
On the topology of nearly–integrable
Hamiltonians at simple resonances

L. Biasco & L. Chierchia

Dipartimento di Matematica e Fisica
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Abstract

We show that, in general, averaging at simple resonances a real–analytic, nearly–
integrable Hamiltonian, one obtains a one–dimensional system with a cosine–like
potential; “in general” means for a generic class of holomorphic perturbations
and apart from a finite number of simple resonances with small Fourier modes;
“cosine–like” means that the potential depends only on the resonant angle, with
respect to which it is a Morse function with one maximum and one minimum.
Furthermore, the (full) transformed Hamiltonian is the sum of an effective one–
dimensional Hamiltonian (which is, in turn, the sum of the unperturbed Hamil-
tonian plus the cosine–like potential) and a perturbation, which is exponentially
small with respect to the oscillation of the potential.
As a corollary, under the above hypotheses, if the unperturbed Hamiltonian is
also strictly convex, the effective Hamiltonian at any simple resonance (apart a
finite number of low–mode resonances) has the phase portrait of a pendulum.
The results presented in this paper are an essential step in the proof (in the “me-
chanical” case) of a conjecture by Arnold–Kozlov–Neishdadt ([2, Remark 6.8,
p. 285]), claiming that the measure of the “non–torus set” in general nearly–
integrable Hamiltonian systems has the same size of the perturbation; compare
[4], [3].
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1 Introduction

Consider a real–analytic, nearly–integrable Hamiltonian given, in action–angle vari-
ables, by

Hεpy, xq “ hpyq ` εfpy, xq , py, xq PM :“ D ˆ Tn , (1)

where D is a bounded domain in Rn, Tn “ Rn{p2πZnq is the usual flat n dimensional
torus and ε is a small parameter measuring the size of the perturbation εf . The phase
space M is endowed with the standard symplectic form dy ^ dx so that the Hamil-
tonian flow φtHεpy0, x0q “: pyptq, xptqq governed by Hε is the solution of the standard
Hamiltonian equations

"

9y “ ´BxHεpy, xq ,
9x “ ByHεpy, xq ,

"

yp0q “ y0 ,
xp0q “ x0 ,

(2)

(where t is time and dot is time derivative).
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It is well known that, in general, the φtHε–dynamics is strongly influenced by resonances
of the (unperturbed) frequencies ωpyq :“ h1pyq “ Byhpyq, i.e., by rational relations

ωpyq ¨ k “
n
ÿ

j“1

ωjpyqkj “ 0 ,

with k P Zn z t0u; for general information, compare, e.g., [2]. Indeed, assuming a stan-
dard KAM non–degeneracy assumption on h, e.g., that the frequency map y P D Ñ

ωpyq is a real–analytic diffeomorphism of D onto the “frequency space” Ω :“ h1pDq,
then the action space D can be covered by three open sets

D Ď D0
YD1

YD2 (3)

so that the following holds. Roughly speaking, D0 ˆ Tn is a fully non–resonant set
which is filled, up to an exponentially small set, by primary KAM tori, namely, by
homotopically trivial, Lagrangian tori φtHε–invariant on which the flow is analytically
conjugated to the linear flow

θ P Tn ÞÑ θ ` ωt

with ω satisfying a Diophantine condition

|ω ¨ k| ě
γ

|k|τ
1

@ k P Zn z t0u , (4)

(for some γ, τ ą 0); ω ¨k denoting the standard inner product
ř

ωiki and |k|1 :“
ř

|ki|.
Furthermore, such tori are deformation of integrable tori.
D1 is an open Op

?
εq–neighbourhood of simple resonances (i.e., of regions where exactly

one independent resonance ωpyq¨k “ 0 holds) and D2 is a set of measure Opεq; compare
the Covering Lemma (Proposition 2.1) below1.

The region D2 contains double (and higher) resonances and, in general, in D2 ˆ Tn
there are Opεq regions where the dynamics is non–perturbative, being “essentially”
governed (after suitable rescalings) by an ε–independent Hamiltonian; compare2 [2].

1This description follows by choosing carefully certain parameters (such as the “small divisor
constant” α and “Fourier cut–offs” K) as functions of ε and disregarding logarithmic corrections.

2 [2, Remark 6.8, p. 285]: “It is natural to expect that in a generic system with three or more degrees
of freedom the measure of the “non–torus” set has order ε. Indeed, the Op

?
εq–neighbourhoods of two

resonant surfaces intersect in a domain of measure „ ε. In this domain, after the partial averaging
taking into account the resonances under consideration, normalizing the deviations of the “actions”
from the resonant values by the quantity

?
ε, normalizing time, and discarding the terms of higher

order, we obtain a Hamiltonian of the form 1{2pAp, pq ` V pq1, q2q, which does not involve a small
parameter (see the definition of the quantity p above). Generally speaking, for this Hamiltonian there
is a set of measure „ 1 that does not contain points of invariant tori. Returning to the original variables
we obtain a “non–torus” set of measure „ ε.”
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The dynamics in the simple–resonance region D1 ˆ Tn is particularly relevant and in-
teresting. For example, it plays a major rôle in Arnold diffusion, as showed by Arnold
himself [1], who based his famous instability argument on shadowing partially hyper-
bolic trajectories arising near simple resonances.
On the other hand, in D1ˆTn there appear secondary KAM tori, namely n–dimensional
KAM tori with different topologies, which depend upon specific characteristics of the
perturbation εf . The appearance of secondary tori is a genuine non–integrable effect,
since such tori do not exist in the integrable regime.
In the announcement [4] it is claimed that, in the case of mechanical systems – namely
systems governed by Hamiltonians of the form |y|2{2` εfpxq – and for generic poten-
tials f , primary and secondary tori fill the region D1ˆTn up to a set of measure nearly
exponentially small, showing that the “non–torus set” is, at most, Opεq as conjectured
in3 [2] and studied in [11]. In fact, Theorem 2.1 below is one of the building block of the
proof (in the mechanical case) of the Arnold–Kozlov–Neishdadt conjecture as outlined
in [3].

This paper is devoted to the fine topological and quantitative analysis of the behaviour
of generic systems in the simple resonant region D1 ˆ Tn.

In this introduction, we briefly discuss the main aspects of this analysis in the particular
case of purely positional potentials; precise statements are given in Theorem 2.1 of § 2
below, and, for the general (but more technical and implicit) case, in Theorem 7.2 of
§ 7.2).

D1 is the union of suitable regions D1,k, which are Op
?
εq-close to exact simple reso-

nances ty P D| ωpyq¨k “ 0u, and which are labelled by generators k of one dimensional,
maximal sublattices of Zn (see (21) below); “exact” meaning that ωpyq does not verify
double or higher resonant relations.
In averaging (or normal form) theory, one typically considers a finite but large (pos-
sibly, ε–dependent) number of simple resonances. More precisely, one considers gener-
ators k with |k|1 ď K, and K can be chosen according to the application one has in
mind. Typically, one chooses K „ 1{εa for a suitable a ą 0 (as in Nekhoroshev theorem
[15], [7]) or K „ | log ε|a (as in the KAM theory for secondary tori of [4], [3]).

By averaging theory, in any fixed simple resonant region D1,k, one can remove the non–
resonant angle dependence, so as to symplectically conjugate Hε, for ε small enough,

3See footnote 2 above. Note also that, as it was proved in [9] (in dimension 2) and [12], [14] (in any
dimension), the union of primary invariant tori fills the phase space up to a set of measure Op

?
εq.

This result is optimal: the phase region inside the separatrix of the pendulum 1
2y

2`ε cosx, with y P R
and x P T1, does not contain any primary invariant torus, namely a circle which is a global graph
over the angle on T1, and this region has measure 4

?
2ε. Indeed this region is filled by secondary tori,

corresponding to oscillations of the pendulum.
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to a Hamiltonian of the form

hpyq ` εGk
py, k ¨ xq ` εRk

py, xq (5)

where θ Ñ Gkpy, θq is a function of one angle and Rk is a “very small” remainder with4

Rk
jkpyq “ 0, @j P Z. Thus, up to the remainder Rk, the Hamiltonian depends effectively

only on the “resonant angle” θ :“ k¨x and therefore the “effective Hamiltonian” h`εGk

is integrable: this is the starting point for (“a priori stable”) Arnold diffusion or for the
KAM theory for secondary tori of [4]–[3].

Obviously, there are here two main issues:

(a) What is the actual “generic form” of Gk?

(b) How small (and compared to what) is the remainder Rk?

