properties of the potential f . In fact, c
depends on six parameters: n ě 2; s ą 0; a positive number δ quantifying property (9) (compare (16));
a positive number β quantifying property (10) (compare (17)); and two more positive parameters ξ and
m (introduced in Definition 4.3), which, in turn, are suitable non–degeneracy parameters associated
to the (normalized) second derivative of the action–to–energy maps associated to the integrable 1–
degree–of–freedom Hamiltonians p2 ` πZkfpqq with |k|1 ď N where N is as in Definition 1.3. For more
details on how the constant c depends on the various parameters, see (243) and (244) below.

(R6) The actual effective hypothesis of Theorem 1.1 is the condition K ě c in (11), which is used
almost in all the proofs given in this paper.
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The second condition, εKγ ď 1, strictly speaking, is not really necessary, and it is used (for simplicity)
only in Proposition 3.2 below. However, as it obvious even from the statement of the Theorem 1.1
(compare with the measure estimate in item (ii)), if εKγ is not small, some statements might be empty.

(R7) One of the main issues in singular KAM theory in analytic class is the identification of a suitable
generic class of analytic potentials. We stress that the choice of the class Gns is tailored on the simple
structure of natural Hamiltonian systems.

Open problems

(i) It might not be difficult to prove that Theorem 1.1 can be generalized to natural systems with
Hamiltonians of the form hpyq`εfpy, xq with h Kolmogorov non–degenerate and f verifying (16) and
(17) uniformly in y P B. However, in such a case, the class of perturbations f would not be generic,
since, in general, one expects that the Fourier coefficients fkpyq may vanish at some points y P B.
Selecting an analytic generic class of perturbations, to which Theorem 1.1 extends, is a non–trivial
issue.

(ii) The results in this paper hold for generic potentials f P Gns , and, do not cover special cases such
as, e.g., the case of f trigonometric polynomial, or other cases with special symmetries, as they arise,
e.g., in Celestial Mechanics.

(iii) In view of our techniques, the logarithm appearing in Corollary 1.1 appears to be unavoidable,
and one may wonder if it is possible to get rid of it.

(iv)˚ The argument sketched by Arnol’d, Kozlov and Neishtadt for the lower bound on the measure
of the non–torus set rests on the claim that a general real analytic Hamiltonian system with no small
parameters has a positive measure set free of invariant Lagrangian tori, however this is not been
proved13.

(v)˚ Generic Arnol’d diffusion in analytic class: It is natural to expect that, for n ě 3 and for generic
potentials f P Gns , almost every non–empty energy level of H “ 1

2 |y|
2 ` εfpxq is orbit–connected, i.e.,

arbitrary neighborhoods of two points on such levels intersect an orbit of φtH no matter how small ε is.

2 Prerequisites

In this section we recall a few prerequisites, which are needed to discuss the ‘secondary’ nearly–
integrable structure that appears near simple resonances.

We begin by recalling the averaging theory for nearly–integrable real analytic Hamiltonian systems
as discussed in [11] and [15], especially designed for neighborhoods of simple resonances.

On one hand, apart from a finite (although arbitrarily large) number of simple resonances of order
less than N, the secular (averaged) Hamiltonians have a uniform normal form with a potential close
to a shifted cosine (§ 2.1). On the other hand, the secular Hamiltonians at simple resonances of order
less or equal than N admit a simple normal form called ‘Generic Standard Form’ (§ 2.2). Such Generic
Standard Form Hamiltonians can, then, be put into action–angle variables that can be analytically
and uniformly controlled thanks to the theory developed in [14] (§ 2.3).

13For related results in smooth category, see [29].
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2.1 Averaging

Non–resonant and simply resonant sets
First, we need to introduce suitable non/simply–resonant sets, which depend upon some quantita-
tive parameters measuring Fourier cut–offs and small divisors. In particular, we define the ‘non–
perturbative’ set R2 – which is a neighborhood of double resonances up to order K – and prove item
(ii) of Theorem 1.1.

For k ‰ 0, denote by πk and πKk , the standard orthogonal projections

πky :“ py ¨ k
|k| q

k
|k| , πKk y :“ y ´ πky , (19)

and let Ko, K and α be positive numbers such that

Ko ě 2 , K ě 6Ko , α :“
?
εKν , ν :“ 9

2n` 2 . (20)

Recall the definition of GnK in (6) and define the following real subsets of B “ ty P Rn : |y| ă 1u:

R0 :“ ty P B : |y ¨ k| ą α
2 , @k P G

n
Ko
u , (21)

#

R1,k :“
 

y P B : |y ¨ k| ă α; |πKk y ¨ `| ą
3αK
|k| ,@` P G

n
K zZk

(

, pk P GnKo
q;

R1 :“
Ť

kPGnKo
R1,k ;

(22)

R2 :“ BzpR0 YR1q . (23)

The first key remark is that the measure of R2 is proportional to ε, as shown in the following lemma14,
which proves item (ii) of Theorem 1.1,

Lemma 2.1 There exists a constant c
‹
“ c

‹
pnq ą 1 such that

measR2 ď c
‹
α2 K2n “ c

‹
ε Kγ , γ :“ 11n` 4 . (24)

Proof First observe that from the definitions of R0, R1,k and R2 in (21), (22) and (23), it follows
immediately that

R2 Ď
ď

kPGnKo

ď

`PGnK
`RZk

R2
k,` , (25)

with
R2
k` :“

 

y P B : |y ¨ k| ă α; |πKk y ¨ `| ď
3αK
|k|

(

, pk P GnKo
, ` P GnK zZkq . (26)

Let us, then, estimate the measure of R2
k,` in (26). Denote by v P Rn the projection of y onto the

plane generated by k and ` (recall that, by hypothesis, k and ` are not parallel); then,

|v ¨ k| “ |y ¨ k| ă α , |πKk v ¨ `| “ |π
K
k y ¨ `| ď 3αK{|k| . (27)

Set
h :“ πKk ` “ `´ `¨k

|k|2 k . (28)

Then, v decomposes in a unique way as v “ ak ` bh for suitable a, b P R. By (27),

|a| ă
α

|k|2
, |πKk v ¨ `| “ |bh ¨ `| ď 3αK{|k| , (29)

14Compare, also, Lemma 2.5 in [15].
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and, since |`|2|k|2 ´ p` ¨ kq2 is a positive integer (recall, that k and ` are integer vectors not parallel),

|h ¨ `|
p28q
“
|`|2|k|2 ´ p` ¨ kq2

|k|2
ě

1

|k|2
.

Hence,
|b| ď 3αK|k| . (30)

Then, write y P R2
k,` as y “ v ` vK with vK in the orthogonal complement of the plane generated by

k and `. Since |vK| ď |y| ă 1 and v lies in the plane spanned by k and ` inside a rectangle of sizes of
length 2α{|k|2 and 6αK|k| (compare (29) and (30)), we find

measpR2
k,`q ď

2α
|k|2 p6αK|k|q 2n´2 “ 3 ¨ 2n α2 K

|k| , @

"

k P GnKo
,

` P GnK zZk .

Thus, since
ÿ

kPGnKo

|k|´1 ď c Kn´1
o for a suitable c “ cpnq, (24) follows immediately taking c

‹
“ 18c.

Remark 2.1 (i) By the second relation in (11) it follows that α ă 1{Kn.
(ii) R0 is a non resonant set up to order Ko; R1,k is a simply resonant set around Rk but far away
from any R` with ` P GnK (` ‰ k); R2 is contained in a neighborhood of double resonances of order K

(compare relation (25) below). According to the terminology in [36], R0 is pα{2, Koq completely non–
resonant, while, for each k P GnKo

, the set R1,k is p2αK{|k|q–non resonant modulo Zk up to order K.
(iii) From the definition of R2 in (23) it follows trivially that tRiu is a covering of B.
(iv) Having two different Fourier cut–offs Ko and K is necessary in order to obtain high order ‘cosine–
like’ normal forms as described in point (iii) of the averaging Theorem 2.1 below; compare also [11].

Notations
Given m ě 1, D Ď Rm, and r ą 0, let us denote Dr the complex neighborhood of D given by

Dr :“
ď

zPD

ty P Cm : |y ´ z| ă ru .

For s ą 0, let Tms denote the complex neighborhood of width 2s of Tm given by

Tns :“ tx “ px1, ..., xmq P Cn : | Imxj | ă su{p2πZmq .

We shall also use the notation Re pVrq to denote the real r–neighbourhood of V Ď Rn, namely,

Re pVrq :“ Vr X Rn “
ď

zPV

ty P Rn : |y ´ z| ă ru . (31)

Given D Ď Rn and a function f defined, respectively, on Dr, Tms , Dr ˆ Tms , we denote its sup norm,
respectively, by

|f |D,r :“ sup
yPDr

|fpyq| , |f |s :“ sup
xPTms

|fpxq| , |f |D,r,s :“ sup
py,xqPDrˆTms

|fpx, yq| .
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Analytcity parameters To formulate properly next (normal form) theorem, we need to introduce
a few ‘analyticity parameters’ related to the analyticity width s and the numbers α, Ko and K in (20).
We define:

ro :“ α
16Ko

, r1o :“ ro
2 , so :“ s

`

1´ 1
Ko

˘

, s1o :“ so

`

1´ 1
Ko

˘

,

s› :“ s
`

1´ 1
K

˘

, s1› :“ s›
`

1´ 1
K

˘

, s1k :“ |k|
1
s1› , (32)

rk :“ α
|k| , r1k :“ rk

2 ,

r̃k :“ rk
c1 |k|

, s̃k :“ s
c
1
|k|n´1 , where c

1
:“ 5npn´ 1q

n´1
2 .

We also need the following consequence of Bezout’s Lemma, which will allow to define the effective
‘resonant angle’ near simple resonances:

Lemma 2.2 For any k P Gn there exists a matrix Â P Zpn´1qˆn such that15

A :“

ˆ

k

Â

˙

“

ˆ

k1 ¨ ¨ ¨ kn
Â

˙

P SLpn,Zq ,

|Â|
8
ď |k|

8
, |A|

8
“ |k|

8
, |A´1|

8
ď pn´ 1q

n´1
2 |k|n´1

8
. (33)

Proof From Bézout’s lemma it follows easily that16:

Given k P Zn, k ‰ 0 there exists a matrix A “ pAijq1ďi,jďn with integer entries such that Anj “ kj @
1 ď j ď n, det A “ gcdpk1, ..., k1q, and |A|

8
“ |k|

8
.

Since k P Gn, it is gcdpk1, ..., k1q “ 1 and, therefore, det A “ 1.
The first two relations in (33) are consequence of the above statement.
Observing that for any mˆm matrix M, one has |det M| ď mm{2|M|m

8
, the bound on |A´1|

8
follows

from D’Alembert expansion of determinants.

The following normal form result – proven in17 [15] – holds:

Theorem 2.1 (Normal Form Theorem) Fix n ě 2, s ą 0. Let H be as in (1) with f P Bns satisfying
(16) with N as in (15); let (20)˜(22) and (32) hold. For k P GnKo

, let A be the matrix in Lemma 2.2
and define the following real sets:

rR0 :“ Re pR0
r1o{2
q , rR1,k :“ Re pR1,k

r1k{2
q , Dk :“ A´T rR1,k , pk P GnKo

q . (34)

Then, there exists a constant c0 “ c0pn, s, δq ě N such that if Ko ě c0 , there exist real analytic
symplectic maps

Ψo : R0
r1o
ˆ Tns1o Ñ R0

ro ˆ Tnso , Ψk : Dk
r̃k
ˆ Tns̃k Ñ R1,k

rk
ˆ Tns› (35)

having the following properties.

(i) In the symplectic variables py, xq P R0
ro ˆ Tnso , H takes the form:

Hopy, xq :“
`

H ˝Ψo

˘

py, xq “
|y|2

2
` ε

`

gopyq ` fopy, xq
˘

, xfoy “ 0 ,

15|M |8 , with M matrix (or vector), denotes the maximum norm maxij |Mij | (or maxi |Mi|).
16See Lemma A.1 in [11] for a proof.
17See Theorem 2.1 and the Covering Lemma 2.3 in [15].
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with go and fo satisfying

|go|r1o ď ϑo :“
1

K6n`1
, |fo|r1o,s1o ď e´Kos{3 . (36)

(ii) Let k P GnKo
. In the symplectic variables py, xq “

`

y, px1, x̂q
˘

P Dk
r̃k
ˆ Tns̃k , H takes the form:

Hkpy, xq :“ H ˝Ψkpy, xq “ Hkpy, x1q ` εf̄
kpy, xq , py, xq P Dk

r̃k
ˆ Tns̃k , (37)

where

Hkpy, x1q :“
1

2
|AT y|2 ` εgkopyq ` εg

kpy, x1q (38)

is real analytic in y P Dk
r̃k

and x1 P Ts1k . In particular gkpy, ¨q P B1
s1k

for every y P Dk
r̃k

. Furthermore,

the following estimates hold:

|gko |r̃k ď ϑo , |gk ´ πZkf |r̃k,s1k ď ϑo , |f̄k|r̃k,s̃k ď e´Ks{3 . (39)

(iii) If k P GnKo
satisfies |k|

1
ě N, then there exists θk P r0, 2πq such that

Hk “
1

2
|AT y|2 ` εgkopyq ` 2|fk|ε

“

cospx1 ` θkq ` F
k
› px1q ` gk› py, x1q ` fk› py, xq

‰

,

where

F k› pθq :“
1

2|fk|

ÿ

|j|ě2

fjke
ijθ P B1

1 , |F k› |1 ď 2´40 .

Moreover, gk› py, ¨q P B1
1 (for every y P Dk

r̃k
), πZkf

k
› “ 0, and one has

|gk› |r̃k,1 ď
1

K5n , |fk› |r̃k,s̃k ď e´Ks{7 .

(iv) Finally, the following ‘coverings’ holds:

Ψo

`

rR0 ˆ Tn
˘

Ě R0 ˆ Tn , Ψk
`

Dk ˆ Tn
˘

Ě R1,k ˆ Tn . (40)

Remark 2.2 (i) Beware that, while Ψo is a map close to the identity, Ψk is not, as it is the composition
of a linear transformation18 with a near–to–identity map.

(ii) The larger covering in (34) is introduced so that (40) holds: Such a property will be essential in
covering also boundary regions by KAM tori without leaving out (as it happens in standard KAM
theory) regions of size of order

?
ε, a fact that, for our purposes, would be clearly not acceptable.

(iii) Point (iii) in Theorem 2.1 shows that the secular Hamiltonian Hk (obtained disregarding the
exponentially small perturbation fk› ) has a potential, which is Op1{K5nq–perturbation of the ‘cosine–
like function’

cospx1 ` θkq ` F
k
› px1q , where |F k› |1 ď 2´40 .

This means that for |k|1 ě N, the secular Hamiltonians at simple resonances all look the same, allowing,
in particular, for a uniform analysis in terms of action–angle variables (compare § 2.3 below).

Notice also that the perturbation fk› , which is bounded by e´Ks{7 has a factor |fk| in front of it and
that such a factor, in turn, may be exponentially small (since |fk| „ e´|k|1s for large |k|

1
).

(iv) For later use we observe that19

Ko ě N ě 2cs , where cs :“ maxt1, 1{su . (41)
18Namely, the symplectic transformation, the generating function of which is given by y ¨ Ax, and which maps the

resonant combination k ¨ x to the ‘resonant’ angle x1.
19If s ě 1 then N ě 2 ě 2{s, while if s ă 1 then the logarithm in (15) is larger than one, so that N ě 2{s also in this

case.
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2.2 Generic Standard Form at simple resonances

It turns out that the secular Hamiltonians Hk in (37)–(38) in the Normal Form Theorem 2.1 for k P GnKo
,

have a common uniform analytic structure: They can be put into a standard form, which has uniform
(in k P GnKo

) analytic characteristics. The precise formulation of this fact is the main theorem in [15],
whose statement needs some preparation.

Definition 2.1 (1D Hamiltonians in standard form) Let D̂ Ď Rn´1 be a bounded domain, R ą 0
and D :“ p´R, Rq ˆ D̂. We say that a real analytic Hamiltonian H5 is in Generic Standard Form (in
short, ‘standard form’) with respect to the symplectic variables pp1, q1q P p´R, Rq ˆ T and ‘external
actions’ p̂ “ pp2, ..., pnq P D̂, if H5 has the form

H5pp, q1q “
`

1` νpp, q1q
˘

p2
1 ` Gpp̂, q1q , (42)

where p “ pp1, p̂q “ pp1, p2, ..., pnq, and the following specifications hold.

‚ ν and G are real analytic functions defined on, respectively, Dr ˆ Ts and D̂r ˆ Ts for some
0 ă r ď R and s ą 0;

‚ G has zero–average and there exists a zero–average function Ḡ (the ‘reference potential’) depending
only on q1 such that, for some β ą 0, Ḡ is β–Morse20;

‚ the following estimates hold:

$

’

’

’

’

&

’

’

’

’

%

sup
T1
s

|Ḡ| ď ε ,

sup
D̂rˆT1

s

|G´ Ḡ| ď εµ , for some 0 ă ε ď r2{216 , 0 ď µ ă 1 ,

sup
DrˆT1

s

|ν| ď µ .

(43)

We shall call pD̂, R, r, s,β, ε,µq the ‘analyticity characteristics’ of H5 with respect to the reference
potential Ḡ.

Remark 2.3 (i) A Hamiltonian in standard form H5 has the analytic features of its reference natural
Hamiltonian

H̄5 :“ p2
1 ` Ḡpq1q .

In particular, for µ small with respect to 1{κ, H5 has the same finite (because of analyticity) number
of equilibria (which lie on the q1 axis) of Ḡ and in the same relative order, which is also preserved by
the corresponding critical energies; compare Lemma 2.4 below.

(ii) If H5 is in standard form, then β and ε satisfy the relation21 ε{β ě 1{2. Furthermore, one can
always fix a number κ ě 4 so that:

1{κ ď s ď 1 , 1 ď R{r ď κ , 1{2 ď ε{β ď κ . (44)

Such a parameter κ rules the main scaling properties of these Hamiltonians.

20Recall Definition 1.2.
21By (43), β ď |Ḡpθiq ´ Ḡpθiq| ď 2 maxT |Ḡ| ď 2ε.
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(iii) Hamiltonians in standard form are particularly suited for the analytic theory of action–angle
variables (in neighborhoods of separatrices) as developed in [14], where the notion of Generic Standard
Form has been introduced. Such action–angle variables will be reviewed in § 2.3 below.

(iv) The smallness of the ‘adimensional ratio’ ε{r2 in (43) is needed in the analytic theory of action-
angle variables for Hamiltonians in standard form developed in [14], however the factor 1{216 is rather
arbitrary and not optimal.

Notation If w is a vector with n or 2n components, ŵ “ pwqp denotes the last pn´ 1q components; if
w is vector with 2n components, w̌ “ pwqq denotes the first n` 1 components. Explicitly:

w “ py, xq “
`

py1, ..., ynq, px1, ...xnq
˘

ùñ

$

’

’

&

’

’

%

ŵ “ pwqp“ px2, ..., xnq “ x̂ ,
ŷ “ pyqp“ py2, ..., ynq ,
w̌ “ pwqq “ py, x1q ,
w “ pw̌, ŵq .

(45)

Next, we introduce a special simple group of symplectic transformations, which will appear in Theo-
rem 2.2 below.

Definition 2.2 Given a domain D̂ Ď Rn´1, we denote by G
:

the abelian group of symplectic diffeo-

morphisms Ψg of pRˆ D̂q ˆ Rn given by

pp, qq P pRˆ D̂q ˆ Rn
Ψg
ÞÑ pP,Qq “ pp1 ` gpp̂q, p̂, q1, q̂ ´ q1Bp̂gpp̂qq P pRˆ D̂q ˆ Rn , (46)

with g : D̂ Ñ R smooth.