(a) According to averaging (or normal form) theory5 Gk is “close” to the projection of
the potential f on the Fourier modes of the resonant maximal sublattice kZ:

pkZfpxq “
ÿ

jPZ

fjke
ijk¨x . (6)

Now, since f is real-analytic on Tn, it is holomorphic in a complex strip Tns around Tn
of width s ą 0 and its Fourier coefficients decay exponentially fast as6 |fk| „ }f}e

´|k|s.
Hence, typically (i.e., if fk ‰ 0)

ÿ

jPZ

fjke
ijk¨x

“ fke
ik¨x
` f´ke

´ik¨x
`O

`

}f}e´2|k|s
˘

which, by the reality condition f´k “ f̄k, can be written as

ÿ

jPZ

fjke
ijk¨x

“ 2|fk| cos
`

k ¨ x` θpkq
˘

`O
`

}f}e´2|k|s
˘

(7)

for a suitable θpkq P r0, 2πq. Thus,

pkZfpxq “
ÿ

jPZ

fjke
ijk¨x

“ 2|fk|
´

cos
`

k ¨ x` θpkq
˘

` op1q
¯

(8)

4Rk` pyq denotes the `th Fourier coefficient of x ÞÑ Rkpy, xq.
5For generalities on Averaging Theory, see, e.g., [2, § 6] and references therein.
6Precise norms will be introduced in the next section § 2.
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provided

|k| Ç
1

s
. (9)

In other words, one expects (8) to hold for generic real–analytic potentials and for all
generators k’s satisfying (9).
Indeed, this is the case: we shall introduce certain classes of periodic holomorphic func-
tions Hs,τ , for which (choosing suitably the “tail” fuction τ) (8) holds for generators k
satisfying (9).
The class Hs,τ turns out to be “generic” in several ways:
(i) it contains an open dense set in the class of real–analytic functions having holomor-
phic extension on a complex neighbourhood of size s of Tn (in the topology induced
by a suitably weighted Fourier norm);
(ii) its unit ball is of measure 1 (with respect to a natural probability measure);
(iii) it is a “prevalent set”.
For precise statements see Definition 2.1 and Proposition 3.1 below.

Next, in order for Gk to be close to pkZf in (8), one needs to have a bound of the type

sup
D1,kˆTn

|Gk
´ pkZf | ! |fk| „ }f}e

´|k|1s . (10)

As well known, averaging methods involve an analyticity loss in complex domains. In
particular, the Hamiltonian in (5) and, therefore, Gk, can be analytically defined only
in a smaller complex strip Tns› with s› ă s. Therefore, by analyticity arguments, the
best one can hope for is an estimate of the type

sup
D1,kˆTn

|Gk
´ pkZf | ď c ¨ }f}e´|k|1s› , (11)

for a suitable constant c that can be taken to be smaller than any prefixed positive
number. But then, for (11) and (10) to be compatible one sees that one must “essen-
tially” have s› „ s and that standard averaging theory is not enough7. To overcome
this problem, we provide (Section 4) a normal form lemma with small analyticity loss,
“small” meaning that one can take

s› “ sp1´ 1{Kq (12)

(compare, in particular, (74)). The value (12) is compatible with (10) for |k|1 ď K,
showing that, indeed, generically, one has

Gk
py, k ¨ xq “ 2|fk|

´

cos
`

k ¨ x` θpkq
˘

` op1q
¯

.

7Compare, e.g., [15], where s› “ s{6. For a more detailed comparison with the averaging lemma of
[15], see also Remark 4.1–(iv) below. Compare also [5] and [6].
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In particular we prove that: The “effective Hamiltonians” h ` εGk, as k vary (c{s ď
|k| ď K), have (up to a phase–shift) the same cosine–like form and, hence, the same
topological feature; compare, also, Remark 2.2–(i) below.

Notice also that on low modes this last property, in general, does not holds, as one
immediately sees by considering k “ e1 “ p1, 0, . . . , 0q and a potential f such that

pe1Zfpxq :“ cosx1 ` cos 2x1 ,

which is a Morse function with two maxima and two minima in T1.

(b) What we just discussed gives also an indication for the question “with respect to
what Rk has to be small”. In fact, if, as expected, (8) is the leading behaviour, one
should have

}Rk
} ! |fk| . (13)

But in order to perform averaging procedures, one has, typically, control on small
divisors up to the truncation order K, so that the remainder will contain high Fourier
modes, |k| „ K, of the potential f . Such terms are bounded by Ope´Ksq, which are of
the same size of }Gk}, at least for |k| À K.

To overcome this problem, we introduce in § 5, at difference with standard geometry
of resonances (such as in [13], [15], [7]), two Fourier cut offs K2 ě 3K1 in such a way
that on the simple resonant regions D1,k one has non–resonance conditions for double
and higher resonances up to order K2 , while K1 is the maximum value of the size of
the generators k (i.e., |k| ď K1). Therefore, we will get an estimate of the remainder
Rk of the type

}Rk
} ď C Ka

2
e´K2s{2 ď C 1 |fk| e

´K2s{8 , (14)

for suitable constants C,C 1 ą 0. The final upshot is the complete normal form

Hε ˝Ψk “: hpyq ` 2|fk|ε
´

cospk ¨ x` θpkqq ` G̃k
py, k ¨ xq ` R̃k

py, xq
¯

(15)

with }G̃k} ! 1 and }R̃k} ď C 1 e´K2s{8; compare Theorem 2.1 below and, in particular,
formula (42).

Summarizing: for all k large enough, Gk is “cosine–like” i.e. a Morse function with one
maximum and one minimum (compare Remark 2.2–(i) below) and Rk is exponentially
small with respect to the oscillations of Gk (see (42) and (44) below).
As a consequence we get that, if hpyq is strictly convex, the effective Hamiltonian has
a phase portrait of a pendulum (compare Remark 2.2–(iv) below).
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2 Statements

Assume that Hε in (1), for some r, s ą 0, admits holomorphic extension on the complex
domain Dr ˆ Tns , where Dr Ď Cn is the open complex neighbourhood of D formed by
points z P Cn such that8 |z´ y| ă r, for some y P D and Tns denotes the open complex
neighbourhood of Tn given by

Tns :“ tx “ px1, ..., xnq P Cn : | Imxj| ă su{p2πZnq . (16)

The integrable hamiltonian h is supposed to be “KAM non–degenerate” in the following
sense.

Assumption A Let h be a real-analytic function

h : y P D Ă Rn
ÞÑ hpyq P R , pn ě 2q , (17)

where D is a bounded domain of Rn and such that the frequency map

y P D ÞÑ ωpyq :“ Byhpyq P Ω :“ ωpDq Ď BMp0q Ă Rn , M :“ sup
D
|ωpyq| , (18)

is a global diffeomorphism of D onto Ω with Lipschitz constants given by

|y ´ y0|L̄
´1
ď |ωpyq ´ ωpy0q| ď L|y ´ y0| , p@ y, y0 P Dq . (19)

Now, we describe the covering of frequency/action domain, which allows to apply av-
eraging theory (Proposition 4.1 below) to a perturbation of an integrable system with
Hamiltonian h at non–resonant (modulus a lattice) zones9.
Here, the main point is to find a suitable covering of simple resonances, which are
the regions where the averaged Hamiltonian is integrable10, up to a small remainder.
All other higher–order resonances are covered by one set, which is of small measure:
how small depending on the choice of the various parameters involved and it will vary
according to the applications one has in mind.

Let Zn› denote the set of integer vectors k ‰ 0 in Zn such that the first non–null
component is positive:

Zn› :“
 

k P Zn : k ‰ 0 and kj ą 0 where j “ minti : ki ‰ 0u
(

, (20)

8We denote by | ¨ | the usual Euclidean norm.
9We use here the term “zone” in a loose way, not in the technical meaning of Nekhoroshev’s Theory;

compare, e.g., [7].
10In the sense that the, up to a small remainder, the averaged Hamiltonian depends on one angle.
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and denote by Gn1 the generators of 1d maximal lattices, namely, the set of vectors
k P Zn› such that the greater common divisor (gcd) of their components is 1:

Gn1 :“ tk P Zn› : gcdpk1, . . . , knq “ 1u . (21)

Then, the list of one–dimensional maximal lattices is given by the sets Zk with k P Gn1 .
Given K ą 0 we set11

Gn1,K :“ Gn1 X t|k|1 ď Ku . (22)

Proposition 2.1 (Covering Lemma) Let h and ω be as in Assumption A (§ 2) and
fix K2 ě K1 ě 2 and α ą 0. Then, the domain D can be covered by three sets Di Ď D,

D “ D0
YD1

YD2 , (23)

so that the following holds.

(i) D0 is pα{2, K1q completely non–resonant (i.e., non–resonant modulus t0u), namely,

y P D0
ùñ |ωpyq ¨ k| ě α{2 , @ 0 ă |k|1 ď K1 . (24)

(ii) D1
“

ď

kPGn1,K1

D1,k, where, for each12 k P Gn1,K1
, D1,k is a neighbourhood of a simple

resonance ty P D : ωpyq ¨ k “ 0u, which is p2αK2{|k|, K2q non–resonant modulo Zk,
namely,

y P D1,k
ùñ |ωpyq ¨ `| ě 2αK2{|k| , @ ` P Zn , ` R Zk , |`|1 ď K2 . (25)

(iii) D2 contains all the resonances of order two or more and has Lebesgue measure
small with α2: more precisely, there exists a constant c ą 0 depending only on n such
that

meas pD2
q ď c L̄nMn´2 α2 Kn`1

2
Kn´1

1
. (26)

Remark 2.1 (i) The neighbourhoods D1,k of simple resonances ty : ωpyq ¨ k “ 0u are
explicitly defined as follows. Denote by pKk the orthogonal projection on the subspace
perpendicular to13 k and, for k P Gn1,K1

, define

Ω1,k :“
!

ω P Rn : |ω¨k| ă α, | pKk ω| ăM, and | pKk ω¨`| ą
3αK2

|k|
, @` P Gn1,K2

zZk
)

(27)

11|k|1 :“
ř

1ďiďn |ki|.
12Recall (22).
13Explicitly, pKk ω :“ ω ´ 1

|k|2 pω ¨ kqk.
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Then,
D1,k :“ ty P D : ωpyq P Ω1,k

u . (28)

(ii) The domains D0, D2 are explicitly defined in (146), (130) and (134) below.

(iii) The simply resonant regions D1,k in the above Proposition are labelled by gener-
ators of 1–d maximal lattices k P Gn1 up to size |k|1 ď K1 , however, the non–resonance
condition (25) holds for integer vectors ` with |`|1 up to a (possibly) larger order K2 .
This improvement (with respect to having K2 “ K1 as, e.g., in [15]) is technical but
important if one wants to have sharp control over the averaged Hamiltonian in a normal
form near simple resonances; in particular in order to obtain (159) and (182), which
lead to (44).

(iv) The non–resonance relations (24) and (25) allow to apply averaging theory and
to remove the dependence upon the “non–resonant angle variables” up to exponential
order; for precise statements, see Theorem 6.1 in § 6.

We proceed, now, to describe the generic non–degeneracy assumption on periodic holo-
morphic functions, which will allow to state the main theorem (for the case of positional
potentials).

If s ą 0, we denote by Bns the Banach space of real–analytic functions on Tns having
zero average and finite `8–Fourier norm:

Bns :“
!

f “
ÿ

kPZn
k‰0

fke
ik¨x : }f}s :“ sup

kPZn
|fk|e

|k|1s ă 8

)

. (29)

Note that f P Bns can be uniquely written as:

fpxq “
ÿ

kPGn1

ÿ

jPZzt0u

fjke
ijk¨x (30)

For functions14 f : Dr ˆ Tns Ñ C we will also use the (stronger) norm15

~~f ~~D,r,s “ ~~f ~~r,s :“ sup
yPDr

ÿ

kPZn
|fkpyq|e

|k|1s . (31)

Definition 2.1 (Non degenerate potentials) A tail function τ is, by definition, a
non–increasing, non–negative continuous function

τ : δ P p0, 1s ÞÑ τpδq ě 0 .

14Not necessarily holomorphic in y.
15See Remark 3.1 for details.
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Given s ą 0 and a (possibly s–dependent) tail function τ , we define, for δ P p0, 1s,
Hs,τ pδq as the set of functions in Bns such that, for any generator k P Gn1 , the following
holds16

if |k|1 ą τpδq, then |fk| ě δ|k|´n
1

e´|k|1s , (32)

The class Hs,τ is the union over δ of the classes Hs,τ pδq:

Hs,τ :“
ď

0ăδď1

Hs,τ pδq . (33)

The classes Hs,τ contain (if the tail is choosen properly) the non degenerate potentials
for which Theorem 2.1 below holds and, as mentioned in the Introduction, satisfy
three main genericity properties17, as showed in Proposition 3.1 below (compare, also,
Remark 3.2).

Theorem 2.1 Let n ě 2, s ą 0, 0 ă δ, γ ď 1 such that

γδ ă
29

sn
e´n

2{2 . (34)

Consider a Hamilonian Hεpy, xq “ hpyq ` εfpxq as in (1) where h satisfies the non–
degeneracy Assumption A (§ 2) and f is purely positional (i.e., independent of the
y–variable) with

}f}s “ 1 . (35)

Assume that the potential is non–degenerate in the sense that

f P Hs,τopδq (36)

with tail function

τopδ; γq :“
4

s
log

´

e`
29

snγδ

¯

. (37)

Let K2 ě 3K1 ě 6 satisfying

K2ν´3n´3
2

ě es`52n`11n2n L

s2n`1

1

γδ
for some ν ě

3

2
n` 2 (38)

16 One could substitute n with every n̄ ą n{2 in (32); compare Remark 3.3 below. The “weight”
|k|´n

1
is necessary in order to show that Hs,τ pδq in (33) has positive measure in a suitable probability

space; compare Proposition 3.1–(ii) below.
17Such properties hold for any tail τ , which can be chosen differently according to the particular

problem at hand.
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and where L defined in (19). Set

rk :“
?
ε
Kν

2

L|k|
. (39)

Finally assume that

ε ď
pLrq2

K2ν
2

. (40)

Then, for any k P Gn1,K1
with τopδ; γq ď |k|1 ď K1, there exists θpkq P r0, 2πq and

a symplectic change of variables defined in a neighbourhood of the simple resonance
D1,k ˆ Tn such that the following holds:

Ψk : D1,k
rk{2

ˆ Tnsp1´1{K2 q
2 Ñ D1,k

rk
ˆ Tnsp1´1{K2 q

, (41)

and

Hε ˝Ψk “: hpyq ` 2|fk|ε
´

cospk ¨ x` θpkqq ` Gkpy, k ¨ xq ` fkpy, xq
¯

(42)

where Gkpy, ¨q P B1
2 for every y P D1,k

rk{2
and

~~Gk~~D1,k,rk{2,2 ď γ . (43)

Finally,

pkZf
k
“ 0 and ~~fk~~D1,k,rk{2,sp1´1{K2 q{2

ď
210nn3n

s3nδ
e´K2s{8 . (44)

Remark 2.2 (i) Recalling (31), estimate (43) means

sup
yPD1,k

rk{2

ÿ

jPZ

|Gkj pyq|e
2|j|
ď γ . (45)

This implies that for every y P D1,k the 2π-periodic real function

θ ÞÑ cospθ ` θpkqq ` Gkpy, θq (46)

behaves like a cosine in the sense that it is a Morse function with only one maximum
and one minimum and no other critical points. To prove this, notice that by (45) we
have

sup
yPD1,k,xPT1

|BθG
k
py, θq| ď γ{e2 , sup

yPD1,k,xPT1

|B
2
θθG

k
py, θq| ď γ{e2 .
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Therefore, denoting by ψpθq the derivative of the function in (46), we have that ψpθq ą 0
for θ P p´θpkq`θ˚, π´θ

pkq´θ˚q and ψpθq ă 0 for θ P pπ´θpkq`θ˚, 2π´θ
pkq´θ˚q, where

θ˚ :“ arcsinpγ{e2q. Moreover in the interval p´θpkq ´ θ˚,´θ
pkq ` θ˚q the function ψpθq

has a zero and is strictly increasing since ψ1pθq ě
a

1´ γ{e2 ´ γ{e2 “: c ą 0. Finally
in the interval pπ´ θpkq´ θ˚, π´ θ

pkq` θ˚q it has a zero and is strictly decreasing since
ψ1pθq ď ´c ă 0.

(ii) As a consequence the phase portrait of the effective Hamiltonian

hpyq ` 2|fk|ε
`

cospk ¨ x` θpkqq ` Gkpy, k ¨ xq
˘

(47)

and that of the Hamiltonian hpyq ` 2|fk|ε cospk ¨ x` θpkqq are topologically equivalent.