Remark 2.4 The group properties of G
:

are trivial:

idG
:
“ Ψ0 , Ψ´1

g “ Ψ́ g , Ψg ˝Ψg1 “ Ψg`g1 . (47)

Notice that, unless Bp̂g P Zn´1, maps Ψg P G: do not induce well defined maps22

q P Tn ÞÑ pq1, q̂ ´ q1Bp̂gpp̂qq P Tn ,

a fact that will create a problem in applying the theory of this and next section to the normalized
Hamiltonians Hk of Theorem 2.1; compare Remark 2.6–(ii) below.

Let us now spell out all the assumptions and definitions, which, from now, will be part of the hypotheses
of all statements regarding the natural system with Hamiltonian H as in (1).

Assumptions 2.1 Fix n ě 2, s ą 0, and let H be as in (1) with f P Gns (Definition 1.1) satisfying
(16) and (17) for some 0 ă δ ď 1 and β ą 0 with23 N as in (15).

22In general, given A P SLpn,Zq and a 2π–multi–periodic function f : Rn Ñ Rn, we identify the Rn–map x P Rn Ñ
fpxq “ Ax ` gpxq P Rn with the Tn–map given by θ P Tn Ñ F pθq “ πTn

`

Ax ` fpxq
˘

P Tn where θ “ x ` 2πZn and
xÑ πTn pxq “ x` 2πZn is the projection of Rn onto Tn.

23By Lemma 1.1 such δ and β always exist.
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Definition 2.3 Given H as in Assumption 2.1, we define the following sets and parameters.
‚Let Ko, K and α be as in (20); let Ri’s be the domains defined in (21)˜(22); let the definitions in
(32) hold (‘analiticity parameters’).

‚For k P GnKo
, let A be the matrix in Lemma 2.2. Let rR0, rR1,k and Dk be the real domains defined

in (34).
‚Define the following parameters24:

R “ α{|k|2 “
?
εKν{|k|2 , c2 “ 4n

3
2 c1 , r “ R{c2 , εk “

2ε
|k|2 ,

D̂ “
 

Î P Rn´1 : |πKk ÂT Î| ă 1 , min
`PGnK
`RZk

ˇ

ˇ

`

πKk ÂT Î
˘

¨ `
ˇ

ˇ ě 3αK
|k|

(

, D “ p´R, Rq ˆ D̂ ,

β “

"

εkβ, if |k|
1
ă N

εk|fk|, if |k|
1
ě N

, χ
k
“

"

1 , if |k|
1
ă N

|fk| , if |k|
1
ě N

, ε “ csεk χk ,

s “

"

mint s2 , 1u , if |k|
1
ă N

1 , if |k|
1
ě N

, š “

"

s1k , if |k|
1
ă N ,

1 , if |k|
1
ě N

, µ “
1

K5n
.

(48)

Remark 2.5 (i) Since |fk| ď 1 one has:
|χ
k
| ď 1 . (49)

Furthermore, by the definitions in (48) and (20), by (49) and (41), one has

?
ε ă csR{K

ν´1 ă R{K
9
2n . (50)

(ii) Since p1´ 1
K
q´2 ă 2, by definition of s1k in (32), one has

s ď 2š . (51)

We can, now, state the main result of25 [15]:

Theorem 2.2 (Generic Standard Form at simple resonances)
Let Assumptions 2.1 and Definitions 2.3 hold, let c0 be the constant defined in Theorem 2.1, and
assume that Ko ě maxtc2 , c0u. Then, for all k P GnKo

, the following holds.

(i) There exists a real analytic symplectic transformation

Φ› : pp, qq P D ˆ Rn Ñ py, xq “ Φ›pp, qq P R2n , (52)

such that: Φ› fixes p̂ and26 q1; for every p̂ P D̂ the map pp1, q1q ÞÑ py1, x1q is symplectic; the pn` 1q–
dimensional map27 Φ̌› depends only on the first n` 1 coordinates pp, q1q, is 2π–periodic in q1 and, if
Dk “ A´TR1,k and Hk are as in Theorem 2.1, one has28

Φ̌› : Dr ˆ Tš Ñ Dk
r̃k
ˆ Tš ,

Hk ˝ Φ̌›pp, qq “: |k|
2

2 pHkpp, q1q ` ĥkpp̂qq , (53)

sup
p̂PD̂2r

ˇ

ˇĥ
k
pp̂q ´ Q̂kpp̂q

ˇ

ˇ ď 12
|k|2 εµ , Q̂kpp̂q :“ 1

|k|2 |π
K
k ÂT p̂|2 .

24Here and in what follows we shall not always indicate explicitly the dependence upon k. Recall the definitions of
c1 , Â and cs in, respectively, (32), Lemma 2.2 and (41).

25Compare Theorem 3.1 in [15].
26I.e., in (52) it is y “ p̂, x1 “ q1.
27Recall the notation in (45).
28 rk, r̃k and s1k are defined in (32).
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(ii) Hk in (53) is in Generic Universal Form according to Definition 2.1:

Hkpp, q1q “
`

1` ν
k
pp, q1q

˘

p2
1 ` G

k
pp̂, q1q , (54)

having reference potential
Ḡ “ Ḡ

k
:“ εk πZkf , (55)

analyticity characteristics given in (48), and κ verifying (44) with29

κ “ κpn, s, βq :“ max
 

c2 , 4cs , cs{β
(

. (56)

(iii) The map Φ› is obtained as composition of three symplectic maps:

Φ› “ Φ
1
˝ Φ

2
˝ Φ

3
, (57)

where30:

‚ Φ
1

:“ Ψg1
P G

:
with g

1
pp̂q :“ ´ 1

|k|2 pÂkq ¨ p̂;

‚ Φ2pp, qq “ pp1 ` η2 , p̂, q1, q̂ ` χ2q for suitable real analytic functions η2 “ η2pp̂, q1q and χ2 “

χ
2
pp̂, q1q satisfying

|η
2
|4r,š ă

εkχk
r
µ , |χ

2
|2r,š ă

4εkχk
r2 µ ; (58)

‚ Φ
3

:“ Ψg3
P G

:
for a suitable real analytic function g

3
pp̂q satisfying

|g3 |4r ă
εkχk
r
µ . (59)

Remark 2.6 (i) The main point of the above theorem is item (ii), which shows that the ‘simply–
resonant Hamiltonians’ Hk in (53) are in uniform Generic Standard Form. The word ‘uniform’ refers to
the fact that the parameter κ (defined in (56) and satisfying (44)) – which rules the scaling properties
of the normalized Hamiltonians Hk – does not depend upon k, allowing, e.g., for a uniform (in k P GnKo

)
treatment of action–angle variables (compare next Section 2.3).

(ii) There is, however, a drawback in the construction of the above normal forms, namely, that the
maps Φ

1
and Φ

3
appearing in the definition of Φ› (item (iii) in the above theorem), do not induce

well defined maps on Tn; compare Remark 2.4. Therefore, a non trivial homotopy issue will have to
be faced in considering the global secondary nearly–integrable structure of the system near simple
resonances. On the other hand, the map Φ2 is well defined also on Tn. This matter will be discussed
in details in Section 3.

The following remark explains the individual purpose of the three symplectic transformations Φ
j

whose
composition forms Φ›.

Remark 2.7 (i) The map Φ
1

in the definition of Φ› is a linear map that has the purpose of block–
diagonalize the quadratic part |AT y|2 appearing in (38), so as to obtain a kinetic part which is the
sum of a quadratic part in p1 and a quadratic pn´ 1q–dimensional part in p̂. Indeed, rewriting Φ1 as

py, xq “ Φ1pp, qq :“
`

Up,U´T q
˘

, where U :“

˜

1 ´ 1
|k|2 pÂkq

T

0 idn´1

¸

, (60)

29cs is defined in (41).
30Recall Definition 3.1.
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and observing that
AT y “ ATUp “ p1k ` πKk ÂT p̂ ,

one sees that
|ATUp|2 “ |k|2p2

1 ` |π
K
k ÂT p̂|2 “ |k|2pp2

1 ` Q̂kpp̂qq , (61)

Q̂k being the positive definite quadratic form in p̂ “ p̂ defined in (53).

Furthermore, y “ pATUqp if and only if y ¨ k “ p1|k|
2 and πKk y “ πKk AT p̂, which, recalling the

definition of rR1,k in (22), shows that

ATUD “ rR1,k ùñ measD “ meas rR1,k . (62)

Notice also that, from (48), the definitions of Φ
1

and U, and the definition of Dk in Theorem 2.1–(i),
it follows that

Φ̌1pD ˆ Tq “ UD ˆ T “ Dk ˆ T . (63)

Incidentally, observe that from (33) it follows that the norms of U and its inverse satisfy the bounds31

|U|, |U´1| ď n
?
n . (64)

(ii) The second map Φ2 is a near–to–identity symplectic (globally well–defined) transformation, which
is introduced so as to transform Hk into a Hamiltonian with a potential independent of p1.

(iii) Φ
3

is a near–to–identity symplectic map, which sets all critical points on the line p1 “ 0.

2.3 Action–angle variables for 1D standard Hamiltonians

In this subsection we review the general theory of action–angle variables for Hamiltonian systems in
standard form as developed in [14], where complete proofs may be found.

This subsection is independent from the previous ones; in particular the analytic characteristics D̂,
R, r, etc., are arbitrary (and do not refer to the definitions given in (48) in the specific case of the
secular Hamiltonians Hk).

Topology of the phase space of 1D Hamiltonians in standard form

We begin by describing the topological structure of the p̂–dependent phase space of a givern Hamil-
tonian pp1, q1q ÞÑ H5pp1, p̂, q1q in generic standard form according to Definition 2.1.

For a fixed p̂ P D̂, we take as phase space of H5 the subset of Rˆ T given by

M “Mpp̂q :“ tpp1, q1q P Rˆ T
ˇ

ˇ H5pp1, p̂, q1q ă E5u , E5 :“ R2 ` Rr , (65)

where R and r are as in Definition 2.1. Although such sets depend on the parameter p̂ P D̂, for µ small
enough, they are close to a box:

31As usual, for a matrix M we denote by |M | “ sup
u‰0

|Mu|{|u| the standard operator norm.
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Lemma 2.3 Let H5 be as in Definition 2.1 and M be as in (65), and assume that32

µ ď 1{p4κq2 . (66)

Then, for all p̂ P D̂, one has

`

´ R´ r
3 , R`

r
3

˘

ˆ T ĎMpp̂q Ď
`

´ R´ r
2 , R`

r
2

˘

ˆ T . (67)

The simole proof is given in Appendix.

Since the reference potential Ḡ is a β–Morse function, it has 2N critical points, for some N P N, with
different critical values. Let θ̄0 P r0, 2πq be the unique point of absolute maximum of the reference
potential Ḡ of H5. Then, the relative strict non–degenerate maximum and minimum points of Ḡ, θ̄i P
rθ̄0, θ̄0 ` 2πs, (0 ď i ď 2N) follow in alternating order, θ̄0 ă θ̄1 ă θ̄2 ă . . . ă θ̄2N :“ θ̄0 ` 2π, in
particular, θ̄i are relative maxima/minima points for i even/odd. The corresponding distinct critical
energies will be denoted by

Ēi :“ Ḡpθ̄iq , Ē2N “ Ē0 being the unique global maximum of Ḡ . (68)

By the Implicit Function Theorem, for µ small enough with respect to κ, one can continue the 2N
critical points θ̄i of Ḡ obtaining 2N critical points θi “ θipp̂q of Gpp̂, ¨q for p̂ P D̂. The corresponding
distinct critical energies become

Ei “ Eipp̂q :“ Gpp̂, θipp̂qq . (69)

Furthermore, for µ small , the functions θipp̂q and Eipp̂q preserve the same order of θ̄i and Ēi. Indeed,
from Definition 1.2 and the Implicit Function Theorem, the following result proven in [14] holds33:

Lemma 2.4 Let H5 be as in Definition 2.1 and assume that34

µ ď 1{p2κq6 . (70)

Then, the functions θipp̂q and Eipp̂q defined above are real analytic in p̂ P D̂r and

supp̂PD̂r
|θipp̂q ´ θ̄i| ď

2εµ
βs

, supp̂PD̂r
|Eipp̂q ´ Ēi| ď 3κ3εµ . (71)

Furthermore, the relative order of θipp̂q and Eipp̂q is, for every p̂ P D̂r, the same as that of, respectively,
θ̄i and Ēi.

Therefore, under the assumption (70), we see that the phase space M is disconnected by the separa-
trices35 into exactly 2N ` 1 open connected components Mi “Mipp̂q, for 0 ď i ď 2N , which can be
labelled so that:

‚ the odd regions M2j´1 (for 1 ď j ď N) contain the elliptic points p0, θ2j´1q and have as
boundary parts of separatrices; topologically, such regions are discs;

‚ the outer even regions M0 and M2N are homotopically non trivial annuli bounded by the most
external separatrices and one of the two curves H´1

5
pE5q;

32Recall the definition of κ in (44).
33See Lemma 3.1 in [14].
34Notice that condition (70) is stronger than (66).
35I.e., the stable manifolds (curves) of the hyperbolic points p0, θ2jq.
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‚ when N ą 1, the inner even regions M2j (for 1 ď j ď N ´ 1) are homotopically trivial annuli36

whose boundary is given by two pieces of separatrices (with different energies).

The Morse potential Ḡpq1q “ sin q1 `
1
2

cosp5q1q with 10 critical points (top)

and the phase portrait of H5 :“ p2
1 ` Ḡpq1q (bottom)

Labels of corresponding regions are as in Definition 2.4

More formally, we can define the 2N ` 1 regions Mi in terms of suitable energy intervals pE
piq
´ , E

piq
` q

as follows.

Let Ei be the critical energies defined in (69), and let E5 the reference energy defined in (65).

Definition 2.4 (i) (Outer regions) For i “ 0, 2N , let E
p0q
´ “ E

p2Nq
´ :“ E0, and E

p0q
` “ E

p2Nq
` :“ E5.

Then, the ‘lower outer region’ Mp0q is the connected component of H´1
5

`

pE
p0q
´ , E

p0q
` q

˘

contained in

tp1 ă 0u, while the ‘upper outer region’ Mp2Nq is the connected component of H´1
5

`

pE
p2Nq
´ , E

p2Nq
` q

˘

contained in tp1 ą 0u.
(ii) (Inner region, N “ 1) When N “ 1, Mp1q is just the region enclosed by the unique separatrix

H´1
5
pE0q; the orbits in Mp1q have energies ranging in the critical interval rE

p1q
´ , E

p1q
` q :“ rE1, E0q.

(ii) (Inner regions, N ą 1) Define E
piq
´ :“ Ei.

For i odd, let E
piq
` :“ mintEi´1, Ei`1u and define Mpiq as the connected component of H´1

5

`

rE
piq
´ , E

piq
` q

˘

containing the elliptic equilibrium p0, θiq.
Finally, for 0 ă i “ 2j ă 2N even, define

j´ :“ maxt` ă j
ˇ

ˇ E2` ą E2ju , j` :“ mint` ą j
ˇ

ˇ E2` ą E2ju , E
piq
` :“ mintE2j´ , E2j`u ;

and define Mpiq as the connected component of H´1
5

`

pE
piq
´ , E

piq
` q

˘

whose boundary contains the hyper-
bolic point p0, θiq.

36I.e., annuli in the cylinder Rˆ T which are contractible.
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Notice that the phase space M is the union of the regions Mpiq and the singular zero–measure set
S “ Spp̂q formed by the N separatrices:

M “Mpp̂q “
2N
ď

i“0

Mi Y S “
2N
ď

i“0

Mipp̂q Y Spp̂q . (72)

Below we shall also consider the following pn` 1q–dimensional domains:

M̌ :“ tpp, q1q s.t. p̂ P D̂, pp1, q1q PMpp̂qu ,

M̌i :“ tpp, q1q s.t. p̂ P D̂, pp1, q1q PMipp̂qu . (73)

Notice that
Ť

0ďiď2N M̌i covers M̌ up to a set of measure zero.

Arnol’d–Liouville’s action/energy functions

Let E P rEi´pp̂q, E
i
`pp̂qs and let γi be the (possibly, piece–wise) smooth closed curve in the clusure of

Mipp̂q given by

γi “ γipE, p̂q :“ tpp1, q1q PMipp̂q s.t. H5pp1, p̂, q1q “ Eu ,

oriented clockwise37; for 2 ď j ď N consider also the trivial curves γij “ tppj , sq : s P Tu.

Then, the classical Arnol’d–Liouville’s action functions are given by

I
piq
1 pEq “ I

piq
1 pE, p̂q :“

1

2π

¿

γi

p1dq1 ,

Ij “
1

2π

¿

γij

pjdqj “
pj
2π

ż

T
dqj “ pj , @ 2 ď j ď N .

The action function E Ñ Ii1pE, Îq is strictly monotone and its inverse is, by definition, the energy
function I1 Ñ EipI1, Îq. We also define Īi1 :“ Ii1|µ“0 and its inverse function38 Ēi :“ Ei|µ“0.

We can now describe the fine analytic properties of the action/energy functions.

Critical holomorphic behaviour and action estimates

The first result describes the exact behaviour of the action functions as the energy approaches the
critical energy of separatrices and contains estimates on the derivatives of the action functions that
will play a central rôle in the discussion on the twist Hessian matrix in § 4. The following theorem
has been proven in [14, Theorem 3.1].

Theorem 2.3 Let H5 be a Hamiltonian in standard form as in Definition 2.1, let κ ě 4 be such that
(44) holds and let 2N be the number of critical points of the reference potential Ḡ. Then, there exists
a suitable constant c “ cpn, κq ě 28κ3 such that, if 39

µ ď 1{c2 ď 1{p216κ6q , (74)

37For the non contractible curves (i “ 0, 2N) the orientation is ‘to the right’ on M2N , ‘to the left’ on M0.
38Note that when µ “ 0, H5 becomes simply H̄5 “ p2

1 ` Ḡpq1q.
39Note that (74) implies the hypothesis of Lemma 2.4. Thus, in particular also H5 has 2N critical points.
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then, for all 0 ď i ď 2N and Î P D̂, the action functions E P pEi´pÎq, E
i
`pÎqq ÞÑ Ii1pE, Îq verify the

following properties.

(i) (Universal behaviour at critical energies) There exist functions φi´pz, Îq, ψ
i
´pz, Îq for 0 ď

i ď 2N , and, functions φi`pz, Îq, ψ
i
`pz, Îq, for 0 ă i ă 2N , which are real analytic in a complex

neighborhood of the set tz “ 0u ˆ D̂ and satisfy

Ii1
`

Ei¯pÎq ˘ εz, Î
˘

“ φi¯pz, Îq ` ψ
i
¯pz, Îq z log z , @ 0 ă z ă 1{c , Î P D̂ . (75)

the functions φi˘pz, Îq, ψ
i
˘pz, Îq are real analytic on tz P C : |z| ă 1{cu ˆ D̂r, where satisfy:

sup
|z|ă1{c, ÎPD̂r

`

|φi˘| ` |ψ
i
˘|
˘

ď c
?
ε ,

sup
|z|ă1{c, ÎPD̂r{2

`

|BÎφ
i
˘| ` |BÎψ

i
˘|
˘

ď cµo , µo :“
?
ε
r
µ

(43)
ď 2´8µ .

(76)

Moreover,
|φi˘ ´ φ̄

i
˘| , |ψ

i
˘ ´ ψ̄

i
˘| ď c

?
εµ , (77)

where φ̄i˘ :“ φi˘|µ“0
and ψ̄i˘ :“ ψi˘|µ“0

.

(ii) (Limiting critical values) The following bounds at the limiting critical energy values hold:

|ψi`p0, Îq| ě
?
ε{c , 0 ă i ă 2N , @ Î P D̂r ,

|ψ2j
´ p0, Îq| ě

?
ε{c , 0 ď j ď N , @ Î P D̂r ,

ψi`p0, Îq ą 0 , 0 ă i ă 2N , @ Î P D̂ ,

ψ2j
´ p0, Îq ă 0 , 0 ď j ď N , @ Î P D̂ ,

(78)

while, in the case of relative minimal critical energies, one has, @ Î P D̂, 0 ă z ă 1{c,

φ2j´1
´ p0, Îq “ 0 , ψ2j´1

´ pz, Îq “ 0 , @ 1 ď j ď N . (79)

(iii) (Estimates on derivatives of actions on real domains) The derivatives of the actions with

respect to energy verify, on real domains, the following estimates:

inf
pEi
´
,Ei
`
q
BEI

i
1 ě

1

c
?
ε
, @ Î P D̂ , @ 0 ă i ă 2N ; (80)

min
 

BEI
2N
1 , BEI

0
1

(

ě
1

c
?
E ` ε

, @E ą E2N , @ Î P D̂ .