(iii) As well know the effective Hamiltonian (47) is an integrable system as it depends
only on one angle. Indeed, fix k P Znzt0u with gcdpk1, . . . , knq “ 1, then, there exists a
matrix Ak P MatnˆnpZq such that18

Ak “

ˆ

Âk
k

˙

P MatnˆnpZq , Âk P Matpn´1qˆnpZq , detAk “ 1 , |Âk|8 ď |k|8 , (48)

where | ¨ |8 denotes the sup–norm of the matrix and of the vector, respectively. The
existence of such a matrix is guaranteed by an elementary result of linear algebra based
on Bezout’s Lemma (see Lemma A.1 in Appendix A).
Let us perform the linear symplectic change of variables

Φk : pY,Xq ÞÑ py, xq :“ pATk Y,A
´1
k Xq , (49)

which is generated by the generating function SpY, xq :“ Y ¨ Akx. Note that Φk does
not mix actions with angles, its projection on the angles is a diffeomorphism of Tn onto
Tn, and, most relevantly, Xn “ k ¨ x is the “secular angle”.
In the pY,Xq–variables, the secular Hamiltonian in (47) takes the form

hpY q ` 2|fk|ε
´

cospXn ` θ
pkq
q ` GkpATk Y,Xnq

¯

, with hpY q :“ hpATk Y q . (50)

Fix y0 P D
1,k on the exact resonance, namely Byhpy0q ¨ k “ 0. Let Y0 be such that

y0 “ ATk Y0. We have

BYnhpY0q
p48q
“ ByhpA

T
k Y0q ¨ k “ Byhpy0q ¨ k “ 0 , B

2
YnYnhpY0q “ B

2
yyhpy0qk ¨ k ,

18Here, k is a row vector.
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where B2
yyh is the Hessian matrix of h. By Taylor expansion the secular Hamiltonian in

(50) takes the form (up to an addictive constant)

1

2

´

B
2
yyhpy0qk ¨k

¯

pYn´Y0nq
2
`O

´

pYn´Y0nq
3
¯

`2|fk|ε
´

cospXn` θ
pkq
q`GkpATk Y,Xnq

¯

.

(51)

(iv) In particular if the Hamiltonian h is convex the coefficient B2
yyhpy0qk ¨ k “: mk is

bounded away from zero and the phase portrait of the secular Hamiltonian in (51) is
topologically equivalent, for |Yn ´ Y0n| small19, to that of the pendulum

1

2
mkpYn ´ Y0nq

2
` 2|fk|ε cospXn ` θ

pkq
q .

The y-dependent case.

Let us briefly turn to the y-dependent case. First we note that it can happen that, even
if the potential fpy, xq satisfies the non-degeneracy condition given in Definition 2.1 at
some point y0, there is no neighborhoud of y0 on which the non-degeneracy condition
holds. For example consider the potential

fpy, xq “ fpy1, xq :“
1

2

ÿ

k‰0

´

|k|´n
1
´
y1

r

¯

e´|k|1seik¨x .

We have that }f}D,r,s “ 1 with D “ t0u and

fp0, ¨q P Hs,0p1{2q .

However, fkprj
´nq “ 0 for every |k| “ j; in particular for every odd number j “ 2h`1,

h ě 1 and k :“ ph` 1, h, 0, . . . , 0q P Gn1 . Then for every δ ą 0, tail function τ ą 0 and
odd j ě 3, we have

fprj´n, ¨q R Hs,τ pδq .

Then, we will prove that the non-degeneracy condition holds in a set of large measure.
In particular we fix µ ą 0 and prove that, if for a certain point y0 P D the potential
fpy0, ¨q P Hs,τ˚pδq for a suitable τ˚ “ τ˚pµq and |k| ě τ˚pµq, then (42)-(44) holds (with
fk “ fkpyq and for a suitable phase θpkq “ θpkqpyq) for every y P Br{2epy0q up to a set of
relative measure smaller that µ.
For the precise statement, we refer to Theorem 7.2 below.

19Namely in the region D1,k ˆ Tn in the original variables.
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3 Functional setting and generic holomorphic classes

3.1 Analytic function spaces

(a) Norms and neighbourhoods

In this paper | ¨ | denotes the standard Euclidean norm on Cn and its subspaces,
namely |x|2 “

řn
j“1 |xj|

2 for every x P Cn.

|k|1 denotes the 1-norm
ř

|kj|.

For linear maps and matrices A (which we shall always identify), |A| denotes the
standard “operator norm” |A| “ sup

u‰0
|Au|{|u|.

|M |
8

, with M matrix (or vector), denotes the maximum norm maxij |Mij| (or
maxi |Mi|).

We shall use three different (non–equivalent) norms on holomorphic functions
with domain Tns , Dr ˆ Tns or Dr (D being a susbset of Rn): given a holomorphic
function f with values in Cm and domain Tns , Dr ˆ Tns or Dr, with s, r ą 0 we
denote by

ÿ

kPZn
fke

ik¨x or fpy, xq “
ÿ

kPZn
fkpyqe

ik¨x

its Fourier expansion and define the following sup–norm, `8–Fourier norm and
`1–Fourier norm:

|f |s :“ sup
Tns
|f | , |f |r :“ sup

Dr

|f | , |f |r,s :“ sup
DrˆTns

|f | , (52)

}f}s :“ sup
kPZn

|fk|e
|k|1s , }f}r,s :“ sup

kPZn

`

sup
yPDr

|fkpyq|e
|k|1s

˘

, (53)

~~f ~~s :“
ÿ

kPZn
|fk|e

|k|1s , ~~f ~~r,s :“ sup
yPDr

ÿ

kPZn
|fkpyq|e

|k|1s . (54)

If the (real) domain need to be specified, we set, respectively,

|f |D,r,s :“ |f |r,s , }f}D,r,s :“ }f}r,s , ~~f ~~D,r,s :“ ~~f ~~r,s . (55)

Remark 3.1 (i) The space of functions f : Tns Ñ Cm endowed with the sup–norm | ¨ |s

or the `1–Fourier norm ~~ ¨ ~~s is a Banach algebra, while tf : Tns Ñ Cm s.t. }f}s ă 8u
is just a Banach space (not a Banach algebra). However, the norm } ¨ }s is particularly
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suited to describe tf : Tns Ñ C s.t. }f}s ă 8u as a probability space; compare item (h)
below.

(ii) As already mentioned the three norms in (55) are not equivalent. Indeed, for any
σ ą 0, one has20

}f}r,s ď |f |r,s ď ~~f ~~r,s ď pcothnpσ{2q ´ 1q}f}r,s`σ (56)

ď p2n{σqn}f}r,s`σ .

The Banach subspace of tf : Tns Ñ C : }f}s ă 8u of real–analytic functions with zero
average (f0 “ 0) will be the natural ambient function space. Generic elements of such
a space will be the typical potentials to which our uniformaveraging theory applies.
We givet it a name:

The following two definitions are needed in order to decompose a holomorphic function
on Tn into a sum over generators of 1-d maximal lattices of holomorphic functions on
T1. Later the Fourier modes k P Gn1 will be identified with simple resonances.

(b) Lattice Fourier projectors

Given fpy, xq “
ř

kPZn fkpyqe
ik¨x and a sublattice Λ of Zn, we denote by pΛ the

projection on the Fourier coefficients in Λ, namely

pΛf :“
ÿ

kPΛ

fkpyqe
ik¨x . (57)

and by pKΛ its “orthogonal” operator (projection on the Fourier modes in Zn zΛ):

pKΛf :“
ÿ

kRΛ

fkpyqe
ik¨x .

Obviously
~~ pΛf ~~r,s , ~~ pKΛf ~~r,s ď ~~f ~~r,s . (58)

20We have
ÿ

kPZnz0

e´|k|1σ “ cothnpσ{2q ´ 1. Moreover cothn x ´ 1 ď pn{xqn. Indeed for 0 ă x ď 1

the estimates follows by cothx ă 2{ sinhx ă 2{x. In the case x ą 1 we have

cothn x´ 1 ď p1` e1´2xqn ´ 1 ď np1` 1{eqn´1e1´2x ď pn{xqn ,

where in the second inequality we have used that p1` yqn ď 1`np1` 1{eqn´1y for 0 ď y ď 1{e, while
in the last one we exploit maxxě1 x

ne´2x “ pn{2eqn.
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(c) Fourier Truncation operators

Given N ą 0, we introduce the following “truncation” and “high–mode” opera-
tors TN and TKN :

TNfpy, xq :“
ÿ

|k|1ďN

fkpyqe
ik¨x , TKNfpy, xq :“

ÿ

|k|1ąN

fkpyqe
ik¨x . (59)

Note that pΛ and TN commute. Note, also, that

~~TNf ~~r,s , ~~TKNf ~~r,s ď ~~f ~~r,s , (60)

and that
~~TKNf ~~r,s´σ ď e´pN`1qσ~~f ~~r,s , 0 ă σ ă s . (61)

(d) 1d–Fourier projectors

Given f P Bns and k P Gn1 we define the following 1d–Fourier projector

f P Bns ÞÑ πkZf “: F k
P B1

|k|1s
where F k

pθq :“
ÿ

jPZzt0u

fjke
ijθ , (62)

fjk being the Fourier coefficient of f with Fourier index jk P Zn.

It is immediate to see that:

Any f P Bns can be uniquely written as:

fpxq “
ÿ

kPGn1

F k
pk ¨ xq (63)

Notice also that, if k P Gn1 and ~~f ~~r,s ă 8, then

~~F k~~r,|k|1s ď ~~f ~~r,s . (64)

We are now ready to define the main function spaces.

Finally, we introduce a probability measure on the unit ball in Bns .

(e) Denote by `8pZn› q the Banach space of complex sequences (over Zn› ) given by

`8pZn› q :“
 

z P CZn› s.t. zk ‰ 0 and |z|
8

:“ sup
kPZn›

|zk| ă `8
(

. (65)
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Then, the map
j : f P Bns Ñ

 

fke
|k|1s

(

kPZn›
P `8pZn› q (66)

is an isomorphism of Banach spaces21, which allows to identify functions in Bns
with points in `8pZn› q and the Borellians of Bns with those of `8pZn› q.
Denote by B1 the closed ball of radius one in Bns and by B the Borellians in B1.
On B1 we can introduce the following natural (product) probability measure.
Consider, first, the probability measure given by the normalized Lebesgue–product
measure on the unit closed ball of `8pZn› q, namely, the unique probability mea-
sure µ on the Borellians of tz P `8pZn› q : |z|

8
ď 1u such that, given Lebesgue

measurable sets Ak in the unit complex disk Ak Ď D :“ tw P C : |w| ď 1u with
Ak ‰ D only for finitely many k, one has

µ
´

ź

kPZn›

Ak

¯

“
ź

tkPZn› : Ak‰Du

1

π
measpAkq

where “meas” denotes the Lebesgue measure on the unit complex disk D.
Then, the isometry j in (66) naturally induces a probability measure22 µs on
the Borellians B.

3.2 Generic properties of periodic holomorphic classes

Here we discuss some properties of the classes Hs,τ of non-degenerate introduced in
Definition 2.1.

Remark 3.2 (i) Since f P Bns , one has that |fk| ď }f}se
´|k|1s for all k’s and (32)

says that, when k is a generator of maximal 1d–lattices (later corresponding to simple
resonances), the k–Fourier coefficient does not vanish and is controlled in a quantitive
way from below: |k|´n

1
is a suitable weight (needed in the proof of Proposition 3.1

below), while δ is any number satisfiying

inf
|k|1ąτpδq

|fk||k|
n
1
e|k|1s ě δ ą 0 . (67)

(ii) It is easy to construct functions in Hs,τ pδq. For example let

fpxq :“ 2δ
ÿ

kPGn1

|k|´n
1
e´|k|1s cospk ¨ xq , (68)

21Recall that since the functions in Bns are real–analytic one has the reality condition fk “ f̄´k.
22I.e, µspB1q “ 1.
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which has Fourier coefficients

fk “

"

δ|k|´n
1
e´|k|1s, if ˘k P Gn1

0, otherwise

and 1d–Fourier projections

F k
pθq “ δ|k|´n

1
e´|k|1s cos θ .

Then, f P Hs,0pδq and, also, f P Hs,τ pδq for any choice of tail function τpδq.

Here, we show that the classes Hs,τ are “general” in several (topological and measure
theoretical) ways.

Proposition 3.1 (Properties of Hs,τ) Let s ą 0 and τ be a tail function. Then:

(i) The set Hs,τ Ď Bns contains an open dense set.

(ii) Hs,τ X B1 P B and µspHs,τ XB1q “ 1.

(iii) Hs,τ is a prevalent set23.

Proof

(i) Hs,τ contains an open subset H1
s,τ which is dense in the unit ball of Bns .

Let us define H1
s,τ as Hs,τ but with the difference that (32) is replaced by the stronger

condition24

D δ ą 0 s.t. |fk| ě δ e´|k|1s , @ k P Gn1 , |k|1 ą τpδq (69)

Let us first prove that H1
s,τ is open. Let f P H1

s,τ . We have to show that there exists
ρ ą 0 such that if }g}s ă ρ, then f ` g P H1

s,τ . Fix δ ą 0 such that (69) holds
and, by continuity of τpδq, choose ρ ă δ small enough such that rτpδqs ą τpδ1q ´ 1 ,
where δ1 :“ δ ´ ρ and r¨s denotes integer part. Then, since τpδq is not increasing, it is
immediate to verify that |k|1 ą τpδq ðñ |k|1 ą τpδ1q. Moreover

|fk ` gk|e
|k|1s ě |fk|e

|k|1s ´ }g}s ě δ ´ ρ “ δ1 , @ k P Gn1 , |k|1 ą τpδ1q ,

23We recall that a Borel set P of a Banach space X is called prevalent if there exists a compactly
supported probability measure ν on the Borellians of X such that νpx`P q “ 1 for all x P X; compare,
e.g., [8]

24Note, however, that µspH1sq “ 0.
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namely f ` g satisfies (69) (with δ1 instead of δ).

Let us now show that H1
s,τ is dense in the unit ball of Bns . Take f in the unit ball of

Bns and 0 ă λ ă 1. We have to find f̃ P H1
s,τ with }f̃ ´ f}s ď λ. Let δ :“ λ{4 and

denote by fk and f̃k (to be defined) be the Fourier coefficients of, respectively, f and
f̃ . We, then, let f̃k “ fk unless k P Gn1 , |k|1 ą τpδq and |fk|e

|k|1s ă δ, in which case,
f̃k “ δe´|k|1s. It is, now, easy to check that f̃ P H1

s and is λ–close to f .

(ii) Hs,τ X B1 P B and µspHs,τ XB1q “ 1

We shall prove that, for every δ ą 0, the measure of the sets of potentials f that do
not satisfy (32) is Opδ2q, the result will follow letting δ Ñ 0.

By the identification (66), the measure of the set of potentials f that do not satisfy
(32) with a given δ is bounded by

δ2
ÿ

kPZn
|k|´2n

1
. (70)

Remark 3.3 Recalling footnote 16, one could impose the condition |fk| ě δ|k|´n̄
1

e´|k|1s

in (32). Then (70) would become δ2
ř

kPZn |k|
´2n̄
1

, which is still fine if n̄ ą n{2.

(iii) Hs,τ is prevalent.

Consider the following compact subset of `8pZn› q: let K :“ tz “ tzkukPZn› : zk P D1{|k|1
u,

where D1{|k|1
:“ tw P C : |w| ď 1{|k|1u, and let ν be the unique probability measure

supported on K such that, given Lebesgue measurable sets Ak Ď D1{|k|1
, with Ak ‰

D1{|k|1
only for finitely many k, one has

ν
´

ź

kPZn›

Ak

¯

:“
ź

tkPZn› : Ak‰D1{|k|1
u

|k|2
1

π
measpAkq .

The isometry js in (66) naturally induces a probability measure νs on Bns with support
in the compact set Ks :“ j´1

s K. Reasoning as in the proof of µspHs,τ q “ 1, one can show
that νspHs,δq ě 1´const δ2. It is also easy to check that, for every g P Bns , the translated
set Hs,δ`g satisfies νspHs,δ`gq ě νspHs,δq. Thus, one gets νspHs,τ `gq “ νspHs,τ q “ 1,
@ g P Bns , which means that Hs,τ is prevalent (recall footnote 23).
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4 A normal form lemma with “small” analyticity

loss

In this section we describe an analytic normal form lemma for nearly–integrable Hamil-
tonians Hpy, xq “ hpyq ` fpy, xq, which allows to average out non–resonant Fourier
modes of the perturbation f on suitable non–resonant regions, and allows for “very
small” analyticity loss in the angle variables, a fact, which will be crucial in our appli-
cations.

We recall ([13], [15]) that, given an integrable Hamiltonian hpyq, positive numbers α,K
and a lattice Λ Ă Zn, a (real or complex) domain U is pα,Kq non–resonant modulo Λ
(with respect to h) if

|h1pyq ¨ k| ě α , @ y P U , @ k P Zn zΛ , |k|1 ď K . (71)

The main point of the following “Normal Form Lemma” is that the “new” averaged
Hamiltonian is defined, in the fast variable (angle) domain, in a region “almost equal”
to the original domain, “almost equal” meaning a complex strip of width sp1 ´ 1{Kq
if s is the width of the initial angle analyticity. More precisely, we have:

Proposition 4.1 (Normal form with “small” analyticity loss)
Let r, s, α ą 0, K P N, K ě 2, D Ď Rn, and let Λ be a lattice of Zn. Let

Hpy, xq “ hpyq ` fpy, xq (72)

be real–analytic on Dr ˆ Tns with ~~f ~~r,s ă 8. Assume that Dr is (α,K) non–resonant
modulo Λ and that

ϑ› :“
211K2

αrs
~~f ~~r,s ă 1 . (73)

Then, there exists a real–analytic symplectic change of variables

Ψ : py1, x1q P Dr›ˆTns› ÞÑ py, xq P DrˆTns with r› :“ r{2 , s› :“ sp1´1{Kq (74)

satisfying

|y ´ y1|1 ď
ϑ›

27K
r , max

1ďiďn
|xi ´ x

1
i| ď

ϑ›
16K2

s , (75)

and such that
H ˝Ψ “ h` f 5 ` f› , f 5 :“ pΛf ` T

K
K pKΛf (76)

with

~~f›~~r›,s› ď
1

K
ϑ›~~f ~~r,s , ~~TK pKΛf›~~r›,s› ď pϑ›{8q

K 8

eK
~~f ~~r,s . (77)
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Moreover, re-writing (76) as

H ˝Ψ “ h` g ` f›› where pΛg “ g , pΛf›› “ 0 , (78)

one has

~~g ´ pΛf ~~r›,s› ď
1

K
ϑ›~~f ~~r,s , ~~f››~~r›,s{2 ď 2e´pK´2qs̄~~f ~~r,s , (79)

where

s̄ :“ min

"

s

2
, log

8

ϑ›

*

. (80)

Remark 4.1

(i) The “novelty” of this lemma is that the bounds in (77) and the first one in (79)
hold on the large angle domain Tns› with s› “ sp1´ 1{Kq. In particular the first
estimate in (77) (or, equivalently, in (79)) will be important in our analysis in
order to obtain (159), (162) and, therefore, (170), (177) and finally (181), which
is the key to prove (43) in Theorem 2.1. The drawback of the gain in angle–
analyticity strip is that the power of K in the smallness condition (73) is not
optimal: for example in [15] the power of K is one (but s› “ s{6, which would
not work in our applications).