(iv) (Estimates on derivatives of actions on complex domains and perturbative bounds)
For λ ą 0 satisfying

cµ ď λ ď 1{c , (81)

define the following complex energy–domains:

E iλ :“

$

&

%

tz P C : Ēi´ ´ ε{c ă Re z ă Ēi` ´ λε , | Im z| ă ε{cu , i odd ,
tz P C : Ēi´ ` λε ă Re z ă Ēi` ´ λε , | Im z| ă ε{cu , i even , i ‰ 0, 2N ,
tz P C : Ēi´ ` λε ă Re z ă Ēi` , | Im z| ă ε{cu , i “ 0, 2N .

(82)
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Then, for 0 ď i ď 2N , the functions Ii1 and Īi1 are holomorphic on the domains E iλ ˆ D̂r, and satisfy
the following estimates:

sup
Ei
λ
ˆD̂r{2

|BÎI
i
1| ď c2 µo , sup

Ei
λ

ˇ

ˇBE Ī
i
1

ˇ

ˇ ď c2 | log λ|
?
ε

, sup
Ei
λ
ˆD̂r

ˇ

ˇBEI
i
1 ´ BE Ī

i
1

ˇ

ˇ ď
c2µ

λ
?
ε
. (83)

Remark 2.8 (i) Eq. (79) confirms the known analyticity at minima of actions as function of energy.

(ii) A formula similar to (75) is given in [6] (compare Eq. (5.8) of Theorem 5.2 there).

We finally report a remarkable property of standard Hamiltonians H5, whose reference potential Ḡ is
close enough to a cosine. In such a case, in fact, one has uniform concavity of the second derivative of
the energy function:

Proposition 2.1 Assume that, for some θ0 P R, Ḡ satisfies

|Ḡpθq ´ cospθ ` θ0q|1 :“ sup
T1

|Ḡpθq ´ cospθ ` θ0q| ď 2´40 . (84)

Then N “ 1 and

B2
I1 Ē

1pĪ1
1 pEqq ď ´

1

27
, @E P pĒ1, Ē2q .

Also this result is proven in [14]; compare Proposition 5.12 there.

Arnol’d–Liouville’s action–angle variables in n d.o.f.

Let us now discuss the Arnol’d–Liouville’s action–angle variables for the Hamiltonian H5 viewed as a
n degrees of freedom Hamiltonian on the 2n–dimensional phase space M̌i ˆ Tn´1.

For every fixed p̂ ” Î P D̂, the map pp1, q1q Ñ I
piq
1

`

H5pp1, Î, q1q, Î
˘

can be symplectically completed

with the angular term40 pp1, q1q Ñ ϕ
piq
1 pp1, q1; Îq “ ϕ

piq
1 pp1, Î, q1q.

Defining the normal domains41

Bi :“
 

I “ pI1, Îq | Î P D̂, I
piq
1 pEi´pÎq, Îq ă I1 ă I

piq
1 pEi`pÎq, Îq

(

, (85)

we see that, by construction, the map42

pp, q1q P M̌i Ñ pI, ϕ1q “
`

I
piq
1 pH5pp, q1q, Îq, Î, ϕ

piq
1 pp, q1q

˘

P Bi ˆ T

is surjective and invertible; let us denote by

Φ̌i : pI, ϕ1q P Bi ˆ T Ñ pp, q1q P M̌i , pp̂ “ Îq ,

its inverse map. Note that such ‘Arnol’d-Liouville suspended’ transformation Φ̌i integrates H5, i.e.,

H5 ˝ Φ̌
ipI, ϕ1q “ EpiqpIq , dp1 ^ dq1|Î“ const “ dI1 ^ dϕ1 . (86)

40Such completion is unique if one fixes, e.g., ϕ
piq
1 pp1, 0; Îq “ 0.

41Recall Definition 2.4. For i odd, I
piq
1 pEi´pÎq, Îq “ 0, which is the action of the elliptic point.

42Recall the definition of M̌i in (73).
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By the standard Arnol’d–Liouville construction of the angle variables, one sees easily that the complete
symplectic action–angle map Φi : pI, ϕq ÞÑ pp, qq has the form

ΦipI, ϕq “

"

pηi, Î,ψi, ϕ̂` χiq , if 0 ă i ă 2N ,

pηi, Î, ϕ1 `ψ
i, ϕ̂` χiq , if i “ 0, 2N ,

(87)

where ηi,χi,ψi are function of pI, ϕ1q only and are 2π–periodic in ϕ1, and, in the case i “ 0, 2N,
sup |Bϕ1ψ

i| ă 1.

By construction, Φi : Bi ˆ Tn onto
ÝÑ M̌i ˆ Tn´1 is a global symplectomorphism, and by (86), one has

pH5 ˝Φ
iqpI, ϕq “ pH5 ˝ Φ̌

iqpI, ϕ1q “ EpiqpIq , @ 0 ď i ď 2N . (88)

Next, we introduce suitable decreasing subdomains Bipλq of Bi depending on a non negative parameter

λ so that Bip0q “ Bi and such that the map Φi has, for positive λ, a holomorphic extension on a
suitable complex neighborhood of Bipλq ˆ Tn.

Define
λ

max
“ λ

max
pÎq :“

`

E`pÎq ´ E´pÎq
˘

{ε , λ̄
max

:“
`

Ē` ´ Ē´
˘

{ε . (89)

Notice that, by (44), Definitions 1.2, 2.1, and (43) one has

1{κ ď β{ε ď λ̄
max

ď 2 ; (90)

notice also that, by (71), we have43

|λ
max

´ λ̄
max
| ď 6κ3µ , λ

max
ě 1{2κ . (91)

Then, for 0 ď λ ď λ
max

define44:

aiλpÎq :“ Ii1pE
i
´pÎq ` λε, Îq , @ 0 ď i ď 2N ,

biλpÎq :“

"

Ii1pE
i
`pÎq ´ λε, Îq , @ 0 ă i ă 2N

Ii1
`

E5, Î
˘

, i “ 0, 2N .
(92)

aipÎq :“ ai0pÎq , b
ipÎq :“ bi0pÎq , @ 0 ď i ď 2N ,

Bipλq :“ tI “ pI1, Îq : Î P D̂ , aiλpÎq ă I1 ă biλpÎqu , 0 ď λ ď λmax .

Remark 2.9 (i) By the above definitions one has that

a2j´1pÎq :“ a2j´1
0 pÎq “ I2j´1

1 pE2j´1
´ pÎq, Îq ” 0 , (93)

reflecting the analyticity at the elliptic points; compare Remark 2.8–(i) above.
(ii) By (85) and (92) one sees that Bi “ Bip0q “

Ť

0ăλăλmax
Bipλq.

The holomorphic properties of the Arnol’d–Liouville symplectic maps are described in following the-
orem, proven in [14, Theorem 4.1]. Recall the definition of the constant c in Theorem 2.3.

43Recall that µ ď 1{c2 and c ě 28κ3 (compare Theorem 2.3).
44Recall the definition of E5 in (65).
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Theorem 2.4 Under the hypotheses of Theorem 2.3 there exists a constant ĉ “ ĉpn, κq ě 4c2 de-
pending only on n and κ such that, taking

µ ď 1{ĉ , (94)

the symplectic transformation Φ̌i extends, for any 0 ď i ď 2N and 0 ă λ ď 1{ĉ, to a real analytic
map

Φi :
`

Bipλq
˘

ρ
λ

ˆ Tnσ
λ
Ñ Dr ˆ Tns{4 , @ 0 ă λ ď 1{ĉ , (95)

where
ρ

λ
:“

?
ε
ĉ λ| log λ| , σ

λ
:“ 1

ĉ| log λ|
. (96)

Now, let 0 ă λ ď 1{ĉ, then the function Ei admits a holomorphic extension on
`

Bipλq
˘

ρ
λ

, where,

setting λ̂ :“ λ| log λ|3, one has

ˇ

ˇBI1E
i
ˇ

ˇ ď ĉ
a

ε` |Ei| ,
ˇ

ˇB2
I1
Ei
ˇ

ˇ ď ĉ
λ̂
,

ˇ

ˇB2
I1Î

Ei
ˇ

ˇ ď ĉµo

λ̂
,

ˇ

ˇB2
Î
Ei
ˇ

ˇ ď ĉ
`

?
ε
r
Ii1 `

µo

λ̂

˘

µo ; (97)

furthermore, defining

D5 :“ p´R´ r{3, R` r{3q ˆ D̂ , M̌ipλq :“ Φ̌ipBipλq ˆ Tq , (98)

one has
meas

`

pD5 ˆ Tq z
ď

0ďiď2N

M̌ipλq
˘

ď ĉ
?
εmeaspD̂q λ| log λ| . (99)

Remark 2.10 Observe that, by (48), (49), (20), (74), (32), (53) and (56), it is45

1{κ ă š{4 ,
εkχk
r
µ ă r{6 ,

4εkχk
r2 µ ă š

220κ3 ă š{220 . (100)

Thus, since46 λ ď 1{ĉ, by (74), σ
λ

in (96) satisfies

σ
λ
ă š{220 . (101)

3 Secondary nearly–integrable structure at simple resonances

Now we go back to the original system in the simply–resonant zones governed by the Hamiltonians
Hkpy, xq in (37) and discuss their global nearly–integrable structure with exponential small perturba-
tions (compare Theorem 3.1 below).

As mentioned above (see item (ii) in Remark 2.6), the problem here is that the symplectic transfor-
mations of Theorem 2.2, which put the simply–resonant Hamiltonians Hk in (53) in standard form,
are, in general, not well defined in the fast angles q̂ “ pq2, ..., qnq, making the construction of global
action–angle variables for the full Hamiltonians Hkpy, xq in (37) not straightforward.
To overcome such homotopy problems, we shall exploit the particular group structure of the various
symplectic transformations involved, and show that, introducing a special ad hoc conjugacy, one can
indeed obtain globally well defined symplectic maps; see, in particular, (122) below.

45Recall that ε ă 1; see (1).
46Recall the hypotheses of Theorem 2.4.
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Special sets of symplectic transformations

Besides the group G
:

introduced in Definition 2.2 above, we shall introduce two new special classes
of symplectic transformations, which will be used in the proof of Theorem 3.1. Recall the notation in
(45).

Definition 3.1 (a) Given a domain D̂ Ď Rn´1, G denotes the formal47 group of symplectic transfor-
mations of the form

pp, qq P Dˆ Tn Φ
ÞÑ pP,Qq “ pη, p̂, q1 `ψ, q̂ ` χq P Rn ˆ Tn ,

where: D Ď Rn is a normal smooth domain48 over D̂, the functions η,ψ,χ depend on pp, q1q, are
2π–periodic in q1 and the pn` 1q–dimensional the map

pp, q1q ÞÑ Φ̌pp, q1q “ pη, p̂, q1 `ψq

is injective.

(b) Given a domain D̂ Ď Rn´1, G
0

denotes the set of smooth symplectic transformations of the form

pp, qq P Dˆ Tn Φ
ÞÑ pP,Qq “ pη, p̂,ψ, q̂ ` χq P Rn`1 ˆ Tn´1 ,

where D Ď Rn is a normal smooth domain over D̂; the functions η,ψ,χ depend only on pp, q1q and
are 2π–periodic in q1.

Let us collect a few observations and discuss the main properties of such classes, but, first of all, notice
that all the above maps leave fixed the variable p̂ P D̂ Ď Rn and the set D̂. Thus, in the following
discussion, the domain D̂ is fixed once and for all.

Remark 3.1 (i) The Arnol’d–Liouville map Φi in the outer cases (87) (i “ 0, 2N) belongs to G (since
sup |Bq1ψ| ă 1), while Φi in the inner case (87) (0 ă i ă 2N) belongs to G

0
.

Notice also that Φ2 in Theorem 2.2–(iii) is a near–to–the–identity symplectic map belonging to G.

(ii) In the definition of G and G
0
, the functions η and ψ are scalar functions, while χ has pn ´ 1q

components. Notice that, since Φ is assumed to be symplectic, these maps are such that

dη^ dq1 ` dη^ dψ` dp̂^ dχ “ dp1 ^ dq1 , pΦ P Gq ,

dη^ dψ` dp̂^ dχ “ dp1 ^ dq1 , pΦ P G
0
q.

(iii) All maps in the group G
:

in Definition 2.2 have a common domain of definition, i.e., pRˆ D̂qˆRn.
On the other hand, every map Ψ P G has its own domain of definition D. Thus, the composition
Ψ1 ˝Ψ2 of two maps in G

Ψ1 : D1 ˆ Tn Ñ Rn ˆ Tn , Ψ2 : D2 ˆ Tn Ñ Rn ˆ Tn

is well defined only when the compatibility condition Ψ2

`

D2 ˆ Tn
˘

Ď D1 ˆ Tn is satisfied. This is the
reason why the cautionary word ‘formal’ appears in the definition of G. However, as already noticed,
all maps in G verify πp̂pDq “ D̂, which is fixed a priori.

47See Remark 3.1–(iii) below.
48I.e., D “ tpp1, p̂q : αpp̂q ă p1 ă β̂pp̂q , p̂ P D̂u where α and β are smooth function on D̂.
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(iv) If Φ P G, by definition Φ̌ is injective, so that also Φ itself is injective. Furthermore, for any fixed
p, the map q1 Ñ Q1 “ q1`ψ is a continuous injective map on the circle T1, hence it is surjective, and,
therefore, it is a smooth (orientation preserving) circle diffeomorphism. Thus, q Ñ Q “ pq1`ψ, q̂`χq is
a global diffeomorphism of Tn, and Φ : DˆTn Ñ ΦpDˆTnq Ď RnˆTn is a global symplectomorphism.
Notice also that if Φ,Φ1 P G and the composition Φ ˝ Φ1 is well defined, then Φ ˝ Φ1 P G.

(v) The definition of the first pn ` 1q component of any member of the above families depends only
on the first pn ` 1q variables pp, q1q. Therefore, any finite compositions of maps Ψi P G

:
Y G Y G

0
,

1 ď i ď m, whenever the composition is well defined, satisfies

Ψi P G: YGYG0 ùñ pΨ1 ˝ ¨ ¨ ¨ ˝Ψmq
q “ pΨ̌1 ˝ ¨ ¨ ¨ ˝ Ψ̌mq . (102)

(vi) Finally, one readily verifies that the following property holds:

Φ P G
0

and Ψ P G
:
YG ùñ Ψ ˝ Φ P G

0
. (103)

Action–angles variables for the secular standard Hamiltonians Hk at simple resonances

For each k P GnKo
, we may apply the theory of § 2.3 to the secular Hamiltonians described in Theorem 2.2

in standard form H5 “ Hk; see (54), (55), and (56).

By (88), we get that, for every k P GnKo
and 0 ď i ď 2Nk, the Arnol’d–Liouville map

Φi : Bik ˆ Tn onto
ÝÑ M̌i

k ˆ Tn´1 (104)

integrates Hk, i.e.:

pHk ˝Φ
iqpI, ϕq “ pHk ˝ Φ̌

iqpI, ϕ1q “ E
piq
k pIq , @ 0 ď i ď 2Nk , (105)

where Bik, M̌i
k and E

piq
k correspond to Bi, M̌i and Epiq in § 2.3 in the case49 H5 “ Hk.

Beware that, even if sometimes, for ease of notation, we do not report the dependence upon the
resonance label k P GnKo

, we are treating different Hamiltonians in the neighbourhoods of simple
resonances labelled by k P GnKo

.

Finally, we shall use the following notations: Given a function g : D̂ Ñ R, we shall denote by jg the
translation

jgppq :“ pp1 ` gpp̂q, p̂q . (106)

Notice that, by the definition of Ψg in (46), one has

Ψ̌gpp, q1q “ pjgppq, q1q . (107)

Global action–angle variables at simple resonances

We are now ready to state and prove the first step of the proof of Theorem 1.1, which consists in
showing how to construct symplectic action–angle maps which put a generic nearly–integrable natural
systems, near simple resonances, for all k P GnKo

, into uniform analytic nearly–integrable form with
exponentially small perturbations:

49Compare, in particular, (72) and (73) for the definitions of Mi
k and M̌i

k; (85) for the definition of Bik; (92) and (89)

for the definition of Bikpλq; the definition of M̌i
kpλq is given (98).
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Let Assumptions 2.1 and Definitions 2.3 hold; let c0 be as in Theorem 2.1, and ĉ as in Theorem 2.4
with κ as in (56). Let g1 and g3 be as in (ii) of Theorem 2.2, and define

Bik :“

"

Bik , if 0 ă i ă 2Nk ,
j́

g›

`

Bik
˘

, if i “ 0, 2Nk ,
g
›

:“ ´pg
1
` g

3
q . (108)

Then, the following result holds.

Theorem 3.1 (Secondary nearly–integrable structure at simple resonances)
There exists c

›
“ c

›
pn, s, β, δq ě maxtc

2
, c0 , ĉu such that if Ko ě c

›
, then for any k P GnKo

, 0 ď i ď 2Nk,
there exist real analytic symplectomorphisms50

φik : Bik ˆ Tn Ñ Re pR1,k
rk
q ˆ Tn , (109)

such that, if Eik “ EikpIq is the integrable Hamiltonian Hk of Theorem 2.2 in its Arnol’d–Liouville

action variables, rEik :“ Eik ˝ jg› , and ĥ
k

is as in Theorem 2.2, then51

Hi
k :“ H ˝ φikpI, ϕq “ hikpIq ` εf

i
kpI, ϕq , with:

hik :“ |k|2

2 hik , h
i
k :“

"

Eik ` ĥk , if 0 ă i ă 2Nk ,
rEik ` ĥk if i “ 0, 2Nk .

(110)

Furthermore, for 0 ă λ ď 1{c
›

define:

ρ
›

:“
?
ε

c›K
n
o
λ| log λ| , σ

›
:“ 1

c›K
n
o | log λ|

,

Bikpλq :“

"

Bikpλq , if 0 ă i ă 2Nk ,
j́

g›

`

Bikpλq
˘

, if i “ 0, 2Nk ,
@ 0 ď λ ă 1{c

›
. (111)

Then, φik admits a holomorphic extension

φik : pBikpλqqρ› ˆ Tnσ› Ñ R1,k
rk
ˆ Tns› (112)

and the perturbation f ik in (110) satisfies the exponential estimate

sup
pBikpλqqρ›ˆTnσ›

|f ik| ď e´Ks{3 . (113)

Remark 3.2 (i) Notice that, since µ “ 1{K5n (see (48)), and since52

K ą Ko ě c
›
ą c ,

condition (94) – which is stronger than condition (74) – is implied by the assumption Ko ě c
›
.

Observe also that from the definitions of the constants in Theorem 3.1, Theorem 2.3 and from (91) it
follows that

c
›
ě c ě 28κ3 ě 214 , λmax ě 212{c

›
. (114)

Finally, we remark that, recalling the definitions of ρ
λ

and σ
λ

in (96), since c
›
ě ĉ, one has

ρ
›
ă ρ

λ
, σ

›
ă σ

λ
. (115)

(ii) In the proof of the theorem the maps φik are explicitly given; compare (120) and (126) below.

50Recall the notation (31).
51Recall (22) and (35).
52The constant c is defined in Theorem 2.3.
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The following simple lemma will be one of the key points of the proof of Theorem 3.1. Recall Defini-
tion 3.1.