(ii) Having information on non–resonant Fourier modes up to order K, the best one
can do is to average out the non–resonant Fourier modes up to order K, namely,
to “kill” the term TK pKΛf of the Fourier expansion of the perturbation. This
explains the “flat” term f 5 “ pΛf ` TKK pKΛf surviving in (76) and which cannot
be removed in general. Now, think of the remainder term f› as

f› “ pΛf› `
`

TKK pKΛf› ` TK pKΛf›
˘

;

then, pΛf› is a pϑ›~~f ~~r,s{Kq–perturbation of the part in normal form (i.e., with
Fourier modes in Λ), while TKK pKΛf› is, by (61), a term exponentially small
with K (see also below) and TK pKΛf› is a very small remainder bounded by
8pϑ›{8q

K ~~f ~~r,s{eK.

(iii) We note that (78) follows from (76). Indeed we take

g “ pΛf ` pΛf› , f›› “ TKK pKΛf ` pKΛf› “ TK pKΛf› ` T
K
K pKΛpf› ` fq .

Then the first estimate in (79) follows by the first bound in (77) and (58). Re-
garding the second estimate in (79), we first note by (77) and (61) (used with
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f ù f› N ù K, r ù r›, s ù s›, and σ ù s
2
´ s

K
so that s› ´ σ “ s{2 and

e´pK`1qσ ď e´pK´2qs{2)

~~TKKf›~~r›,s{2 “ ~~TKKf›~~r›,s›´σ ď e´pK`1qσ~~f›~~r›,s› ď e´pK´2qs{2ϑ›~~f ~~r,s{K .

By (58), (77) and (61) we get

~~f››~~r›,s{2 ď ~~TK pKΛf›~~r›,s{2 ` ~~TKKf›~~r›,s{2 ` ~~TKKf ~~r›,s{2

ď pϑ›{8q
K 8

eK
~~f ~~r,s ` e

´pK´2qs{2
pϑ›{K ` e´3s{2

q~~f ~~r,s

ď 2e´pK´2qs̄~~f ~~r,s .

(iv) Let us compare our results with more standard formulations, such as the Normal
Form Lemma in § 2 of [15]. In that formulation, imposing the weaker smallness
condition ~~f ~~r,s ď constαr{K, the normal form Hamiltonian writes h`g`f with
f exponentially small (of order ~~f ~~r,se

´Ks{6) and, regarding g one knows that

~~g´ TK pΛf ~~r{2,s{6 ď const.
K

αr
~~f ~~2r,s . (81)

For our purposes we need to prove that, when k P Zn7 , |k|1 ď K1 ď K (k P ZnK1

indexes the simple resonance we want to consider while l P ZnK indexes the second
order resonance beyond k) and |fk|{~~f ~~r,s ě δ|k|´n

1
e´|k|1s, the quantity

1

|fk|
sup
yPDr{2

|gkpyq ´ fk|

is small. Indeed by (79) we have

1

|fk|
sup
yPDr{2

|gkpyq ´ fk| ď
ϑ›
K

~~f ~~r,s
e´|k|1s›

|fk|
ď
ϑ›
K

|k|n
1
eps´s›q|k|1

δ

“
ϑ›
K

|k|n
1
es|k|1{K

δ
ď
ϑ›
K
es
Kn

1

δ
, (82)

which is small when

K1 !

ˆ

αrsδ

K~~f ~~r,s

˙1{n

. (83)

Consider, for example, the function f “ εf̂ with ε small and f̂ defined in (68).
We have that ~~f ~~r,s “ cδε, for a suitable constant c ą 0. In this case (83) writes

K1 !

´αrs

Kε

¯1{n

. (84)
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On the other hand by estimate (81) one only have

1

|fk|
sup
yPDr{2

|gkpyq ´ fk| ď const .
Kε

αr
|k|n

1
e|k|1se´|k|1s{6 ď const .

εK

αr
Kn

0 e
5
6
K0s ,

which is small only for

K1 !
6

5s
log

αr

Kε
, (85)

that is a considerably stronger bound than the one in (84).
Since we are considering simple resonances indexed by |k|1 ď K1 , the non resonant
region will be non-resonant only up to order K1 ; therefore we have that the
perturbation, after normal form in the non-resonant region, will be of magnitude

εe´K1s{6 " εpKε{αrq1{5 ,

when the bound (85) applies. This estimate is very bad. On the other hand, in
our case, the weaker bound (84) applies and we obtain that the perturbation is
exponentially small.

Given a function φ we denote by X t
φ the hamiltonian flow at time t generated by φ and

by “ad” the linear operator u ÞÑ adφu :“ tu, φu and ad` its iterates:

ad0
φu :“ u , ad`φu :“ tad`´1

φ u, φu , ` ě 1 ,

as standard, t¨, ¨u denotes Poisson bracket25.

Recall the identity (“Lie series expansion”)

u ˝X1
φ “

ÿ

`ě0

1

`!
ad`φu “

8
ÿ

`“0

B`tpu ˝X
t
φq

`!

ˇ

ˇ

ˇ

t“0
, (86)

valid for analytic functions and small φ. We recall the following technical lemma by
[15].

Lemma 4.1 (Lemma B.3 of [15]) For 0 ă ρ ă r, 0 ă σ ă s, D Ď Rn

sup
yPDr

ÿ

1ďiďn

~~Bxiφpy, ¨q~~s´σ ď
1

eσ
~~φ~~r,s , sup

yPDr´ρ

max
1ďiďn

~~Byiφpy, ¨q~~s ď
1

ρ
~~φ~~r,s ,

25Explicitly, tu, vu “
n
ÿ

i“1

puxi
vyi ´ uyivxi

q.
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By Lemma 4.1 we get (see also Lemma B.4 of [15])

Lemma 4.2 For 0 ă ρ ă r̄ :“ tr0, ru, 0 ă σ ă s̄ :“ ts0, su,

~~tf, gu~~r̄´ρ,s̄´σ ď
1

e

ˆ

1

pr0 ´ r̄ ` ρqps´ s̄` σq
`

1

pr ´ r̄ ` ρqps0 ´ s̄` σq

˙

~~f ~~r0,s0 ~~g~~r,s .

(87)

Summing the Lie series in (86) (see Lemma B5 of [15]) we get, also,

Lemma 4.3 Let 0 ă ρ ă r0 and 0 ă σ ă s0. Assume that

ϑ̂ :“
4e~~φ~~r0,s0

ρσ
ď 1 . (88)

Then for every ρ ă r1 ď r0, σ ă s1 ď s0, the time-1-flow X1
φ of vector field Xφ define a

good canonical transformation

X1
φ : Dr1´ρ ˆ Tns1´σ Ñ Dr1´ρ{2 ˆ Tns1´σ{2 (89)

satisfying

|y ´ y1|1 ď ϑ̂
ρ

4e
, max

1ďiďn
|xi ´ x

1
i| ď ϑ̂

σ

4
(90)

Moreover let r ą ρ, s ą σ and set

r̄ :“ mintr0, ru , s̄ :“ mints0, su .

Then for any j ě 0

~~u ˝X1
φ ´

ÿ

hďj

adhφu~~r̄´ρ,s̄´σ ď
ÿ

hąj

1

h!
~~adhφu~~r̄´ρ,s̄´σ

ď 2pϑ̂{2qj~~tu, φu~~r̄´ρ{2,s̄´σ{2 (91)

for every function u with ~~u~~r,s ă 8.
In particular when r ď r0, s ď s0

~~u ˝X1
φ ´ u~~r´ρ,s´σ ď

ÿ

hě1

1

h!
~~adhφu~~r´ρ,s´σ ď 2ϑ̂~~u~~r,s , (92)

~~u ˝X1
φ ´ u´ tu, φu~~r´ρ,s´σ ď ϑ̂2~~u~~r,s , (93)
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Proof We first note that by Lemma 4.1 (applied with r0 ù r, s0 ù s) for every
py, xq P Dr0´ρ ˆ Tns0´σ we have

|Bxφpy, xq|1 ď
1

eσ
~~φ~~r0,s0 “

ϑ̂ρ

4e
ď

ρ

4e
, max

1ďiďn
|Byiφpy, xq| ď

1

ρ
~~φ~~r0,s0 “

ϑ̂σ

4
ď
σ

4
.