Lemma 3.1 Let Φ : pp, qq P Dˆ Tn ÞÑ pη, p̂, q1 `ψ, q̂` χq P Rn ˆ Tn be in G, Ψg P G: , and denote by
τgΦ the map

τgΦ :“ τgΦpp, qq :“
`

ηg ` g, p̂, q1 `ψg, q̂ ` χg ´ψgBp̂g
˘

, (116)

where for a function u : D ˆ T Ñ Rm, ug denotes te map

ug :“ u ˝ Ψ̌́ g : jgpDq ˆ T Ñ Rm . (117)

Then, τgΦ belongs to G and it is a symplectomorphism satisfying

τgΦ : jgpDq ˆ Tn onto
ÝÑ

`

Ψ̌g ˝ ΦpDˆ Tnq
˘

ˆ Tn´1 , (118)

and
pτgΦq

q “ pηg ` g, p̂, q1 `ψgq “ Ψ̌g ˝ Φ̌ ˝ Ψ̌́ g . (119)

Proof First observe that since ηg,ψg,χg are 2π-periodic in q1, the map

q P Tn ÞÑ π
Q
τgΦpp, qq “

`

q1 `ψg, q̂ ` χg ´ψgBp̂g
˘

P Tn

is a well defined Tn–map and (119) follows immediately by direct computation. Thus, pτgΦq
q is injective

being the composition of three injective maps, and, therefore, the whole map τgΦ is injective, and (118)
follows. To check symplecticity, just note that, locally, on the universal cover R2n, τgΦ coincides (as
it is immediate to check) with the composition Ψg ˝ Φ ˝ Ψ́ g of three symplectic maps. Hence τgΦ is

symplectic and the claim follows.

Proof of Theorem 3.1 We start by defining the maps φik.
Consider, first, the inner case 0 ă i ă 2Nk. Recall Definition 3.1. By Theorem 2.2–(iii), Φ› is the
composition of maps in G

:
and G while, for 0 ă i ă 2Nk, Φi P G0 (Remark 3.1–(i)). Hence, by (103),

it follows that Φ› ˝Φ
i P G

0
and we may define53

Φi› :“ Φ› ˝Φ
i , φik :“ Ψk ˝ Φi› : Bik ˆ Tn Ñ Rn ˆ Tn , p0 ă i ă 2Nkq , (120)

provided the composition is well defined. To check that this is the case, we observe that by (102),
(95), (51), (53), (115) for 0 ă λ ď 1{ĉ, we get

Φ̌i› “ pΦ› ˝Φ
iq̌ “ Φ̌› ˝ Φ̌

i : pBikpλqqρλ ˆ Tσ
λ
Ñ Dk

r̃k
ˆ Tš , p0 ă i ă 2Nkq , (121)

thus the composition is well defined and (120) is well posed.
Let us now consider the outer case i “ 0, 2Nk. In this case Φi P G (Remark 3.1–(i)). Recalling the
definition in (116)–(117), by Lemma 3.1, we may define

Φi
23

:“ Φ
2
˝ τg3

Φi , and Φi› :“ τg1
Φi

23
, pi “ 0, 2Nkq . (122)

Recalling that Φ2 P G, by Lemma 3.1 and Remark 3.1–(iv), Φi
23
P G and, again by Lemma 3.1, Φi› P G,

provided the compositions are well defined. To check that this is the case, as above, it is enough to

53Ψk appears in Theorem 2.1. Recall that, when 0 ă i ă 2Nk, Bik :“ Bik.

31



control the complex domains of the first pn ` 1q components. By (119) (used twice), (47), (57), and
(102), one finds54

Φ̌i› “ Φ̌› ˝ Φ̌
i ˝ Ψ̌g›

, pi “ 0, 2Nkq . (123)

Then, by (142), we get,

jg›
`

pBikpλqqρ1
λ

˘

Ď
`

jg›
`

Bikpλq
˘˘

ρ
λ

p111q
“

`

Bikpλq
˘

ρ
λ

, where ρ1
λ

:“
ρ
λ

n`2 , pi “ 0, 2Nkq . (124)

Observing that Ψ̌g›
pp, q1q “

`

jg› ppq, q1

˘

, by (123), (124), (95), (51) and (53), we get, for 0 ă λ ď 1{ĉ,

Φ̌i› : pBikpλqqρ1
λ
ˆ Tσ

λ
Ñ Dk

r̃k
ˆ Tš , pi “ 0, 2Nkq . (125)

Thus, the composition is well defined and (122) is well posed. So, we may define:

φik :“ Ψk ˝ Φi› : Bik ˆ Tn Ñ Rn ˆ Tn , Φi› as in p122q , pi “ 0, 2Nkq . (126)

We can, now, prove (110). Recall the definition of f̄k in Theorem 2.1 and define

f ik :“ f ˝ φik
p37q
“ f̄k ˝ Φi› , p0 ď i ď 2Nkq . (127)

Then, by definition of φik in (120) and (126), we have, for 0 ď i ď 2Nk,

Hi
k :“ H ˝ φikpI, ϕq :“ H ˝Ψk ˝ Φi›

p37,127q
“ Hk ˝ Φi› ` εf

i
k . (128)

Since Hk in (38) depends only on the first pn` 1q variables, by (121) and (123), we find

Hk ˝ Φi› “ Hk ˝ Φ̌i› “

"

Hk ˝ Φ̌› ˝ Φ̌
i , if 0 ă i ă 2Nk

Hk ˝ Φ̌› ˝ Φ̌
i ˝ Ψ̌g›

, if i “ 0, 2Nk ,
(129)

and, by (53) and (105),

Hk ˝ Φ̌› ˝ Φ̌
i “

|k|2

2 pE
piq
k ` ĥ

k
q . (130)

Thus, (110) follows from (128), (129), (130) and (107).

Next, we show that φik has, for 0 ă λ ď 1{c
›
, a holomorphic extension satisfying (112). To do this we

have to consider the last n ´ 1 components of Φi›, namely55 π
ϕ̂

Φi› “ Φ̂i›. By definition of Φi› in (120)
and (122) it follows that

Φ̂i›pI, ϕq “

"

ϕ̂` χi›pI, ϕ1q , if 0 ă i ă 2Nk ,
ϕ̂` χi›

`

j
g›
pIq, ϕ1

˘

, if i “ 0, 2Nk ,
(131)

with56

χi› :“ χi ` χ5
2
`ψi BÎg› , χ5

2
pI, ϕ1q :“

"

χ
2
pÎ ,ψiq , if 0 ă i ă 2Nk ,

χ2pÎ , ϕ1 `ψ
iq , if i “ 0, 2Nk .

(132)

54Recall that g› “ ´pg1 ` g3 q; compare (108).
55Recall the notation in (45).
56Recall the form of Φi in (87); g› is defined in (108); χ2 is as in Theorem 2.2–(iii).
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Now, we claim that

|ψi|ρ
λ
,σ

λ
ă

3

4
š , @ 0 ď i ď 2Nk . (133)

Indeed, if 0 ă i ă 2Nk, (133) follows directly from (95) and (51); in the case i “ 0, 2Nk, (133) follows
again from (95) and (51) observing that

|ψi|ρ
λ
,σ

λ
“ |pϕ1 `ψ

iq ´ ϕ1|ρ
λ
,σ

λ
ď

s

4
` σ

λ
ă

3

4
š .

Next, since ρ1
λ
“ ρ

λ
{pn ` 2q, by (124), (132), (95), (51), (58), (100), (101), (133), (142), we find, for

every 0 ď i ď 2Nk, and for every 2 ď ` ď n,

| Im Φ̂i›`|ρ1
λ
,σ

λ
ď | Im pϕ` ` χ

i
›`q|ρλ ,σλ

ď | Im pϕ` ` χ
i
`q|ρλ ,σλ

` |χ5
2
|ρ

λ
,σ

λ
` |ψi|ρ

λ
,σ

λ
|BÎg› |ρλ

ď
š

2
`

š

220
`

3

4
pn` 1qš ă 2nš . (134)

Thus, by (121), (125) and (134), we get

Φi› : pBikpλqqρ1
λ
ˆ Tnσ

λ
Ñ Dk

r̃k
ˆ Tn2nš , p0 ď i ď 2Nkq .

We need, now, an elementary result on real analytic functions, whose proof is given in Appendix:

Lemma 3.2 Let g : Dr ˆ Tns Ñ C be a real analytic function satisfying | Im g| ď ξ. Then, for every
0 ă ζ ď 1{2, one has

sup
D
ζr
ˆTn

ζs

| Im g| ď 8ζξ .

Now, define

ζ :“
1

16n c
1
cs Kno

. (135)

Then, since |k| ď Ko, by (53), (48), we find

8ζp2nšq ă 16n ζ Ko maxt1, su
p135q
“

maxt1, su

c1 cs K
n´1
o

“
s

c1K
n´1
o

p32q
“ s̃k .

Thus, by Lemma 3.2 (applied with g “ Φ̂i›` for 2 ď ` ď n, ζ as in (135) and ξ “ 2nš), it follows that

Φi› : pBikpλqqρ› ˆ Tnσ› Ñ Dk
r̃k
ˆ Tns̃k , p0 ď i ď 2Nkq ,

with ρ
›

and σ
›

as in (111), provided

c
›

:“ maxtc
2
, c0 , ĉ c

1
cs 16n pn` 2qu .

In conclusion, (112) follows by the definition of φik in (120), (126) and by (35).

Finally, estimate (113) follows at once from (127), (112) and (39). The proof is complete.

The following measure estimate will play a crucial rôle in the proof of Theorem 1.1.
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Proposition 3.1 For every 0 ď λ ă 1{c
›
, the following measure estimate holds57:

meas
``

R1,k ˆ Tn
˘

z
ď

0ďiď2Nk

φik
`

Bikpλq ˆ Tn
˘˘

ď c
›

meas
`

rR1,k ˆ Tn
˘

λ| log λ| . (136)

Proof Since Φ̌i› depends only on the first pn` 1q variables, by (131), (120), (123) and the definitions
of Bikpλq in (111) and M̌i

kpλq in (104), one has

Φi›
`

Bikpλq ˆ Tn
˘

“ Φ̌i›
`

Bikpλq ˆ T
˘

ˆ Tn´1 “
`

Φ̌› ˝ Φ̌
ipBikpλq ˆ Tq

˘

ˆ Tn´1

p99q
“

`

Φ̌› ˝ M̌i
kpλq

˘

ˆ Tn´1 . (137)

Analogously, one has
Φ´1
› pDk ˆ Tnq “ Φ̌´1

› pDk ˆ Tq ˆ Tn´1 . (138)

Observe also that, by (59), (58) and (the second estimate in) (100) it follows that58

Φ̌´1
3
˝ Φ̌´1

2
pD ˆ Tq Ď

`

p´R´ r{3, R` r{3q ˆ D̂
˘

ˆ T “ pD5 ˆ Tq . (139)

Then59, recalling Theorem 2.1, using the fact that pΨkq´1 and Φ´1
› are diffeomorphysms preserving

Liouville measure, we find

measpR1,k ˆ Tn z
Ť

φikpB
i
kpλq ˆ Tnqq

p120,126q
“ measppΨkq´1pR1,k ˆ Tnq z

Ť

Φi›pB
i
kpλq ˆ Tnqq

p40q
ď measppDk ˆ Tnq z

Ť

Φi›pB
i
kpλq ˆ Tnqq

“ measpΦ´1
› pDk ˆ Tnq z

Ť

Φ´1
› Φi›pB

i
kpλq ˆ Tnqq

p137,138q
“ p2πqn´1 measpΦ̌´1

› pDk ˆ Tq z
Ť

M̌i
kpλqq

p57,63q
“ p2πqn´1 measpΦ̌´1

3
˝ Φ̌´1

2
pD ˆ Tqz

Ť

M̌i
kpλqq

p139q
ď p2πqn´1 measpD5 ˆ Tz

Ť

M̌i
kpλqq

p99q
ď p2πqn´1ĉ

?
εmeaspD̂q λ| log λ|

p50q
ă p2πqn´1ĉ R measpD̂q λ| log λ|

p62q
“

ĉ

2π
measp rR1,k ˆ Tnq λ| log λ| ,

which yields (136) since c
›
ě ĉ.

Remark 3.3 The measure estimate (136) holds in view of the covering property (40), which takes
care of the deformations near the boundaries.
The logarithmic correction is unavoidable and is related to the Lyapunov exponents of the hyperbolic
equilibria issuing the separatrices of the secondary integrable systems at simple resonances.

57The sets rR1,k are defined in (34).
58Observe that Φ̌´1

3
pp, qq “ pp1 ´ g3 pp̂q, p̂, q1q and Φ̌´1

2
pp, qq “ pp1 ´ η2 pp̂, q1q, p̂, q1q. Recall the definition of D5 in

(98).
59The unions are over 0 ď i ď 2Nk.
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The final result of this section deals with the size of the domains Bik, which depends on k and actually
grows with k. It is therefore important to control such a growth.

Proposition 3.2 Assume that60 α ă 1. Then, there exists a constant č “ č pnq ą 1 such that

diamBik ď č |k|n´1 , measBik ď č . (140)

Proof For the purpose of this proof, we denote by ‘c’ suitable (possibly different) constants greater
than one and depending only on n.
Since α ă 1, by the definition of Bik in (85), by (44) and the definition of R in (48), we have, for every
0 ď i ď 2Nk,

diamBik ď c
`

R` diam D̂
˘

ď c
`

α
|k|2 ` diam D̂

˘

ă cp1` diam D̂q .

By (61), (33) and (64) it follows that

|πKk ÂT Î| “ |ATU
`

0
Î

˘

| ě
|Î|

}A´1} }U´1}
ě

|Î|
c|k|n´1 ,

and since by (48) D̂ Ď tÎ P Rn´1 : |πKk ÂT Î| ă 1u, it follows that diamBik ď c|k|n´1, proving the first
relation in (140) in the case 0 ă i ă 2Nk.
In the case i “ 0, 2Nk, we need to estimate the Lipschitz constant of61 gi. The map g

1
is linear and

its gradient is given by Âk{|k|2, thus, by (33) one gets

|B
Î
g

1
| “

ˇ

ˇ

Âk
|k|2

ˇ

ˇ ď n .

By (59), recalling that |χ
k
| ď 1, the definitions in (48), and by Cauchy estimates62, one sees that

|g
3
|4r ă

2ε
|k|2

µ
r
ă

c
2
c0

2

?
ε

K14n`5 , |B
Î
g

3
|3r ď

2εµ
r|k|2r2 ď c

c0

K14n`3 ă
1
4 , (141)

by taking Ko big enough (recall that K ě 6Ko). Hence63,

|B
Î
g
›
|
3r
ď n` 1 , LipD

3r
pj

g›
q ď n` 2 , (142)

and, choosing č suitably, the first relation in (140) follows also in this case.
Let us check the second relation in (140). Since φik in (109) is symplectic, we have

measBik “
1

p2πqn
measpBik ˆ Tnq “

1

p2πqn
meas

`

φikpB
i
k ˆ Tnq

˘

p109q
ď meas

`

Re pR1,k
rk
q
˘

.

Now, since R1,k Ď B and rk ď α ă 1, choosing č suitably, also the second relation in (140) follows,

and claim (i) has been proved.

60Notice that, since γ “ 2pν ` nq, the hypothesis α “ εKν ă 1 is implied by the second condition in (11).
61 g› is defined (108).
62Compare, e.g., [16].
63 LipBpgq denotes absolute value of the Lipschitz constant of a function g over a domain B.
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4 Twist at simple resonances

In this section – which is the heart of the paper – we discuss the main issue in singular KAM theory,
namely, the twist of the integrable (rescaled) secular Hamiltonians hik in (110) near simple resonances
and, in particular, in neighborhoods of secular separatrices, where the action become singular.

In general, it has to be expected that there are points where the twist of the secular Hamiltonians hik
vanishes; compare Remark 4.1 below. Furthermore, and more importantly, when approaching separa-
trices, the evaluation of the twist becomes a singular perturbation problem, where no standard tools
can be applied and a new strategy is needed.
Our approach – which exploits in an essential way the fine analytic structure of the action func-
tions described in Theorem 2.3 – roughly speaking, consists in constructing a suitable differential
operator with non–constant coefficients, which does not vanish on (a suitable regularization of) the
Kolmogorov’s twist determinant. This will be enough to prove that the Liouville measure of the set
where the twist is smaller than a positive quantity η may be bounded, uniformly in k, by a power of
η. This is the content of the Twist Theorem 4.1 below, from which the proof of the results described
in § 1 will follow easily.

Remark 4.1 (Points where the twist vanishes) First, let us consider a region bounded by sepa-
ratrices, i.e., (in the above setting) the case when i is even and different from 0 and 2N . From (92),
(75) and (78) there follows that BEI

i
1 Ñ `8 as E approaches Ei˘. Thus, since BEI

i
1 ą 0 (always),

E Ñ B2
EI

i
1 must have at least one zero in pEi´, E

i
`q. Since, by the chain rule,

B2
I1E

ipI1q “ ´
B2
EI

i
1

pBEIi1q
3

ˇ

ˇ

ˇ

ˇ

EipI1q

, (143)

we see that B2
I1
Ei must vanish at some points in the interval pai, biq defined in (92).

Let us next consider the case i odd, i.e., regions whose closure contains an elliptic point. Let us first
consider the case µ “ 0, and let us denote āi “ ai|µ“0 and b̄i “ bi|µ“0. As above, by (78), the function
E Ñ B2

E Ī
i
1 tends to `8 when E Ñ Ēi`. Thus, by (143), B2

I1
ĒipI1q is negative when I1 is close to b̄i.

Now, ĒipI1q is analytic at I1 “ āi “ 0, and, evaluating the Birkhoff normal form of p2
1` Ḡpq1q at order

4 close to the elliptic point pp1, q1q “ p0, θ̄iq, one sees that

ĒipI1q :“ ω0I1 `
1

2
cI2

1 `OpI
3
1 q , with ω0 “

a

2d2 , c “
1

4

ˆ

d4

d2
´

5d2
3

3d2
2

˙

,

where dj are the j-th order derivatives of the reference potential Ḡ evaluated at the minimum θ̄i. Thus,
B2
I1
Ēip0q ą 0 whenever the condition

δ :“ 3d2d4 ´ 5d2
3 ą 0 , dj :“ pBjq1 Ḡqpθ̄iq , (144)

is satisfied, in which case B2
I1
Ēi must vanish at some point in

`

0, b̄i
˘

. By (53), ĥ
k
“ Q̂k, so that

hik|µ“0 “ ĒikpI1q ` Q̂kpÎq, which implies

det B2
Ih
i
kpIq|µ“0 “ B

2
I1 Ē

i
kpI1q ¨ det B2

Î
Q̂kpÎq .

Thus, by continuity, for µ small enough it follows that the Hessian matrix B2
Ih
ipIq is singular at some

point.
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Condition (144) is easily satisfied. For example, if Ḡpθq “ cos θ ´ 1
8 cosp2θq, one finds that δ “ 3{2,

so that, in this very simple cases, inside the (unique) region enclosed by the main separatrices, there
are points where the twist vanishes. However, this is not the case if the potential is close enough to a
cosine, compare Proposition 2.1.

Twist Theorem near simple resonances (statement)

To state the Twist Theorem we need to introduce two parameters (ξ ą 0, m ě 1) which measure the
non–degeneracy (in a suitable sense to be specified below) of the energy as function of actions in the
inner regions 0 ă i ă 2Nk. This requires some preparation.

Non–degenerate functions and theirs sub–levels

First, let us recall a standard quantitative definition of non–degenerate functions.

Definition 4.1 Given ξ ą 0, an open set A Ď R and f P CmpA,Rq, we say that f is ξ–non–degenerate
at order m ě 1 on A (or, in short, pξ,mq–non–degenerate), if

inf
xPA

max
1ďjďm

|f pjqpxq| ě ξ . (145)

An important property of non–degenerate functions is that one can easily estimate the measure of
their sub–levels:

Lemma 4.1 Let f be a pξ,mq–non–degenerate function on a bounded interval pa, bq and let64 M :“
}f}Cm`1pa,bq. Then, there exist a constants cm ą 1 depending only on m such that, for all η ą 0, one
has

meastx P pa, bq : |fpxq| ď ηu ď
cm
ξ1{m

`

M
ξ pb´ aq ` 1

˘

η1{m .

The proof of this lemma can be found, e.g., in [23, Lemma B.1]; compare, also, [37].