Then (89) holds.
For h ě 1, set for brevity

~~ ¨ ~~i :“ ~~ ¨ ~~r̄´ ρ
2
´iρ̃,s̄´σ

2
´iσ̃ , 0 ď i ď h , ρ̃ :“

ρ

2h
, σ̃ :“

σ

2h
.

We get

~~adiφtu, φu~~i
(87)

ď
1

e

ˆ

1

ρ̃ps0 ´ s̄` iσ̃ ` σ{2q
`

1

σ̃pr0 ´ r̄ ` iρ̃` ρ{2q

˙

~~φ~~r0,s0 ~~adi´1
φ tu, φu~~i´1

ď
8h2

eρσ

1

h` i
~~φ~~r0,s0 ~~adi´1

φ tu, φu~~i´1 ,

and, iterating,

~~adhφtu, φu~~h ď
8h2

eρσ

h!

p2hq!
~~φ~~r0,s0 ~~tu, φu~~r´ρ{2,s´σ{2 ď h!pϑ̂{2qh~~tu, φu~~r´ρ{2,s´σ{2

by Stirling’s formula. Then

ÿ

hěj

1

ph` 1q!
~~adh`1

φ u~~r̄´ρ,s̄´σ ď
ÿ

hěj

1

h` 1
pϑ̂{2qh~~tu, φu~~r´ρ{2,s´σ{2

proving (91) in view of (88).
Finally (92) and (93) follows by (91) and since ~~tu, φu~~r̄´ρ{2,s̄´σ{2 ď 2e´1ϑ̂~~u~~r,s by (87).

Given K ě 2 and a lattice Λ, recall the definition of f 5 in (76) and define

fK :“ f ´ f 5 “ TK pKΛf ,

so that we have the decomposition (valid for any f):

f “ f 5 ` fK , f 5 :“ PΛf ` T
K
K pKΛf , fK :“ TK pKΛf . (94)
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Lemma 4.4 Let 0 ă ρ ă r and 0 ă σ ă s. Consider a real–analytic Hamiltonian

H “ Hpy, xq “ hpyq ` fpy, xq analytic on Dr ˆ Tns . (95)

Suppose that Dr is (α,K) non–resonant modulo Λ for h (with K ě 2). Assume that

ϑ̌ :“
4e

αρσ
~~fK ~~r,s ď 1 . (96)

Then there exists a real–analytic symplectic change of coordinates

Ψ :“ X1
φ : Dr` ˆ Tns` Q py

1, x1q Ñ py, xq P Dr ˆ Tns , r` :“ r ´ ρ , s` :“ s´ σ ,

generated by a function φ “ φK “ TK pKΛφ with

~~φ~~r,s ď ~~fK ~~r,s{α , (97)

satisfying

|y ´ y1|1 ď ϑ̌
ρ

4e
, max

1ďiďn
|xi ´ x

1
i| ď ϑ̌

σ

4
, (98)

such that
H ˝Ψ “ hpy1q ` f`py

1, x1q , f` :“ f 5 ` f› (99)

with
~~f›~~r`,s` ď 4ϑ̌~~f ~~r,s . (100)

Notice that, by (94) and (100), one has

fK` “ fK› , ~~f`~~r`,s` ď ~~f›~~r`,s` ` ~~f ~~r,s ď p1` 4ϑ̌q~~f ~~r,s . (101)

Notice also that

f 5` ´ f
5 p99q
“ f 5› ùñ ~~f 5` ´ f

5~~r`,s` ď ~~f›~~r`.s`
p100q

ď 4ϑ̌~~f ~~r,s . (102)

Proof Let us define

φ “ φpy, xq :“
ÿ

|m|ďK,mRΛ

fmpyq

ih1pyq ¨m
eim¨x ,

and note that φ solves the homological equation

th, φu ` fK “ 0 . (103)
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Since Dr is (α,K) non–resonant modulo Λ the estimate (97) holds. We now use Lemma
4.3 with parameters r0 ù r, s0 ù s. With these choices it is ϑ̂ “ ϑ̌, and, by (96)
ϑ̌ ď 1. Thus, (88) holds and Lemma 4.3 applies. (98) follows by (90). We have

H ˝Ψ “ h` f 5 ` f›

with
f› “ ph ˝Ψ´ h´ th, φuq ` pf ˝Ψ´ fq .

Since

h ˝Ψ´ h´ th, φu “
ÿ

`ě2

1

`!
ad`φh “

ÿ

`ě1

1

p`` 1q!
ad`φth, φu

(103)
“ ´

ÿ

`ě1

1

p`` 1q!
ad`φf

K ,

we have

~~h ˝Ψ´ h´ th, φu~~r`,s` ď
ÿ

`ě1

1

`!
~~ad`φf

K ~~r`,s`

p92q

ď 2ϑ̌~~fK ~~r,s ď 2ϑ̌~~f ~~r,s .

Finally, applying again Lemma 4.3 with u “ f , by (92), we get ~~f ˝Ψ´f ~~r`,s` ď 2ϑ̌~~f ~~r,s,
proving (100) and concluding the proof of Lemma 4.4.

As a preliminary step we apply Lemma 4.4 to the Hamiltonian H “ h` f in (72) with
ρ “ r{4 and σ “ s{2K. By (58), (60), (94) and (73) hypothesis (96) holds, namely

ϑ´1 :“
25eK

αrs
~~fK ~~r,s ď 1 . (104)

Then there exists a real–analytic symplectic change of coordinates

Ψ´1 : Dr0 ˆ Tns0 Q py
p0q, xp0qq Ñ py, xq P Dr ˆ Tns , r0 :“

3

4
r , s0 :“

ˆ

1´
1

2K

˙

s ,

satisfying

|y ´ yp0q|1 ď ϑ´1
r

16e
, max

1ďiďn
|xi ´ x

p0q
i | ď ϑ´1

s

8K
, (105)

such that

H ˝Ψ´1 “: H0 “ hpyp0qq` f0py
p0q, xp0qq , f0 “ f 5` f› , f 5 :“ PΛf `T

K
K pKΛf , (106)

with
~~f›~~r0,s0 ď 4ϑ´1~~f ~~r,s . (107)
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Recalling (94) and (106) we get
fK0 “ fK›

and, by (107) and (104),

~~fK0 ~~r0,s0 ď 4ϑ´1~~f ~~r,s ď
27eK

αrs
~~f ~~2r,s . (108)

Then, setting

ϑ0 :“ δ~~fK0 ~~r0,s0 with δ :“
25eK3

αrs
, (109)

we have

ϑ0 ď

ˆ

26eK2

αrs
~~f ~~r,s

˙2
(73)

ď pϑ›{8q
2
ď

1

26
. (110)

Finally, since f 50 ´ f
5 “ f 5› by (102) we get

~~f 50 ´ f
5~~r0,s0 ď 4ϑ´1~~f ~~r,s

(104)

ď
27eK

αrs
~~f ~~2r,s

(73)

ď
1

4K
ϑ›~~f ~~r,s . (111)

The idea is to construct Ψ by applying K times Lemma 4.4.