Non–degeneracy of the rescaled reference potentials for |k|
1
ď N

Consider a general Hamiltonian (42) in standard form, recall Definition 2.4, recall (92), and define
also, for 0 ď λ ď λ̄

max
(defined in (89)),

āi :“ ai|µ“0 , b̄i :“ bi|µ“0 , āiλ :“ aiλ|µ“0 , b̄iλ :“ biλ|µ“0 , @ 0 ď i ď 2Nk . (146)

In the following, we shall explicitly indicate the dependence upon the reference potential Ḡ and write,
e.g, Īi1,Ḡ, Ē

i
Ḡ, ā

i
Ḡ, b̄

i
Ḡ for Īi1, Ēi, āi, b̄i, respectively.

Definition 4.2 Given H5 in standard form with reference potential Ḡ, we denote by

FiḠpxq :“ pB2
I1 Ē

i
Ḡq
`

āiḠ ` pb̄
i
Ḡ ´ ā

i
Ḡqx

˘

, @ x P p0, 1q , p0 ă i ă 2Nkq , (147)

the ‘normalized second derivative of the energy function within separatrices’.

These functions satisfy a remarkable rescaling property:

64}f}Cm`1pa,bq :“ max0ďjďm`1 suppa,bq |f
pjq|.
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Lemma 4.2 If FiḠ is as in Definition 4.2, then, for any λ ą 0, one has FiḠ “ FiλḠ.

Proof Indeed, from the definition of actions, there follows easily that

Īi1,λḠpEq “
?
λĪi1,ḠpE{λq , ĒiλḠpI1q “ λĒiḠpI1{

?
λq , @λ ą 0 . (148)

Indeed, considering the case i “ 2Nk (the other cases being similar), one has

Ī2Nk
1,λḠpEq

(250)
“

1

2π

ż 2π

0

a

E ´ λḠpxqdx “

?
λ

2π

ż 2π

0

c

E

λ
´ Ḡpxqdx “

?
λĪi1,ḠpE{λq ,

which proves the first equality in (148), which, in turns, implies immediately the second inequality.
From (148), then , follows that

āiλḠ “
?
λāiḠ , b̄iλḠ “

?
λb̄iḠ , (149)

and the claim follows at once from (148) and (149).

Let us go back to the Hamiltonians in standard form Hk of Theorem 3.1, and let us prove that the
functions FiḠ – and hence ĒiλḠ – with Ḡ as in (55), are pξ,mq–non–degenerate.

Lemma 4.3 For every 0 ă i ă 2Nk, the function FiḠ defined in (147) is pξ,mq–non–degenerate for
some ξ,m ą 0.

Proof We consider only the case i odd, the even case being similar. Deriving (143) we get, for µ “ 0,

B3
I1 Ē

ipĪi1pEqq “ ´
B3
E Ī

i
1pEq

`

BE Īi1pEq
˘4 ` 3

`

B2
E Ī

i
1pEq

˘2

`

BE Īi1pEq
˘5 . (150)

By (75)–(80) (which hold also for Īi1, corresponding to µ “ 0), we have that the dominant term in
(150) as z :“ pĒi` ´ Eq{εÑ 0` has the form ´1{pc3z2 log4 zq with c :“ ψi`p0q|µ“0. Then,

lim
EÑpĒi

`
q´

ˇ

ˇB3
I1 Ē

ipĪi1pEqq
ˇ

ˇ “ lim
I1Ñpb̄iq´

ˇ

ˇB3
I1 Ē

ipI1q
ˇ

ˇ “ `8 .

By (147) we obtain
lim
xÑ1´

|BxF
i
Ḡpxq| “ `8 . (151)

Moreover BxF
i
Ḡpxq is analytic in a neighborhood of x “ 0 (recall in particular (79)). Assume now by

contradiction that (145) does not hold, namely that there exists a sequence xm P p0, 1q such that

|BjxF
i
Ḡpxmq| ă 1{m, @ 1 ď j ď m.

By (151), up to a subsequence, xm converges to some x̄ P r0, 1q such that BjxF
i
Ḡpx̄q “ 0 for every j ě 1.

By analyticity we would have that FiḠ is constant on r0, 1q leading to a contradiction with (151).

This lemma allows us to introduce uniform non–degeneracy parameters ξ ą 0 and m ě 1 for the

function FiḠ in (147) associated to the reference potentials Ḡ
p55q
“ 2ε

|k|2 πZkf , for k P Gn, |k|
1
ă N and

0 ă i ă 2Nk. Indeed, by Lemma 4.2,

FiḠ “ Fi2ε
|k|2

πZkf
“ FiπZkf

, (152)
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and, by (17), every potential πZkf is β–Morse. By the above Lemma 4.3, every function in (152)
is pξ,mq–non–degenerate for some ξ,m ą 0. We therefore can define uniform ε–independent non–
degeneracy parameters ξ, m by setting:

Definition 4.3 Let FiπZkf
be as in Definition 4.2 with rescaled reference potential Ḡ “ πZkf . We define

ξ ą 0 and m ě 1 to be, respectively, the largest and smallest number such that all the functions FiπZkf
,

for 0 ă i ă 2Nk, k P Gn with |k|1 ď N, are pξ, mq–non–degenerate (Definition 4.1).

The Twist Theorem

Let Assumptions 2.1 and Definitions 2.3 hold, let κ be as in (56), let ξ, m be as in Definition 4.3, let
Bik be as in (108), let hik be as in (110), and define

δo :“ |k|
´2n

. (153)

Then, the following result holds.

Theorem 4.1 There exists a constant c0 “ c0pn, κ, ξ, mq ą 1 such that, for Ko ě c0 , k P GnKo
, 0 ď i ď

2Nk, and 0 ă η ă δo{2
5, one has:

meas
` 

I P Bik :
ˇ

ˇ det B2
Ih
i
kpIq

ˇ

ˇ ď η
(˘

ď c
0
p|k|2nηqb measBik , b :“ mint 1

9n4 ,
1
m
u . (154)

Theorem 4.1 will be proven in several steps:

Step 1: Preliminaries
(a) Explicit expressions for the twist matrix in the inner case (0 ă i ă 2Nk) are given;
(b) analogous formulae are given for the outer case (i “ 0, 2Nk), but, due to the presence of the
translation j́

g›
in (106), the measure estimate is expressed in terms of the domains Bik rather than

the domains Bik (recall that such domains differ in the outer case; compare (108));

(c) uniform estimates on the sub–matrix B2
Î
ĥ
k

of order pn´ 1q, depending only on the ‘trivial actions’

Î, are given.

Step 2: Coverings of the phase space into regions close to separatrices and far from separatrices
This is a necessary step, since the analysis will be non perturbative near separatrices, while in regions
away from separatrices, the analysis will be partly perturbative (and significantly simpler).

Step 3˚: Non–degeneracy of the twist function in neighborhoods of separatrices
In such regions perturbative arguments do not hold, and, in particular the energy function Ei is
singular at the boundary (corresponding to separatrices) and its derivatives diverge as the boundary
is approached. Furthermore, Ei and Ēi “ Ei|µ“0 have singularities in different points. Exploiting the
singularity structure described in Theorem 2.3, we will prove that a suitable regularization of the twist
determinant is a non–degenerate function allowing to control the measure of its sub–levels. This is the
core of the proof.

Step 4: The Twist Theorem in neighborhoods of separatrices
By the previous step, measure estimates in regions close to separatrices follow easily, yielding the
proof of the Twist Theorem in this case.

Step 5: The Twist Theorem far from separatrices in the inner case
It is here (in particular, in the low mode case |k|1 ď N) that the non–degeneracy condition involving
the parameters ξ and m, is needed.
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Step 6: Uniform twist in outer regions far from separatrices
In such regions there is uniform twist; the proof rests on a simple argument based on Jensen’s in-
equality.

Step 7: Conclusion of the proof of the Twist Theorem

Proof of the Twist Theorem

Fix k P GnKo
, 0 ď i ď 2Nk, and η ą 0.

Throughout the proof the pn ´ 1q dimensional domain D̂ (defined in (48)) will be kept fixed and
often the variables Î will not be indicated explicitly. Also, the label k will usually be omitted it in the
notation, as well as the suffix i (when this does not lead to confusion).

Step 1 Preliminaries
(a) We give the analytic expression of the twist determinant inside separatrices, i.e., for 0 ă i ă 2N .

Recall that in this case, by (110) and (108), one has hi “ Ei ` ĥ
k

and Bi “ Bik. Then65

det B2
Ih
i “ det

`

B2
IE
i ` B2

I ĥk
˘

“ det

˜

B2
I1
Ei BT

Î
pBI1E

iq

BÎpBI1E
iq B2

Î
Ei ` B2

Î
ĥ
k

¸

(155)

“ pB2
I1E

iq ¨ detpB2
Î
Ei ` B2

Î
ĥ
k
q ` det

˜

0 BT
Î
pBI1E

iq

BÎpBI1E
iq B2

Î
Ei ` B2

Î
ĥ
k

¸

.

(b) We now consider the case outside the outer separatrices, i.e., i “ 0, 2N .

The Hamiltonian hipIq, in this case, is given by66 hipIq “ rEipIq`ĥ
k
pÎq for I P Bi “ j́

g›

`

Bik
˘

. Recalling
(53) and (59) we note that in the evaluation of the Hessian of h involves the non–small linear term
pÂkq¨Î
|k|2 , a fact that complicates analytic expressions. However, such complications may be avoided,

using the following trick.
Let us introduce new action variables I, defined by the relation I “ UI “ jg

1
pIq, where U is defined in

(60). Then, we observe that, defining

hipIq :“ Ei
*
pIq ` ĥ

k
p̂Iq , Ei

*
:“ Eik ˝ j́ g

3
, (156)

one has that
j
g›
“ j́

g3
˝U´1 , hipUIq “ hipIq , p@ I P U´1Biq . (157)

Now, since det U “ 1,

det
“

B2
I h

ipIq
‰ p157q
“ det

“

B2
I

`

hipUIq
˘‰

“ det
“

UT B2
Ih
ipIq U

‰

“ det
“

B2
Ih
ipIq

‰

.

Thus,
pdet B2

Ih
iq ˝U “ det B2

I h
i . (158)

Recalling (156) we then obtain

det B2
I h

i “ det
`

B2
I E
i

*
` B2

I ĥk
˘

“ det

˜

B2
I1
Ei

*
BT

Î
pBI1E

i

*
q

BÎpBI1E
i

*
q B2

Î
Ei

*
` B2

Î
ĥ
k

¸

(159)

65Observe that if S “ psijqi,jďn is an pnˆ nq matrix and Ŝ denotes the pn´ 1q ˆ pn´ 1q sub–matrix psijqi,jě2, and

S0 denotes the matrix obtained by S replacing the entry s11 with 0, then det S “ s11 ¨ det Ŝ` det S0.
66Recall (110), (108) and (92).
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“ pB2
I1E

i

*
q ¨ detpB2

Î
Ei

*
` B2

Î
ĥ
k
q ` det

˜

0 BT
Î
pBI1E

i

*
q

BÎpBI1E
i

*
q B2

Î
Ei

*
` B2

Î
ĥ
k

¸

and, by the chain rule,

pB2
I1E

i

*
q ˝ j

g3
“ B2

I1E
i ,

pB2
I1 Î
Ei

*
q ˝ j

g
3
“ B2

I1Î
Ei ´ B2

I1E
iBÎg3

“: v̂ , (160)

pB2
Î̂I
Ei

*
q ˝ j

g
3
“ B2

Î
Ei ` B2

I1E
iBT
Î
g

3
BÎg3

´ BI1E
iB2
Î
g

3
´ BT

Î
BI1E

iBÎg3
´ BT

Î
g

3
BÎBI1E

i “: M̂ .

Recalling that by (157) j
g›
“ j́

g
3
˝U´1, by (158), (159) and (160) we get

δi7 :“ pdet B2
Ih
iq ˝ j́

g›
“ B2

I1E
i ¨ detpM̂` B2

Î
ĥ
k
q ` det

ˆ

0 v̂T

v̂ M̂` B2
Î
ĥ
k

˙

. (161)

Finally, since the map j
g›

: Bik Ñ Bik is volume preserving, it is

measBik “ measBik , i “ 0, 2N , (162)

so that one obtains the following

Lemma 4.4 Let i “ 0, 2N and δi7 as in (161). Then,

meas
` 

I P Bi s.t.
ˇ

ˇdet B2
Ih
ipIq

ˇ

ˇ ď η
(˘

“ meas
` 

I P Bik s.t.
ˇ

ˇδi7pIq
ˇ

ˇ ď η
(˘

.

(c) Here we prove the following uniform bound on the Hessian sub–matrix B2
Î
ĥ
k
. Recall the definition

of δo in (153)

Lemma 4.5 There exists c
3
“ c

3
pnq ą 1 such that if K ě c

3
the following estimates on the sub–matrix

B2
Î
ĥ
k

hold:

sup
D̂r

|B2
Î
ĥ
k
| ď 2n5 ` 1 , inf

D̂rXRn´1

det B2
Î
ĥ
k
ě δo . (163)

Proof By (19),

pATUqI “ I1k ` ÂT Î ´ pÂkq¨Î
|k|2 k “ I1k ` ÂT Î ´ ÂT Î¨k

|k|2 k “ I1k ` πKk ÂT Î . (164)

Recalling the definition of Q̂k in (53), we have

B2
I

`

I2
1 ` Q̂kpÎq

˘

“ B2
I

`

I2
1 `

|πKk ÂT Î|2

|k|2

˘ p164q
“

B
2
I |A

TUI|2

|k|2 “
2pATUqTATU

|k|2 (165)

and

|B2
Î
Q̂k| ď 2|k|´2|A|2|U|2

(33),(64)
ď 2n5 . (166)

Using that |k| ď K{6, by (20), (48), (53) and Cauchy estimates we get, for a suitable c1 “ c1pnq,

sup
D̂r

|B2
Î
pĥ
k
´ Q̂kq| ď

c1

K14n`2
. (167)
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By (166) and (167), taking K large enough (depending only on n), we get the first estimate in (163).

Let us prove the second estimate in (163). Observe that

2 det B2
Î
Q̂k “ det B2

I

`

I2
1 ` Q̂k

˘ p165q
“ 2n

|k|2n det
`

pATUqTATU
˘ p33,60q

“ 2n

|k|2n ě
4

|k|2n “ 4δo ,

and that

|pB2
Î
Q̂kq

´1| ď |pB2
I pI

2
1 ` Q̂kqq

´1|
(165)
ď

|k|2

2 |A
´1|2|U´1|2

(33),(64)
ď 1

2n
5pn´ 1qn´1|k|2n . (168)

Then, by (168), (167), using |k| ď K{6, we get, for a suitable constant c2 “ c2pnq,

|pB2
Î
Q̂kq

´1| ¨ |B2
Î
pĥ
k
´ Q̂kq| ď

c2

K12n`2
, (169)

We now need an elementary result on perturbation of positive–definite matrices, whose proof is given
in Appendix:

Lemma 4.6 Let P,Q be d ˆ d positive–definite matrices and assume that λ :“ |P´1||Q| is strictly
smaller than 1. Then detpP ` Qq ě p1 ´ λqd detP . In particular, if λ ď p2dq´1, then detpP ` Qq ě
pdetP q{2.

Then, observe that since B2
I

`

I2
1 ` Q̂k

˘

is positive–definite (by (165)), so is B2
Î
Q̂k. Therefore, since

B2
Î
ĥ
k
“ B2

Î
Q̂k ` B

2
Î
pĥ
k
´ Q̂kq, in view of (169), taking K ě c

3
for a suitable c

3
“ c

3
pnq ą 1, Lemma 4.6

implies also the second estimate in (163) and the proof of Lemma 4.5 is complete.

Step 2 Here we define suitable coverings of the sets Bik defined in (92), (48). Such coverings are made
up of sets corresponding to zones close to the separatrices and zones away from them.

Recall the definitions given in (92), (89) and (146). For any λo P p0, 1{c›q, define the following subsets
of67 Bik:

#

Bi
near
pλoq :“ tI : biλo

pÎq ă I1 ă bipÎq , Î P D̂u ,

Bi
far
pλoq :“ Ii ˆ D̂ , Ii :“ p0, b̄iλo{2

q ,
i odd ;

$

’

&

’

%

Bi
near
pλoq :“ tI : aipÎq ă I1 ă aiλo

pÎq , Î P D̂u

Y tI : biλo
pÎq ă I1 ă bipÎq , Î P D̂u ,

Bi
far
pλoq :“ Ii ˆ D̂ , Ii :“ pāiλo{2

, b̄iλo{2
q ,

i even , i ‰ 0, 2Nk ; (170)

#

Bi
near
pλoq :“ tI : aipÎq ă I1 ă aiλo

pÎq , Î P D̂u ,

Bi
far
pλoq :“ Ii ˆ D̂ , Ii :“ pāiλo{2

, bipÎqq ,
i “ 0, 2Nk .

Then, one has:

Lemma 4.7 Let 0 ď i ď 2N and assume that68

λo ă 1{c
›
, µ ď λ2

o{2
8c4 . (171)

Then, Bik “ Bi
near
pλoq Y Bi

far
pλoq.

67The constant c› satisfies (114). Recall that for i odd ai0 ” 0 (see (93)). The number λo will be fixed in Proposition 4.1
below.

68c› appears in Theorem 3.1, while c ď c› appears in Theorem 2.3. Recall (114).
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Proof We give a detailed proof in the case (170) (i odd), as there is no extra difficulty in extending
the proof to the other cases. For ease of notation in this proof we omit the suffix i.
Since the functions E Ñ Ī1pEq and E Ñ I1pE, Îq are positive and strictly increasing (see (80)), the
functions λÑ b̄λ and λÑ bλpÎq are positive and strictly decreasing. We claim that

bλo
pÎq ă b̄λo{2 ă bλo{4pÎq , @ Î P D̂ . (172)

From such relations the claim follows: the fact that B
far

is a subset of B follows from the second
inequality in (172), and then the equality B “ B

near
Y B

far
follows from the first inequality in (172).

Let us prove in detail the first inequality in (172) (the second one being analogous). By (170) and
(89) we have69

bλopÎq “ ε

ż λmax

λo

BEI1pE`pÎq ´ εz, Îq dz “ ε

ż λmax`λ
7

λo`λ
7

BEI1pĒ` ´ εz, Îq dz ,

where λ
7

:“ pĒ` ´ E`pÎqq{ε. Analogously,

b̄λo{2 “ ε

ż λ̄max

λo{2

BE Ī1pĒ` ´ εzq dz ,

where λ̄
max

was defined in (89). Note that, by (71) and (114), |λ
7
| ď 3κ3µ ď cµ, and that by (89),

(90) we have that λo ď 1{c
›
ď mintλ

max
{4, λ̄

max
{8u. Then again by (90), (89), (91) and (171) we get

that, for every Î P D̂,
λo

2 , λo ` λ7 , λmax
` λ

7
, λ̄

max
P

`

λo

8 , λ̄max
` 1

c

˘

.

We write

b̄λo{2 ´ bλo
pÎq

ε
“

ż λo`λ
7

λo{2

BE Ī1pĒ` ´ εzq dz `

ż λ̄max

λmax`λ
7

BE Ī1pĒ` ´ εzq dz

`

ż λmax`λ
7

λo`λ
7

`

BE Ī1pĒ` ´ εzq ´ BEI1pĒ` ´ εz, Îq
˘

dz ,

observing that, for every z in the three integration intervals (and for every Î P D̂), the quantity
Ē` ´ εz belongs to the set70 Eλo{8. Then, by (80), (83) and (171) we get, for every Î P D̂,

b̄λo{2 ´ bλo
pÎq

ε
ě
λo ´ 2|λ

7
|

2c
?
ε

´ c2 | log λo

8 |?
ε

`

|λ̄
max

´ λ
max
| ` |λ

7
|
˘

´ 8c2µ
λmax

λo

?
ε

(91),(90)
ě

1

2c
?
ε

`

λo ´ 2cµ´ 24c4µ| log λo

8 | ´ 26c3µ{λo

˘

ě
λo

4c
?
ε
ą 0 .

Step 3˚ Non–degeneracy of the twist function in neighborhoods of separatrices

Here we show that (a suitable regularization of) the twist determinant det B2
Ih
i in (155) is a non–

degenerate function in the sense of Definition 4.1 in suitable neighborhoods of separatrices.

69Recall that bλmax
pÎq “ I1pE´pÎq, Îq “ a0pÎq “ 0.

70Recall (82). Note that (171) implies (81) with λ “ λo{8.
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Actually, it will be convenient to study the twist directly as a function of the energy, for values
E “ Ei¯pÎq ˘ εz close to critical separatrix values Ei¯. We therefore define:

δ̄ pz, Îq :“ det
“

B2
IE
`

I1pE
i
¯pÎq ˘ εz, Îq, Î

˘

` B2
I ĥkpÎq

‰

. (173)

The study of the twist determinant (173) will be based on the analytic properties described in Theo-
rem 2.3. In particular, the properties that we shall use are the same in the plus and the minus case.
Hence, we shall consider only the plus case and consider, henceforth, δ :“ δ̀ .

The precise statement on the non–degeneracy of z Ñ δpz, Îq (see Proposition 4.1 below) needs some
preparation.

First of all, we introduce a suitable ‘regularization’ function ζ “ ζpz, Îq

ζpz, Îq :“ z ¨
`?
εBEI1pE`pÎq ´ εz, Îq

˘3
, (174)

and define the regularized twist determinant δ̄ by setting71

δ̄ “ δ̃{det B2
Î
ĥ
k
, with δ̃pz, Îq :“ ζpz, Îqn ¨ δpz, Îq . (175)

The functions appearing in Theorem 2.3, as well as the functions in (174) and (175) belong to the
following ring of functions F .

Definition 4.4 We denote by F the set of functions of the form

fpz, Îq “ zh
ÿ̀

j“0

ujpz, Îq logj z , (176)

where h, ` P Z with ` ě 0 and the uj are real analytic functions on a (complex) neighborhood of72

tz “ 0u ˆ D̂ Ă Cn.
We shall also use the following notation: given two functions fi P F we say that f “ f1 ‘ f2 if there
exists two functions ui real analytic on a neighborhood of tz “ 0u ˆ D̂ such that73 f “ u1f1 ` u2g2.

We say that fpz, Îq “ O%ph, `q if f P F as in (176) and there exists % ą 0 such that

~f~% :“ sup
0ďjď`

sup
tzPC:|z|ă%u

ÎPD̂

|uj | ă `8 .

Remark 4.2 (i) The functions pz, Îq Ñ fpz, Îq “ Ii1
`

Ei¯pÎq ˘ εz, Î
˘

in (75) of Theorem 2.3 belongs
to F and, by (76),

~f~1{c ď c
?
ε ;

furthermore, the ‘algebraic structure’ of such function f is given by

f “
?
εp1‘ z log zq .

71Recall (163).
72Recall that the domain D̂ is defined in (48), but, essentially plays no rôle.
73E.g., f in (176) can be written as zh

`
À`
j“0 logj z

˘

.

44



(ii) The following elementary properties (which, in particular, show that F is a ring) will be often
used:

$

&

%

O%ph, pq ¨O%pk, qq “ O%ph` k, p` qq ,
pO%ph, pqqj “ O%pjh, jpq ,
O%ph, pq `O%pk, qq “ O%pminth, ku,maxtp, quq .

Finally, define the following linear differential operators:

L :“ L3n̄pBz ¨ L
3n̄qn̄ , where : L :“ zBz , n̄ :“ n´ 1 .

Notice that L is a linear differential operator of order m̄ :“ 3n̄2 ` 4n̄ “ 3n2 ´ 2n ´ 1 ě 7 and there
exist suitable polynomials ajpzq such that74

L “
m̄
ÿ

j“1

ajpzqB
j
z . (177)

Proposition 4.1 There exists75 c
1
“ c

1
pn, κq ą c

3
such that if K ě c

1
, then the following holds.

(i) One has
Lrδ̄s “ n̄!3n̄`1p3n̄q! γ3n̄ `O%p1, 3n̄` 1q , (178)

where76

γpÎq :“ ´ε´1{2ψ`p0, Îq , % :“ 1{c ,

and
1{c ď inf

D̂
|γ| ď sup

D̂

|γ| ď c . (179)

(ii) There exist suitable positive constants ξ
7
“ ξ

7
pn, κq ă 1 and77 λo “ λopn, κq ă 1{c

›
, such that, for

Î P D̂, the function z Ñ δ̄pz, Îq defined in (175) is ξ
7
–non–degenerate at order m̄ “ 3n2 ´ 2n ´ 1 on

the interval p0, λoq.

To prove this proposition we need a couple of preparatory lemmata.

Notation 4.1 In the rest of this section, it is understood that in an expansion f “ zh
`
À`

j“0 logj z
˘

,
one has ~f~% ď c for a suitable constant c “ cpn, κq; furthermore, O stands for O% with % “ 1{c.

We shall consider in detail only the inner odd case 0 ă i ă 2N , since the other cases do not present
any new difficulties; for ease of notation, we do not indicate explicitly the labels k and i.

Lemma 4.8 If ζ is as in (174), Ĩ “ Ĩpz, Îq :“ pbzpÎq, Îq and µo is as in (76), one has (2 ď i, j ď n)

ζ “ z
`

γ log z ` p1‘ z log zq
˘3

“ γ3z log3 z `Op1, 2q `Op2, 3q “ Op1, 3q ,
74Actually, L “

řm̄
j“n̄`1 ajz

j´n̄B
j
z , with aj P N. For example, if n “ 2, m̄ “ 7 and L is given by:

L “ z6B7
z ` 18z5B6

z ` 98z4B5
z ` 184z3B4

z ` 100z2B3
z ` 8zB2

z .
75The constant c3 has been introduced in Lemma 4.5.
76Recall (78).
77The constant c› has been introduced in Theorem 3.1.
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ζ ¨ B2
I1E|I“Ĩ “ γ` zp1‘ log zq “ γ`Op1, 1q , (180)

ζ ¨ B2
I1Îi

E|I“Ĩ “ µop1‘ z log z ‘ z log2 zq “ µo Op0, 2q ,

ζ ¨ B2
ÎiÎj

E|I“Ĩ “ µop1‘ z log z ‘ z log2 z ‘ z2 log3 zq “ µo Op0, 3q .

Proof By the chain rule, one has (writing I1 in place of Ii1)

BI1E
i “

1

BEI1
, BÎE

i “ ´
BÎI1
BEI1

, B2
I1E

i “ ´
B2
EI1

pBEI1q3
,

B2
I1Î

Ei “
B2
EI1BÎI1
pBEI1q3

´
B2
EÎ
I1

pBEI1q2
, (181)

B2
Î
Ei “ ´

B2
Î
I1

BEI1
`
BT
Î
I1 BÎpBEI1q ` B

T
Î
pBEI1q BÎI1

pBEI1q2
´
B2
EI1 B

T
Î
I1 BÎI1

pBEI1q3
,

where the derivatives of Ei and I1 “ Ii1 are evaluated in
`

Ii1pE, Îq, Î
˘

and pE, Îq, respectively. Now, by
(181) and (75), we have

?
εBEI1 “ γ log z ` p1‘ z log zq “ 1‘ log z , BÎi

I1 “ µop1‘ z log zq ,

ε3{2B2
EI1 “ ´γz

´1 ` plog z ‘ z´1q “ log z ‘ z´1 , (182)

εB2
EÎi

I1 “ µop1‘ log zq , B2
ÎiÎj

I1 “ µor
´1p1‘ z log zq

(43)
“ µoε

´1{2p1‘ z log zq .

Finally, by (182), (181), (75) and (76) we get

?
εBEI1 “ γ log z ` p1‘ z log zq “ 1‘ log z

ζ ¨ B2
I1E “ ´ε3{2zB2

EI1 “ γ` zp1‘ log zq “ 1‘ z log z ,

ζ ¨ B2
I1Îi

E “ ε3{2zpB2
EI1BÎiI1 ´ B

2
EÎi

I1BEI1q “ µop1‘ z log z ‘ z log2 zq ,

ζ ¨ B2
ÎiÎj

E “ ε3{2z
`

´ pBEI1q
2B2
ÎiÎj

I1 ` 2BEI1BÎiI1 B
2
ÎjE

I1 ´ B
2
EI1 BÎiI1 BÎjI1

˘

“ µop1‘ z log z ‘ z log2 z ‘ z2 log3 zq .

Lemma 4.9 One has

δ̄ “ δ̄pz, Îq “ γ3n̄zn̄ log3n̄ z `Opn̄` 1, 3n̄` 1q `Op0, 3n̄´ 1q , n̄ :“ n´ 1 . (183)

Furthermore, there exists c
1
“ c

1
pn, κq ą c

3
such that if K ě c

1
and λo ď 1{c

1
, one has:

|δpz, Îq| ě δo |δ̄pz, Îq| , @ 0 ă z ď λo , Î P D̂ . (184)

Proof Recalling (155) we split δ̃ in (175) in two terms. The first term is

ζnpB2
I1Eq detpB2

Î
ĥ
k
` B2

Î
Eq

(180)
“

`

γ`Op1, 1q
˘

ζn̄ detpB2
Î
ĥ
k
` B2

Î
Eq ,

and, by (180), we have that

ζn̄ detpB2
Î
ĥ
k
` B2

Î
Eq
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“ ζn̄ det B2
Î
ĥ
k
`

n̄
ÿ

j“1

ζn̄´jµjo
`

1‘ z log z ‘ z log2 z ‘ z2 log3 z
˘j

“
`

γ3n̄zn̄ log3n̄ z `Opn̄, 3n̄´ 1q `Opn̄` 1, 3n̄q
˘

det B2
Î
ĥ
k

`µo

`

Op0, 3n̄´ 3q `Opn̄, 3n̄´ 1q `Opn̄` 1, 3n̄q
˘

“
`

γ3n̄zn̄ log3n̄ z `Opn̄` 1, 3n̄q `Op0, 3n̄´ 1q
˘

det B2
Î
ĥ
k
,

where in the last line we used (recall (76), (48), (163))

µo ď |k|
´2n “ δo ď inf

D̂
det B2

Î
ĥ
k
. (185)

The second term is,

ζn det

˜

0 BT
Î
pBI1Eq

BÎpBI1Eq B2
Î
E` B2

Î
ĥ
k

¸

“ µo det

ˆ

0 wT

w N

˙

“ µ2
op1‘ z log z ‘ z log2 zq2p1‘ z log z ‘ z log2 z ‘ z log3 zqn´2

“ µ2
oOp0, 3n´ 4q `Opn, 3n´ 2q ,

where w is a n̄–dimensional vector and N is an pn̄ˆ n̄q matrix satisfying by (180)

wi “ Op0, 0q `Op1, 2q , 2 ď i ď n , Nij “ Op0, 0q `Op1, 3q , 2 ď i, j ď n .

Thus, the second term has the form µ2
o

`

Opn̄` 1, 3n̄` 1q `Op0, 3n̄´ 1q
˘

. Summing up the two terms
and using (185) we get (183).

By the first line in (180), we see that, taking c
1

big enough, one has

|ζpz, Îq| ď 1 , @ 0 ă z ď λo , Î P D̂ .

Thus, by the definitions in (173), (175) and by (163), one obtains (184).

Before giving the proof of Proposition 4.1, we need one more lemma. Define

Lm,k :“ LkpBz ¨ L
kqm .

Lemma 4.10 Let 0 ď ` ă k ď m̄, 0 ď m, q ď m̄, and f1 “ O%p0, `q, f2 “ O%pm` 1, qq. Then

Lm,krzm logk z ` f1 ` f2s “ pm!qk`1k!` f3 , (186)

where, for a suitable constant c, which depends only on n, one has

f3 “ O%{2p1,maxtk ´ 1, quq , and ~f3~%{2 ď cmaxt~f1~% ,~f2~%u .

Proof Observing that Lzm “ mzm, L log``1 z “ p` ` 1q log` z, one easily checks that, for any 0 ď
m, ` ď m̄, one has

LrO%pm, `qs “ O3
4%
pm, `q ,

LO%p0, `` 1q “ O3
4%
p1, `` 1q `O3

4%
p0, `q ,

L``1rO%p0, `qs “ O3
4%
p1, `q ,
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where the norm ~ ¨ ~3
4%

of the functions in the right hand sides are bounded by c1 “ c1pnq times the

norm ~ ¨ ~% of the functions in the left hand sides78. Analogously, from the above relations, it follows
that, for any 0 ď ` ă k ď m̄ and 0 ď q ď m̄, one has

Lm,krzm logk zs “ pm!qk`1pkq!`O1
2%
p1, k ´ 1q ,

Lm,krO3
4%
p0, `qs “ O1

2%
p1, `q ,

Lm,krO3
4%
pm` 1, qqs “ O1

2%
p1, qq ,

where, the norm ~ ¨ ~1
2%

of the functions in the right hand sides are bounded by c “ cpnq ą c1 times

the norm ~ ¨ ~ 3
4%

of the functions in square brackets in the left hand side. From such relations, the

claim of the lemma follows easily.

Proof of Proposition 4.1 The estimates in (179) follow trivially from (78) and (76).

To check (178), observe that L “ Ln̄,3n̄, and use (183) in Lemma 4.9 and (186) (with m “ n̄, k “ 3n̄,
` “ 3n̄´ 1, and q “ 3n̄` 1).

It remains to prove claim (ii). By (178), and (179), we see that for λo ă 1{c
›

small enough one has:

1

c3n̄
ď inf

0ăzďλo

inf
ÎPD̂

ˇ

ˇLrδ̄s
ˇ

ˇ

p177q
ď c2 max

1ďjďm̄
|Bjz δ̄| ,

where c2 “ c2pnq. Thus, for Î P D̂, z Ñ δ̄pz, Îq is ξ
7
–non–degenerate at order m̄ “ 3n2´ 2n´ 1 on the

interval p0, λoq with ξ
7
“ pc2c3n̄q´1.

Step 4: The Twist Theorem in neighborhoods of separatrices

We can now state and prove the Twist Theorem in neighborhoods of separatrices.

Proposition 4.2 Let k P GnKo
, 0 ď i ď 2N , η ą 0, and λo as in Proposition 4.1–(ii). Then, there exist

a positive constant c
2
“ c

2
pn, κq ě c such that, if K ě c

2
, then

meas
` 

I P Bi
near
pλoq : |det B2

Ih
ipIq| ď η

(˘

ď c
2
p|k|2nηq1{9n

4

measBik . (187)

Before the proof, which will be based on two lemmata, we introduce the following

Notation 4.2 Given two non negative functions f and g we say that f Ì g if there exists a constant
c “ cpn, κq ě 1, depending only on n and κ, such that f ď cg. Similarly, given a function f and a
non negative function g, we say that f “ Opgq if there exists a constant c “ cpn, κq ě 1, such that
|f | ď cg.

Lemma 4.11 There exists a constant c
3
“ c

3
pn, κq ą 1 such that, for every Î P D̂ and η ą 0, one

has79

meastz P p0, λos s.t. |δ̄pz, Îq| ď ηu ď c
3
ηā , ā :“ 1

m̄pm̄`3q . (188)

78The algebraic relations are just calculus, while the estimates follow easily by (iterated) use of Cauchy estimates.
79m̄ “ 3n2 ´ 2n´ 1 is defined in Proposition 4.1.
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Proof If z0 ď 2ηā estimate (188) is obvious. Consider the case z0 ą 2ηā. Let

λ
1

:“ ηā ă z0{2 .

By (183), (163) and (179) we have that80

sup
rλ

1
,λosλ

1
{2

sup
D̂

|δ̄pz, Îq| Ì 1` | log3n´4 λ
1
| Ì 1{λ

1
.

By Cauchy estimates
sup

λ
1
ďzďλo

sup
ÎPD̂

max
1ďjďm̄`1

|Bjz δ̄pz, Îq| ď c5{λ
m̄`2
1

“: M , (189)

for a suitable c5 ě 1, depending only on n, κ. Now we want to apply Lemma 4.1 with

f “ δ̄ , m “ m̄ , a “ λ1 , b “ λo , ξ “ ξ
7
, M as in (189) .

Then, we get
meastz P pλ1 , λoq : |δ̄pz, Îq| ď ηu Ì ηā , @ Î P D̂ . (190)

Since the interval p0, λ
1
q, has length λ

1
“ ηā, from (190) we obtain the measure estimate (188).

Now, recalling that δo “ |k|
´2n (see (153)), we have:

Lemma 4.12 There exists c
4
“ c

4
pn, κq ě maxtc

1
, c

3
u such that for k P GnKo

, i odd and η ą 0,

meas
` 

I P Bi
near

: |det B2
Ih
ipIq| ď η

(˘

ď c4

?
ε pη{δoq

1
9n4 meas D̂ .

Proof Let ZηpÎq :“
`

tz P p0, λos : |δpz, Îq| ď ηu. By (184) and (188) we get

mη “ mηpÎq :“ measpZηpÎqq ď c
3
pη{δoq

ā , @ Î P D̂ . (191)

Note that since λo ď 1{2 (see (171)), by definition

mη ď λo ď 1{2 . (192)

Recalling (92), we define, for Î P D̂ and η ą 0,

IηpÎq :“
 

I1 P
“

bλo
pÎq, bpÎq

˘

:
ˇ

ˇdet
“

B2
I

`

ĥ
k
pÎq ` EpIq

˘‰
ˇ

ˇ ď η
(

.

We have that
IηpÎq “ bZηpÎqpÎq :“

 

I1 “ bzpÎq : z P ZηpÎq
(

, (193)

since by definition of Zη, (173) and (170) δpz, Îq “ det
“

B2
I ĥkpÎq ` B

2
IE
`

bzpÎq, Î
˘‰

. For every Î P D̂ and

η ą 0, making the change of variable I1 “ bzpÎq, and noticing that BzbzpÎq “ ´εBEI1pE`pÎq ´ εz, Îq,
we get

measpIηpÎqq “

ż

IηpÎq
dI1

p193q
“

ż

bZηpÎq

dI1 “

ż

ZηpÎq
|BzbzpÎq|dz

80Denoting, as usual, the λ1{2–complex–neighborhood of the real interval rλ1 , λos by rλ1 , λosλ1 {2
.

49



(180)
Ì

?
ε

ż

ZηpÎq
| log z|dz .

Moreover, recalling (192),
ż

ZηpÎq
| log z|dz ď

ż mη

0

| log z|dz `

ż

ZηpÎqXpmη,λos

| log z|dz ď 2mη| log mη| .

Thus, by (192), using 1
9n4 ă ā (see (188) and recall the definition of m̄ “ 3n2´2n´1 in Proposition 4.1),

we get

measpIηpÎqq Ì
?
εmη| log mη| Ì

?
εm1{p9n4 āq

η .

By (191), measpIηpÎqq Ì
?
ε pη{δoq

1{9n4

, for every Î P D̂ and η ą 0. By Fubini’s Theorem, the claim

follows.

Proof of Proposition 4.2 By (92) we get

measBik “

ż

D̂

bpÎqdÎ “

ż

D̂

I1
`

E`pÎq, Î
˘

dÎ “

ż

D̂

dÎ

ż E`pÎq

E´pÎq

BEI1
`

E`pÎq, Î
˘

dE

(80)
ě

E`pÎq ´ E´pÎq

c
?
ε

meas D̂
(89)
ě

?
ε

2κc
meas D̂ . (194)

Lemma 4.12 and (194) imply at once (187) if one takes c2 ě c4 big enough. The proof of Proposition 4.2
is complete for i odd. The changes for the inner case with i even are straightforward .

Let us indicate the changes one needs to do in order to prove the outer case i “ 0, 2N . Recalling (141),
(48), (20), by Cauchy estimates, we have (recall Notation 4.2)

|BÎg3
|D̂,3r Ì 1{K14n`2 , |B2

Î
g

3
|D̂,3r Ì 1{p

?
ε K

37
2 n`2q . (195)

Note that the term B2
Î
g3 in (195) has a ‘big’ estimate, containing a

?
ε at the denominator. However

this does not cause any problem, since, by the first lines in (180), (181) and (182) one has81

ζ BI1E B
2
ÎiÎj

g3 “ K´
37
2 n´2 zp1‘ log zq2 ,

where, the function in brackets belongs to F and has norm ~ ¨ ~% bounded by a constant depending
only on n and κ.
At this point, mimicking the proof for the inner case, one gets easily (187) also in the outer case

i “ 0, 2N , if one chooses c
2

big enough. The proof of of Proposition 4.2 is complete.

Step 5: The Twist Theorem far from separatrices in the inner case

Proposition 4.3 Let 0 ă i ă 2N .

(i) There exists a constant c
5
“ c

5
pn, κq ą 1 such that if K ě c

5
, N ď |k|

1
ď Ko, then, on82 Bi

far
,

|det B2
Ih| ě δo{2

5.

(ii) There exists a suitable constant ĉ0 “ ĉ0pn, κ, ξ, mq ě c5 , such that if K ě ĉ0 and η ă δo{2
5, then

meas
` 

I P Bi
far

: |det B2
IhpIq| ď η

(˘

ď ĉ
0
p|k|2nηq

1
m measBik . (196)

81The regularizing term ζ defined in Lemma 4.8.
82Recall the definition of Bfar “ Bi

far
in (170).
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Remark 4.3 Notice that by point (i), the set
 

I P B
far

: |det B2
IhpIq| ď η

(

is, for η ă δo{2
5 empty.

Therefore, in proving point (ii) one needs to consider only |k|1 ă N.

For definiteness, in the proof of Proposition 4.3, we consider only i odd, as the case i even can be
treated in a completely analogous way.

First, we prove some perturbative estimates on the derivatives of the energy.

Recalling the definition of I “ Ii in (170) with λo as in Proposition 4.1–(ii), and notice that I only
depends on n, κ. Then, the following estimates hold.

Lemma 4.13 There exists c6 “ c6pn, κq ą 1 such that, defining r
*

:“
?
ε{c6 , one has, for I P

I2r
*
ˆ D̂,

|BI1E| ď c
6

?
ε ,

ˇ

ˇB2
I1E

ˇ

ˇ ď c
6
,

ˇ

ˇ

ˇ
B2
I1Î

E
ˇ

ˇ

ˇ
ď c

6
µo ,

ˇ

ˇB2
Î
E
ˇ

ˇ ď c
6
µo (197)

and
|BI1E´ BI1 Ē| ď c

6

?
εµ . (198)

Proof Recall the definitions in (92) and (146). Then:

I1pE`pÎq ´ ε
λo

8 , Îq ´ b̄λo
ě Ī1pĒ` ´ ε

λo

8 q

´Ī1pĒ` ´ ε
λo

2 q ´ |I1pE`pÎq ´ ε
λo

8 , Îq ´ Ī1pĒ` ´ ε
λo

8 q|

p80q,p75q
ě 1

c
?
ε

`

ελo

2 ´ ελo

8

˘

´ |φ`p
λo

8 , Îq ´ φ̄`p
λo

8 q|

´ |ψ`p
λo

8 , Îq ´ ψ̄`p
λo

8 q| ¨
λo

8 | log λo

8 |

p77q
ě

3
?
ελo

8c ´ 2c
?
εµ

p171q
ě

?
ελo

4c ą 0 ,

which imply I ˆ D̂ Ď Bikpλo{8q.

Now, we can take c
6
ą 1 big enough so that (recall (96)) I2r

*
ˆ D̂ Ď

`

Bikpλo{8q
˘

ρλo{8
. Thus, by (97)

we get83 (197).
Now, observe that by the definitions in (170) and (146) we get ĒpIq “ pĒ´, Ē` ´ ελo{2q. Then,
recalling (82), by the first estimate in (197), we get

ĒpI2r
*
q Ď Eλo{8 , EpI2r

*
, Îq Ď Eλo{8 , @ Î P D̂ , (199)

taking c
6

big enough.
Let us, now, prove (198). Observe that

BI1EpIq ´ BI1 ĒpI1q “
`

BE Ī1pĒpI1qq ´ BEI1pEpI1q, Îq
˘

BI1EpIq ¨ BI1 ĒpI1q ,

so that

sup
I2r

*
ˆD̂

|BI1EpIq ´ BI1 ĒpI1q|

83Obviously the first two estimates holds also for Ē “ E|µ“0.
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(199)
ď sup

Eλo{8ˆD̂

ˇ

ˇ

ˇ
BE Ī1pEq ´ BEI1pE, Îq

ˇ

ˇ

ˇ
¨ sup
I2r

*
ˆD̂

ˇ

ˇ

ˇ
BI1EpIq ¨ BI1 ĒpI1q

ˇ

ˇ

ˇ

(83),(197)
Ì

?
εµ .

Next, we provide perturbative estimates on the twist.

By Cauchy estimates, from (198), there follows

sup
Ir

*
ˆD̂

|B2
I1E´ B

2
I1 Ē| Ì µ . (200)

Hence, by (155) and (197), on Ir
*
ˆ D̂, we get84

det B2
Ih “ pB

2
I1Eq ¨ det B2

Î
ĥ
k
`Opµoq “ pB

2
I1 Ē`Opµqq ¨ det B2

Î
ĥ
k
`Opµoq . (201)

Now, by (163), (76), one has that δ´1
o ď K2n and µo{δo “ OpK´3nq. Finally, since, by (48), µ “ 1{K5n,

from (201) one gets at once the following

Lemma 4.14 Let r
*

be as in Lemma 4.13, 0 ď i ď 2N , and I “ Ii as in (170). Then,

ˇ

ˇdet B2
IhpIq

ˇ

ˇ ě δo|gpIq| , @ I P Ir
*
ˆ D̂ , (202)

with
gpIq “ B2

I1 ĒpI1q `OpK
´3nq , @ I P Ir

*
ˆ D̂ . (203)

Proof of Proposition 4.3 (i) Since |k|1 ě N, Ḡ “ 2ε
|k|2 πZkf in (55) is close to a cosine, as proved in

Lemma A.1 in Appendix. Hence, (84) in Proposition 2.1 holds, so that by (202) and (203), taking c
5

large enough and K ě c5 , the claimed estimate |det B2
Ih| ě δo{2

5 follows.

(ii) Recall (146). Since λ Ñ b̄λ is a decreasing function, we get b̄λo{2 ď b̄ “ b̄0. Rescaling we get

Ĩ :“ p0, b̄λo{2{b̄q Ď p0, 1q so that b̄Ĩ “ I. Recalling (92), by (75)˜(78) we have that b̄ Ì
?
ε. Then,

choosing 0 ă r̃ ď 1 small enough, we have that

b̄Ĩ2r̃ Ď Ir
*
. (204)

By (147) we get
B2
I1 ĒpI1q “ FḠpI1{b̄q . (205)

By (203) and (204) we get

gpb̄x, Îq “ FḠpxq `Opµq `Opµo{δoq uniformly for px, Îq P Ĩ2r̃ ˆ D̂ . (206)

By (197), (204) and (205) we get
sup
Ĩ2r̃

|FḠ| Ì 1 . (207)

For Î P D̂, set85

I 1ηpÎq :“
 

I1 P I :
ˇ

ˇdet B2
Ih
ipIq

ˇ

ˇ ď η
(

, Ĩ 1ηpÎq :“ tx P Ĩ : |gpb̄x, Îq| ď η{δou . (208)

84Recall Notation 4.2.
85Recall that I :“ p0, b̄λo{2q in (170).
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By (208) and (202) we have that, for every Î P D̂,

meas I 1ηpÎq ď b̄meas Ĩ 1ηpÎq Ì
?
ε meas Ĩ 1ηpÎq . (209)

using b̄ Ì
?
ε. Before estimating meas Ĩ 1ηpÎq we need the following bound:

1{2 ď b̄λo{2{b̄ . (210)

Recalling (92) we have

b̄ “ Ī1pĒ`q “

ż Ē`

Ē´

BE Ī1
(80)
ě

Ē` ´ Ē´
c
?
ε

(90)
ě

?
ε

cκ
. (211)

Recalling (170) we have by86 (83) that, for 0 ă z ď λo{2, BE Ī1pĒ` ´ εzq ď c2| log z|{
?
ε. Therefore

1´
b̄λo{2

b̄
“

Ī1pĒ`q ´ Ī1pĒ` ´ ελo{2q

b̄
“
ε

b̄

ż λo{2

0

BE Ī1pĒ` ´ εzqdz

(211)
ď c3κ

ż λo{2

0

| log z|dz ď c4λo log |λo|
(171)
ď

1

2
,

proving (210).
Let us come back to the estimate of meas Ĩ 1ηpÎq. Recalling Definition 4.3 we have that F is ξ–non–
degenerate at order m. By (206), (207) and Cauchy estimates, taking µ and87 µo{δo small enough (i.e.,
K ě ĉ0 for a suitable ĉ0 arge enough) depending only on κ, n, ξ and m we have that the function
x ÞÑ gpb̄x, Îq is pξ{2q–non–degenerate at order m. Now we want to apply Lemma 4.1 with η replaced
by η{δo, and with the following choices:

fpxq “ gpb̄x, Îq , m “ m , a “ 0 , 1{2
(210)
ď b “ b̄λo{2{b̄ ă 1 , ξ “ ξ{2 ;

the constant M controlling the derivatives of f , by (206), (207) and Cauchy estimates can be bounded
by 1 ďM ď cn,κ{r̃

m`1 for88 for a suitably large constant cn,κ depending only on n and κ. In conclusion,
by Lemma 4.1, we get

meas Ĩ 1ηpÎq ď cm

´ 2cn,κ
ξr̃m`1

` 1
¯´ η

δoξ

¯
1
m

.

Then (196) follows by (163), (209) Fubini’s theorem and (194). The proof of Proposition 4.3 is com-

plete.

Step 6: Uniform twist in outer regions far from separatrices

Recall the definition of the twist δ7 in the outer regions in (161), and that δo “ |k|
´2n (see (153)).

Proposition 4.4 Let i “ 0, 2N . Then, there exists a suitable constant c
7
“ c

7
pn, κq ą 1 such that if

K ě c7 , then on Bi
far

|δ7| ě δo{2 .
86Note that condition (81) reduces here to λ ď 1{c since we are considering Ī1, namely the case µ “ 0. In any case

one can prove the estimate also directly by (75) and (76).
87δo is defined in (153).
88Recall that r̃ “ r̃pn, κq was chosen in (204) small enough.
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Proof Taking λ “ λo{2 in (97), on Bi
far

, we have that89

|v̂|, |M̂| Ì 1{K
19
2 n´1 . (212)

By (48) and (76), we also have

?
ε

r
Ì

1

K
9
2n
, µo Ì

1

K
19
2 n`1

.

Then, recalling Definition 2.4 and (48), we get |E| ď 2R2 ď 2εK9n`4.
Now, it is a general fact that, in the outer case, the unperturbed energy function is strictly concave,
as it follows from the following simple consequence of Jensen’s inequality90.

Lemma 4.15 Let i “ 0, 2N . Then, for every E ą Ē0 “ Ē2N , B2
I1
ĒipĪi1pEqq ě 2 .

The proof is given in Appendix.

Now, since estimate (200) still holds in the present case i “ 2N we get by Lemma 4.15, B2
I1
E ě 1

2B
2
I1
Ē ě

1, so that the claim follows by (161), (212) and (163).

Step 7: Conclusion

Proof of the Twist Theorem 4.1 Let λo “ λopn, κq be as in Proposition 4.1–(ii), and let c
8
“

c
8
pn, κq ě 1 be such that the second estimate in (171) holds if91 K “ 1{µ5n ě c

8
. Then, by Lemma 4.7,

Bik “ Bi
near
pλoq Y Bi

far
pλoq , @ 0 ď i ď 2N . (213)

Define92

c
0

:“ 2 maxtc
2
, c

5
, c

6
, c

7
, c

8
, ĉ

0
u . (214)

Let us consider first the outer case i “ 0, 2N . Recall the definition of b in (154). By Lemma 4.4,
Proposition 4.4, Proposition 4.2, and by (214), we find

meas
` 

I P Bik :
ˇ

ˇdet B2
Ih
i
kpIq

ˇ

ˇ ď η
(˘

“ meas
` 

I P Bik :
ˇ

ˇδi7pIq
ˇ

ˇ ď η
(˘

“ meas
` 

I P Bi
near
pλoq : |det B2

Ih
ipIq| ď η

(˘

ď c
2
p|k|2nηq1{9n

4

measBik
p162q
“ c

2
p|k|2nηq1{9n

4

measBik
p214q
ă c0 p|k|

2nηqb measBik ,

proving Theorem 4.1 in the outer case i “ 0, 2N .

In the inner case 0 ă i ă 2N , Bik “ Bik (compare (108)) and, since K ě c
0
, (154) follows by (213),

(187) in Proposition 4.2, and (196) in Proposition (4.3).

89The quantities v̂ and M̂ are defined in (160).
90 Ēi is defined in (68).
91Recall (48).
92Recall that c2 ě c4 ě maxtc1 , c3u ě c3 .
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5 Maximal KAM tori and proof of the main results

In this final section we show that primary and secondary maximal KAM tori of H span the comple-
mentary of R2ˆTn apart from an exponentially small (in 1{K) set and prove the results in Section 1.

To construct such tori we shall use the following ‘KAM theorem’.

Theorem 5.1 ([10]) Fix n ě 2 and let D be any non–empty, bounded subset of Rn. Let

Hpp, qq :“ hppq ` fpp, qq

be real analytic on Dr ˆ Tns , for some r ą 0 and 0 ă s ď 1, and having finite norms

M :“ |B2
ph|r , |f|r,s . (215)

Assume that the frequency map p P DÑ ω “ Bph is a local diffeomorphism, namely, assume:

d :“ inf
D
|det B2

ph| ą 0 , (216)

and let d˚ :“ d{Mn and r˚ :“ d2
˚r. Then, there exists C˚ “ C˚pnq ą 1 such that, if

ε :“
|f|r,s
Mr2

ď
d8
˚ s4pn`1q

C˚
, (217)

there exists a set T Ď pDr˚ X Rnq ˆ Tn formed by primary KAM tori such that93

meas
`

pDˆ Tnq z T
˘

ď C
?
ε , C :“

`

max
 

d2
˚r , diam D

(˘n
¨

C˚

dn`5
˚ s3pn`1q

. (218)

This statement is an immediate corollary of Theorem 1 in94 [10].

Remark 5.1 (i) Note that in the formulation of Theorem 5.1 the action domain D is a completely
arbitrary bounded set and that the smallness quantitative condition (217) depends on D only through
its diameter, which in our application depends on k. For a similar statement, which takes into account
the geometry of D, see [19].
(ii) We point out that the smallness condition (217) can be rewritten as

|f|D,r,s ď
r2d8 s4n`4

C˚ M8n´1
. (219)

(iii) Finally, observe that, since95 d˚ ď 1, estimate (218) implies

meas
`

pDˆ Tnq z T
˘

ď
`

max
 

r , diam D
(˘n

¨
C˚ M

n2
`5n´1{2

dn`5 s3n`3r

b

|f|D,r,s . (220)

93Here ‘meas’ denotes the outer Lebesgue measure.
94In Theorem 1 of [10] take τ “ n and substitute λ with its maximal value 2 ¨ n! d´1

˚ (see (14) of [10]).
95Indeed the absolute value of any eigenvalues of the symmetric matrix B2

ph is bounded by M, which implies d ď

supD |det B2
ph| ď Mn .
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KAM tori in the non–resonant region

Proposition 5.1 Let the assumptions of Theorem 2.1 hold. There exists a constant Co “ Copn, sq ě c0

such that, if Ko ě Co, then there exists a family of primary maximal KAM tori T 0 invariant for the
Hamiltonian H in (1), satisfying

meas
`

pR0 ˆ Tnq z T 0
˘

ď Co

?
ε e´Kos{6 . (221)

Remark 5.2 The above result is essentially classical, and, in fact, no genericity assumptions on the
potentials are needed. However, there is one delicate point related to the KAM tori near the boundary.
Indeed, primary tori oscillates, in general, by a quantity of order

?
ε, and naive applications of classical

KAM theorems would leave out regions near the boundary of the phase space of measure „
?
ε. Such

a problem is overcome by using the second covering in (34) in Theorem 2.1, which is introduced so
that (40) holds; compare, also, Remark 2.2–(ii).

Proof of Theorem 5.1 We apply the KAM Theorem 5.1 to the nearly–integrable Hamiltonian Ho

in Theorem 2.1–(ii). More precisely, we let96

hppq “
|p|2

2
` εgoppq , f “ εfo , D “ rR0 , r “

r1o
2
“

?
εK

9
2n`2

16Ko
, s “ mint s2 , 1u .

By (36) and Cauchy estimates we get

M ď 2 , |f|r,s ď εe´Kos{3 , d ě 1{2 .

If Ko is taken large enough (larger than a constant despending on n and s) the KAM smallness

condition (219) is satisfied, and the KAM Theorem 5.1 yields the existence of a set rT 0 of invariant
tori for the Hamiltonian Ho in Theorem 2.1–(ii), which, by97 (220), satisfy

meas
`

p rR0 ˆ Tnq z rT 0
˘

ď Co

?
ε e´Kos{6 , (222)

for a suitable constant Co “ Copn, sq large enough (so that also the condition on Ko is met). Since the

map Ψo in (40) is symplectic, the family of tori T 0 :“ ΨoprT 0q is formed by KAM invariant for H in

(1). The first relation in (40) and the bound (222) imply (221).

KAM tori near simple resonances

Now, we turn to the construction, in all neighbourhoods of simple resonances, of families of primary
tori for the nearly–integrable Hamiltonians Hi

k of Theorem 3.1, for all k P GnKo
and 0 ď i ď 2Nk. Note

that such tori correspond, in the inner case 0 ă i ă 2Nk, to secondary tori for the Hamiltonian H.

Let us introduce zones Bikpλ, ηq Ď Bik, which are λ–away in energy from separatrices and where the
twist is bounded away from zero by a quantity η ą 0, namely (recall (111), (108)), let us define:

Bikpλ, ηq :“ tI P Bikpλq s.t. |det B2
Ih
i
kpIq| ą ηu Ă Bik . (223)

96Recall Theorem 2.1, the definitions (20), (32) and (21).
97Notice that the hypothesis K ă ε´1{p9n`4q implies that r ă 1, so that max

 

d2M´2n r , diam D
(

“ 2.
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Proposition 5.2 (KAM tori for Hi
k) Let the assumptions of Theorem 3.1 hold. There exist positive

constants C̄1 “ C̄1pn, s, βq ą 1 and C1 “ C1pn, s, β, δq ě c
›

such that the following holds. Let k P GnKo
,

0 ď i ď 2Nk; 0 ă λ ď 1{c
›

and 0 ă η ă 1{2. Then, if

K ě C1 log
1

λη
, (224)

there exists a set T i
k of maximal KAM tori for the Hamiltonian Hi

k in (110) such that

meas
`

pBikpλ, ηq ˆ Tnq z T i
k

˘

ď C̄
1
e´Ks{7 . (225)

Proof We apply the KAM Theorem 5.1 to the Hamiltonian Hi
k of Theorem 3.1 with (recall (110) and

(111)):

h “ hik “
|k|2

2 hik , f “ εf ik , D “ Bikpλ, ηq ,

r “ ρ
›
“

?
ε

c
›
Kno
λ| log λ| , s “ σ

›
“

1

c
›
Kno | log λ|

. (226)

Note that, by (114) and (56), 0 ă λ ď 1{c
›
ď 1{8c

2
, which implies easily r ď r and s ď 1. Also, since

c
›
ě ĉ (see Theorem 3.1) and Kno ě 2n ě n, one has ρ

›
ď ρ

λ
{n.

In the following arguments we denote by cp¨q possibly different constants depending only on the
quantities inside brackets.
We first have to estimate M in (215), namely, B2

Ih
i
k. By (97), (76) and (74) we get

sup
pBikpλqqρλ

ˇ

ˇB2
IE
i
ˇ

ˇ ď
nĉ

λ
. (227)

In the case 0 ă i ă 2Nk, by (111), we have Bikpλq “ Bikpλq. Therefore, recalling (110), we can bound
|B2
Ih
i
k| by cpn, s, βq{λ.

The estimate on |B2
Ih
i
k| in the case i “ 0, 2Nk needs some extra attention. In particular fix i “ 2Nk

(the case i “ 0 being analogous). Recalling the definition of j
g›

in (106), (108) we have that B2
I jg›

depends only on Î and not on I1. Moreover by (20), (33), (59), (48) and Cauchy estimates we get

sup
ÎPD̂3r

|BIjg› | ď cpnq , sup
ÎPD̂3r

|B2
I jg› | ď

cpnq|k|2
?
εKν

. (228)

Recalling Definition 2.4, (97) and (48), we have that

sup
pB2Nk
k pλqqρ

λ

|E2Nk | ď 4R2 “
4εK2ν

|k|4
.

Then, by (97) and (48) we get

sup
pB2Nk
k pλqqρ

λ

|BI1E
2Nk | ď ĉ

a

8csε` 4εK2ν |k|´4 ď 4ĉ
?
εKν |k|´2
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(taking K ě cs defined in (48)). Finally, recalling also (111), (124), (227), (228) , we get by the chain
rule

sup
pB

2Nk
k pλqqr

ˇ

ˇB2
I

`

E2Nk ˝ I˚
˘
ˇ

ˇ ď
cpn, s, βq

λ
.

By (215), (226), (110), (163) (and that r ď r), we finally get

M ď |k|2
cpn, s, βq

λ
, @ 0 ď i ď 2Nk . (229)

Next, by (226) and (113),
|f|r,s ď ε e´Ks{3 . (230)

By (216), (226) and (223), we get

d ě 2´n|k|2nη and
Mn

d
ď
cpn, s, βq

λnη
. (231)

By (48), (16) and using Ko ď 6K, we have:

ε

ε
ď

Kn`2
o

8csδ
eKosď

Kn`2

6n`3csδ
eKs{6 . (232)

It is now easy to check, by (229), (230), (231) and (232), that the KAM smallness condition (219) is
satisfied taking K as in (224) with C

1
large enough. By the KAM Theorem 5.1 we, then, obtain a set

T i
k of invariant tori for the Hamiltonian in (110), which, in view of (220) and by (229), (230), (231)

and (232), satisfies (225) with a suitable constant C̄1 “ C̄1pn, s, βq; in particular, note that, by (140)

and (226), the maximum in (220) is estimated by cpnqKn
2

o .

Putting together these KAM statements and the Twist Theorem 4.1, the proof of the results stated
in Section 1 follow easily.

Proof of Theorem 1.1 and its corollaries

By Lemma 1.1, since f P Gns , there exist δ, β ą 0 such that (16) and (17) hold with N as in (15). Let

Ko :“ K{6 ,

with K ě 12 and let α be as in (20). Then, Assumptions 2.1 hold, and we may let the Definitions 2.3
hold. Let c

2
“ c

2
pnq and c0 “ c0pn, s, δq be as in Theorem 2.2, and assume that98

K ě 6 maxtc
2
, c0u . (233)

Then, Theorem 2.2 holds and we may define the parameters ξ ą 0 and m ě 1 as in Definition 4.3 with
respect to standard Hamiltonians Hk (with |k|

1
ď Ko) of Theorem 2.2–(ii).

We now let b ă 1 as in (154), C1 “ C1pn, s, β, δq be as in Proposition 5.2, and define

η :“ e
´ K

C
1
p1`bq , λ :“ ηb . (234)

98Eq. 233 implies that K ą 12.
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Notice that, with such definitions, it is

K “ C
1

log
1

λη
, (235)

(compare (224)).

With these premises, let us turn to the proof of the claims of Theorem 1.1.

Claim (ii) has already been proven in Lemma 2.1 above.

Next, we define the set of maximal KAM tori T for H as it appears in item (iv) of the theorem.

Let Co “ Copn, sq as in Proposition 5.1.There exists a constant

ĉ “ ĉpn, s, β, δ, mq ě maxtCo, 2C1
c
›
{bu ,

such that, if K ě ĉ, then

K2nη
p234q
“ K2ne

´ K
C
1
p1`bq ď 1 .

Assume that
K ě ĉ . (236)

Then, λ “ ηb in (234) is smaller than 1{c
›

and (recall (153))

η ď
δo

25
ă

1

2
. (237)

Thus, in view of (235), by (236) the assumptions of Propositions 5.1 and 5.2 are satisfied, and we can
define the following families of tori99:

$

&

%

T 1,k
i :“ φikpT i

k q , T 1,k :“
ď

0ďiď2Nk

T 1,k
i , T 1 :“

ď

kPGnKo

T 1,k ,

T :“ T 0 Y T 1 .

(238)

Observe that T i
k are invariant tori for Hi

k in (110), while T 1,k
i , T 1 and T 0 are invariant for the original

Hamiltonian H.
Thus, T is a family of maximal KAM tori for H as in item (iv) of Theorem 1.1.

Claim (i) follows, now, immediately by (23), setting

A :“
`

pR0 YR1q ˆ Tn
˘

z T . (239)

It remains to prove claim (iii), namely, the exponential measure estimate on A.

Observe that by (239) and (238)

A Ď
`

pR0 ˆ Tnq z T 0
˘

Y
`

pR1 ˆ Tnq z T 1
˘

Ď
`

pR0 ˆ Tnq z T 0
˘

Y
ď

kPGnKo

pR1,k ˆ Tnq z T 1,k . (240)

We now need the following elementary result, whose proof is given in Appendix.

Lemma 5.1 If f P Bns satisfies (17), then, for any k P Gn, the number 2Nk of critical points of πZkf
is bounded by c̄ :“ maxt4, π

a

8{βu.

99T ik is defined in Proposition 5.2, T 0 in Proposition 5.1 and φik in (112).
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Obviously, the hypothesis of this lemma are met by our fixed potential in Gns , and the following
measure estimate holds.

Lemma 5.2 Let λ as above in (234) and c̄ as in Lemma 5.1. Then, for any k in GnKo
, one has

meas
`

pR1,k ˆ Tnq z T 1,k
˘

ď c
›

meas
`

rR1,k ˆ Tn
˘

λ| log λ| ` c̄ max
0ďiď2Nk

meas
´

`

Bikpλq ˆ Tn
˘

zT i
k

¯

.
(241)

Proof Since φik in Theorem 3.1 is a diffeomorphism, one has

pR1,k ˆ Tnq z T 1,k p238q
“ pR1,k ˆ Tnq z

´

ď

0ďiď2Nk

φikpT i
k q

¯

Ď

´

`

R1,k ˆ Tn
˘

z
ď

0ďiď2Nk

φik
`

Bikpλq ˆ Tn
˘

¯

Y
ď

0ďiď2Nk

φik

´

`

Bikpλq ˆ Tn
˘

zT i
k

¯

,

then, passing to measures, using (136), the fact that φik is symplectic and Lemma 5.1, we get (241).

Now, assume that, together with (233) and (236), it is also K ě c0 . Then, recalling (237), Theorem 4.1
holds. Thus, recalling (223), observing that

Bikpλq “
 

I P Bik s.t. |det B2
Ih
i
kpIq| ď η

(

YBikpλ, ηq ,

by (154) and (225) we get

meas
`

pBikpλq ˆ TnqzT i
k

˘

ď c
0
p|k|2nηqb measBik ` C̄

1
e´Ks{7 . (242)

Now, by (240), (221), (241), (242), (140), (234) and since |k|
1
ď Ko “ K{6 we get, for a suitable

constant100 c1 “ c1 pn, s, δ, β, ξ, mq,

measpAq ď c1 K2ne´K{c‹ , c‹ :“ max
 

36{s, 2C
1
{b
(

. (243)

Finally, let
c “ cpn, s, δ, β, ξ, mq ě 1` c‹ (244)

be such that, if K ě c, then c1 K
2ne´K{c‹ ď e´K{p1`c‹q. Then, if K ě c, claim (iii) follows, and the proof

of Theorem 1.1 is complete.

Remark 5.3 Notice that T 0 is a family of maximal primary tori for H, and so are the families T 1,k
i

for all k P GnKo
and i “ 0, 2Nk. On the other hand, T 1,k

i for all k P GnKo
and 0 ă i ă 2Nk are families of

maximal secondary tori for H. In particular these families do not bifurcate from integrable tori.

100To get (243), use the following: ε ď K´γ ă 1 (compare (11)); meas
`

rR1,k ˆ Tn
˘

ď cpnq, as rR1,k Ă ty : |y| ď 2u;

| log λ| “ b
C
1
p1`bq

K; measBik ď č by (140); #GnKo ă p2Ko ` 1qn.
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Proofs of Corollaries 1.1 and 1.2

Proof of Corollary 1.1 As already pointed out in § 1, Corollary 1.1 follows trivially from Theorem 1.1
and the measure estimate (12), by taking K :“ c| log ε|, c̄ :“ 1` p2πqnc

‹
cγ , and εo so that εKγ ă 1 for

ε ă εo.

Proof of Corollary 1.2 Let n “ 2. We claim that R2 in (23) satisfies

R2 Ď ty P R2 : |y| ă εa{2u . (245)

Fix y P R2. Then |y| ă 1 and there exists k P GnKo
such that |y ¨ k| ď α{4 (since y R R0). Moreover,

since y R R1,k, there exists ` P GnK zZk such that

|πKk y ¨ `| ď
6αK

|k|
. (246)

Then, |πky| ă α{p4|k|q ď α{4. Moreover, since ` R Zk,

|πKk `| “
|k1`2 ´ k2`1|

|k|
ě

1

|k|
, |πKk y ¨ `| “ |π

K
k y| |π

K
k `| ě

|πKk y|

|k|
,

which implies, by (246), |πKk y| ď 6αK. In conclusion

|y| “ |πky ` πKk y| ă 7αK
(20)
“ 7

?
εK12 . (247)

Now, let â :“ p1´ aq{24 and K :“ 1{p 12
?

7εâq. Then, (245) follows by (247).
Finally, let εo ă 1 be so small that εKγ ă 1 is satisfied for any ε ă εo. Then, by the estimate in
Theorem 1.1–(iii), we get

measpAq ď meas
``

tεa{2 ă |y| ă 1u ˆ Tn
˘

z T
˘

ď e
´ 1

71{12cεâ ă e´
1

2cεâ . .

A Proofs of elementary lemmata

Proof of Lemma 1.1

Assume f P Gns for some s ą 0 and let 0 ă δ0 ď 1 be smaller than

lim
|k|

1
Ñ`8

kPGn

|fk|e
|k|1s|k|n

1

p9q
ą 0 .

Then, there exists N0 such that |fk| ą δ0|k|
´n
1
e´|k|1s, for any |k|1 ě N0, k P GnKo . Since limδÑ0 N “ `8, there

exists 0 ă δ ă δ0 such that N ą N0. Hence, if |k|1 ě N and k P GnKo , (16) holds.
Since πZkf is, for any |k|1 ď N, a Morse function with distinct critical values one can, obviously, find a β ą 0
for which (17) holds.

To prove the ‘if part’, we need two lemmata. The first lemma can also be found in [15] (compare Proposition 1.1
there); for completeness, we reproduce the simple but instructive proof also here.
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Lemma A.1 Let f P Bns such that (16) holds. Then, for any k P Gn with |k|1 ě N, there exists θk P r0, 2πq so
that

πZkfpθq “ 2|fk|
`

cospθ ` θkq ` F
k
‹ pθq

˘

, F k› pθq :“
1

2|fk|

ÿ

|j|ě2

fjke
ijθ , (248)

with F k› P B1
1 and |F k› |1 ď 2´40.

Proof We write πZkf as

πZkfpθq :“
ÿ

jPZ z t0u

fjke
ijθ
“

ÿ

|j|“1

fjke
ijθ
`

ÿ

|j|ě2

fjke
ijθ ,

and, defining θk P r0, 2πq so that eiθk “ fk{|fk|, one has

1

2|fk|

ÿ

|j|“1

fjke
ijθ
“ Re

´ fk
|fk|

eiθ
¯

“ Re eipθ`θkq “ cospθ ` θkq ,

which is equivalent to (248). Now, since }f}s ď 1 (so that |fk| ď e´|k|1s), one finds, for |k|1 ě N,

|F k› |1
p248q

ď
1

2|fk|

ÿ

|j|ě2

|fjk|e
|j|
p16q

ď
|k|n

1
e|k|1s

2δ

ÿ

|j|ě2

|fjk|e
|j|
ď
|k|n

1
e|k|1s

2δ

ÿ

|j|ě2

e´|j|p|k|1s´1q

ď
2e2
|k|n

1

δ
e´|k|1s “

2n`1e2

snδ
e´

|k|
1
s

2

´

|k|1s

2

¯n

e´
|k|

1
s

2 ď

´2n

es

¯n 2e2

δ
e´

|k|
1
s

2 ď 2´40 ,

where last inequality follows since |k|1 ě N (see (15)).

Now, assume that (16) and (17) hold for some δ P p0, 1s and β ą 0. Then, from (16) follows immediately (9).
It remains to prove that (10) holds for any k P Gn with |k|1 ą N. In view of Lemma A.1, the thesis follows
from the following elementary

Lemma A.2 Let F P C2
pT,Rq, θ̄ and 0 ă c ă 1

2
are such that101

}F ´ cospθ ` θ̄q}C2 ď c. Then, F has only
two critical points and it is p1´ 2cq–Morse.

Proof By considering the translated function θ Ñ F pθ ´ θ̄q, one can reduce oneself to the case θ “ 0 (note
that F is β–Morse, if and only if θ Ñ F pθ ´ θ̄q is β–Morse).
Thus, set θ̄ “ 0, and note that, by assumption |F 1| “ |F 1 ` sin θ ´ sin θ| ě | sin θ| ´ c, and, analogously,
|F 2| ě | cos θ| ´ c. Hence, |F 1| ` |F 2| ě | sin θ| ` | cos θ| ´ 2c ě 1´ 2c. Next, let us show that F has a unique
strict maximum θ0 P I :“ p´π{6, π{6q (mod 2π). Writing F “ cos θ ` g, with g :“ F ´ cos θ, one has that
F 1p´π{6q “ 1{2` g1pπ{6q ě 1{2´ c ą 0, and, similarly F 1pπ{6q ď ´1{2` c, thus F has a critical point in I,
and, since ´F 2 “ cos θ ´ g2 ě cos θ ´ c ě

?
3{2´ c ą 0, F is strictly concave in I, showing that such critical

point is unique and it is a strict local minimum. In fact, similarly one shows that F has a second critical point
θ1 P pπ ´ π{6, π ` π{6q where F is strictly convex, so that θ1 is a strict local minimum; but, since in the
complementary of these intervals F is strictly monotone (as it is easy to check), it follows that F has a unique
global strict maximum and a unique global strict minimum. Finally, F pθ0q ´ F pθ1q ě

?
3 ´ 2c ą 1 ´ 2c and

the claim follows.

101 }F }C2 :“ max0ďkď2 sup |F pkq|. Note that, by Cauchy estimates, }F }C2 ď 2|F |1.
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Proof of Lemma 2.3

First note that by (42), (43) and (44)

p1´ µqp2
1 ´ p1` µq2

´16
r

2
ď H5pp, q1q ď p1` µqpp

2
1 ` 2´16

r
2
q . (249)

By the first inequality in (249) we have that if pp, q1q PMpp̂q then p2
1 ď

E5`2´16r2p1`µq

1´µ
, which is indeed smaller

than pR` r{2q2 by (66) and (44). This proves the second inclusion in (67).
By the second inequality in (249) we have that if |p1| ď R` r{3 then H5pp, q1q ď p1` µq

`

pR` r{3q2 ` 2´16r2
˘

,

which is smaller than E5 again by (66) and (44). This proves the first inclusion in (67).

Proof of Lemma 3.2

Let pJ, ψq P Dζr ˆ Tnζs . Then there exists J0 P D such that |J ´ J0| ă ζr. Set

wpzq :“
`

J0 `
ζ
z
pJ ´ J0q, Reψ ` ζ

z
Imψ

˘

,

with Reψ :“ pReψ1, . . . , Reψnq, and analogously for Imψ. Note that wpζq “ pJ, ψq, and that wpzq P DrˆTns
for every |z| ă 1. Consider the holomorphic function Gpzq :“ gpwpzqq defined for |z| ă 1. Then, | ImG| ď ξ
for |z| ă 1. Let u and v be real harmonic functions such that Gpzq “ upx, yq` ivpx, yq, where z “ x` iy. Since
by hypothesis sup|z|ă1 |v| ď ξ, by interior estimate of derivatives of for harmonic functions102 we have that
sup|z|ď1{2 |vx| ď 4ξ and analogously for vy. By Cauchy–Riemann equations, the same estimate holds for ux.
Therefore sup|z|ď1{2 |G

1
| “ sup|z|ď1{2 |ux ` ivx| ď 8ξ. Since wp0q “ pJ0, Reψq P D ˆ Tn and g is real analytic,

we have that Gp0q “ gpJ0, Reψq P R. Then, for any 0 ă ζ ď 1{2, by the the mean value theorem, we have
that

| Im gpJ, ψq| “ | ImGpζq| “ | ImGpζq ´ ImGp0q| ď |Gpζq ´Gp0q| ď 8ζξ .

Proof of Lemma 4.6

Let us consider first the case P “ Id. Consider the unitary matrix U diagonalizing Q, namely U´1QU “ Λ “
diag1ďjďdλj . Note that |Q| “ |Λ| “ max1ďjďd |λj | “ λ. Then U´1

pId ` QqU “ I ` Λ and detpId ` Qq “

detpI ` Λq ě p1´ λqd, proving the case P “ Id.
Consider now the general case. Write P ` Q “ P 1{2

pId ` P´1{2QP´1{2
qP 1{2. Note that, since P´1{2 is sym-

metric, then P´1{2QP´1{2 is symmetric too. Since |P´1{2QP´1{2
| ď |P´1{2

|
2
|Q| “ |P´1

||Q| and detP 1{2
“

pdetP q1{2, from the previous case the general case follows.

The final claim in Lemma 4.6 follows, as p1´ λqd ě 1´ dλ.

Proof of Lemma 4.15

First observe that the cases i “ 0 and i “ 2N are identical since

Ī0
1 pEq “ Ī2N

1 pEq , Ē
0
pI1q “ Ē

2N
pI1q .

Let us then consider the case i “ 2N . By definition,

Ī2N
1 pEq “

1

2π

ż 2π

0

a

E ´ Ḡpxqdx , (250)

102See Theorem 2.10 in [24].
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so that, by Jensen’s inequality,

p2BE Ī
i
1pEqq

3
“

´ 1

2π

ż 2π

0

1
a

E ´ Ḡpxq
dx

¯3

ď
1

2π

ż 2π

0

1

pE ´ Ḡpxqq3{2
dx “ ´4B2

E Ī
i
1pEq ,

and the claim follows by (143).

Proof of Lemma 5.1

Consider first the case |k|1 ě N. By Lemma A.1, F k› :“ πZkf{2|fk| satisfies

|F k› ´ cospθ ` θkq|1 ď 2´40 .

Thus, by Cauchy estimates we get }F k› ´cospθ`θkq}C2 ď 2´39, so that by Lemma A.2 it follows that 2Nk “ 4.

For the case |k|1 ď N we need the following elementary observation:

Lemma A.3 If G is β–Morse, then the number 2N of its critical points is bounded by π
a

2 maxR |G2|{β.

Proof If θi and θj are different critical points of G, then, by Taylor expansion at order two and by (14) one
has β ď |Gpθiq´Gpθjq| ď

1
2
pmaxR |G

2
|q|θi´θj |

2, which implies that the minimal distance between two critical

points is at least
a

2β{maxR |G2|, from which the claim follows.

Now, by (17) we know that πZkf is β–Morse, and since }f}s ď 1 we have sup
R
|pπZkfq

2
| ď

ÿ

j‰0

|fjk|j
2
ď

ÿ

j‰0

e´|j|j2
ă 4. Then, by Lemma A.3, the claim follows also in this case.
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