Let

ρ :“
r

4K
, σ :“

s

2K2
,

ri :“
3

4
r ´ iρ , si :“

ˆ

1´
1

2K

˙

s´ iσ , ~~ ¨ ~~i :“ ~~ ¨ ~~ri,si , (112)

Fix 1 ď j ď K and make the following inductive assumptions:

Assume that there exist, for 1 ď i ď j, real–analytic symplectic transformations

Ψi´1 :“ X1
φi´1

: Dri ˆ Tnsi Q py
piq, xpiqq Ñ pypi´1q, xpi´1q

q P Dri´1
ˆ Tnsi´1

,

generated by a function φi´1 “ φKi´1 with

~~φi´1~~i´1 ď ~~fKi´1~~i´1{α , (113)

satisfying

|ypi´1q
´ ypiq|1 ď ϑi´1

r

16eK
, max

1ď`ďn
|x
pi´1q
` ´ x

piq
` | ď ϑi´1

s

8K2
, (114)
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such that
Hi :“ Hi´1 ˝Ψi´1 “: h` fi “ h` fKi ` f

5
i (115)

satisfies, for 1 ď i ď j, the estimates

ϑi ď

ˆ

28K2~~f ~~r,s

αrs

˙i`1
(73)
“

ˆ

ϑ›
8

˙i`1

, ~~f 5i ´ f
5
i´1~~i ď

1

δ

ˆ

ϑ›
8

˙i`1

, (116)

where
ϑi :“ δ|fKi |i . (117)

Let us first show that the inductive hypothesis is true for j “ 1 (which implies i “ 1).
Indeed by (110) we see that we can apply Lemma 4.4 with f ù fK0 and ϑ̌ ù ϑ0 “

δ~~fK0 ~~0. Thus, we obtain the existence of Ψ0 “ X1
φ0

, generated by a function φ0 “ φK0
with

~~φ0~~r0,s0 ď
1

α
~~fK0 ~~r0,s0

(108)

ď
27eK

α2rs
~~f ~~2r,s , (118)

satisfying (113) and26 (114), so that ph` fK0 q ˝Ψ0 “: h` f̃1 and, by (99) and (100),

~~f̃1~~1 ď 4ϑ0~~fK0 ~~0
(110)

ď
1

4
~~fK0 ~~0

(108)

ď
25eK

αrs
~~f ~~2r,s . (119)

We have that f1 “ f̃1 ` f
5
0 ˝Ψ0. Then27

fK1 “ f̃K1 ` pf 50 ˝Ψ0 ´ f
5
0q
K , f 51 ´ f

5
0 “ f̃ 51 ` pf

5
0 ˝Ψ0 ´ f

5
0q
5 . (120)

Write

f 50 ˝Ψ0 ´ f
5
0 “ pf

5
0 ´ f

5
q ˝Ψ0 ´ pf

5
0 ´ f

5
q ` pf 5 ˝Ψ0 ´ f

5
´ tf 5, φ0uq ` tf

5, φ0u .

By (92) (with u ù f 50 ´ f
5, r ù r0, s ù s0) we have

~~pf 50 ´ f
5
q ˝Ψ0 ´ pf

5
0 ´ f

5
q~~1 ď 2ϑ0~~f 50 ´ f

5~~0 ď
24eK

αrs
~~f ~~2r,s

by (110) and (111). By (91) with u ù f 5, φ ù φ0, j ù 1, r̄ ù r0, s̄ ù s0,

~~f 5 ˝Ψ0 ´ f
5
´ tf 5, φ0u~~1 ď 2ϑ0~~tf 5, φ0u~~r0´ρ{2,s0´σ{2 ď

29K3

α2r2s2
~~f ~~3r,s

(73)

ď
K

4αrs
~~f ~~2r,s ,

26Note also that pfK0 q
5 “ 0

27Note that pf 50q
K “ 0 and pf 50q

5 “ f 50.
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by (110), (118) and (87) (with f ù φ0, g ù f 5). Analaogously by (87) we get

~~tf 5, φ0u~~1 ď
24K2

ers
~~φ0~~0~~f ~~r,s

(118)

ď
211K3

α2r2s2
~~f ~~3r,s

(73)

ď
K

αrs
~~f ~~2r,s .

Summarizing:

~~f 50 ˝Ψ0 ´ f
5
0~~1 ď

26K

αrs
~~f ~~2r,s .

Then, by (119) and (120) we get

~~fK1 ~~1 , ~~f 51 ´ f
5
0~~1 ď

27K

αrs
~~f ~~2r,s (121)

checking (116) in the case j “ i “ 1.

Now take 2 ď j ď K and assume that the inductive hypothesis holds true for 1 ď i ď j
and let us prove that it holds also for i “ j ` 1. By (116) and (73) we can apply
Lemma 4.4 with f ù fKj and ϑ̌ ù ϑj. Thus, we obtain the existence of Ψj “ X1

φj
,

generated by a function φj “ φKj with

~~φj~~j
(113)

ď
1

α
~~fKj ~~j

(117)
“

ϑj
αδ

, (122)

so that ph` fKj q ˝Ψj “: h` f̃j`1 and, by (99) and (100),

~~f̃j`1~~j`1 ď 4ϑj~~f
K
j ~~j

(117)
“

4

δ
ϑ2
j

(116)

ď
4

δ
pϑ›{8q

2j`2
(73)

ď
1

23j´2δ
pϑ›{8q

j`2
ď

1

24δ
pϑ›{8q

j`2 ,

(123)
since j ě 2. We have that fj`1 “ f̃j`1 ` f

5
j ˝Ψj. Then28

fKj`1 “ f̃Kj`1 ` pf
5
j ˝Ψj ´ f

5
j q
K , f 5j`1 ´ f

5
j “ f̃ 5j`1 ` pf

5
j ˝Ψj ´ f

5
j q
5 . (124)

Writing

f 5j “ f 5 ` pf 50 ´ f
5
q `

j
ÿ

h“1

f 5h ´ f
5
h´1

we have

f 5j ˝Ψj ´ f
5
j “ tf 5, φju

`f 5 ˝Ψj ´ f
5
´ tf 5, φju

`pf 50 ´ f
5
q ˝Ψj ´ pf

5
0 ´ f

5
q

`

j
ÿ

i“1

´

pf 5i ´ f
5
i´1q ˝Ψj ´ pf

5
i ´ f

5
i´1q

¯

(125)

28Note that pf 5j q
K “ 0 and pf 5j q

5 “ f 5j .
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where Ψj “ X1
φj

. By (87) with f ù φj, g ù f 5, r0 ù rj, s0 ù sj, we get, by (113)

and (117),

~~tf 5, φju~~j`1 ď
24K2

ers
~~φj~~j~~f ~~r,s ď

24K2ϑj
eαrsδ

~~f ~~r,s
(73)
“

1

e24δ
pϑ›{8qϑj

(116)

ď
1

e24δ
pϑ›{8q

j`2 .

By (91) with u ù f 5, φ ù φj, j ù 1, r̄ ù rj, s̄ ù sj, reasoning as above we get

~~f 5 ˝Ψj ´ f
5
´ tf 5, φju~~j`1 ď ϑj~~tf

5, φju~~rj´ρ{2,sj´σ{2 ď
ϑj
4eδ
pϑ›{8q

j`2
ď

1

26eδ
pϑ›{8q

j`2

by (116) and (73). By (92) (with u ù f 50 ´ f
5, r ù rj, s ù sj) we have

~~pf 50 ´ f
5
q ˝Ψj ´ pf

5
0 ´ f

5
q~~j`1 ď 2ϑj~~f

5
0 ´ f

5~~j ď
28eK

αrs
~~f ~~2r,sϑj ď

1

4δ
pϑ›{8q

j`2

by (111), (116), (109) and (73). Analogously, for 1 ď i ď j, by (92) (now with u ù

f 5i ´ f
5
i´1)

~~pf 5i ´ f
5
i´1q ˝Ψj ´ pf

5
i ´ f

5
i´1q~~j`1 ď 2ϑj~~f

5
i ´ f

5
i´1~~j ď

2

δ
pϑ›{8q

j`i`2

by (116). Then by (73)

~~

j
ÿ

i“1

´

pf 5i ´ f
5
i´1q ˝Ψj ´ pf

5
i ´ f

5
i´1q

¯

~~j`1 ď
2

7δ
pϑ›{8q

j`2 .

Whence:

~~f 5j ˝Ψj ´ f
5
j ~~j`1 ď

4

7δ
pϑ›{8q

j`2 .

Then by (123) we get

~~f̃j`1~~j`1 ` ~~f 5j ˝Ψj ´ f
5
j ~~j`1 ď

1

δ
pϑ›{8q

j`2 .

By (124) we get (116) with i “ j ` 1. This completes the proof of the induction.

Now, we can conclude the proof of Proposition 4.1. Set

Ψ :“ Ψ´1 ˝Ψ0 ˝ ¨ ¨ ¨ ˝ΨK´1 .

Notice that, by (112), rK “ r{2 “ r› and sK “ sp1 ´ 1{Kq “ s›. By the induction, it
is

H ˝Ψ “ HK´1 ˝ΨK´1
p115qK
“ h` fK “: h` f 5 ` f› , (126)
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with f 5 “ pΛf ` T
K
K pKΛf (recall (76)). Note that by (116) and (110)

K
ÿ

i“1

ϑi´1 ď

K
ÿ

i“1

pϑ›{8q
i
ď ϑ›{7 . (127)

Since py1, x1q “ pypKq, xpKqq by (105), (114) and triangular inequality we get

|y1 ´ y|1 ď |y ´ yp0q|1 `
K
ÿ

i“1

|ypiq ´ ypi´1q
|1 ď

rϑ´1

16e
`

r

16eK

K
ÿ

i“1

ϑi´1

(127)

ď
r

16e

ˆ

ϑ´1 `
ϑ›
7K

˙

(104)

ď
r

16e

ˆ

ϑ›
8K

`
ϑ›
7K

˙

,

then (75) follows (the estimate on the angle being analogous).
Since TKP

K
Λ f

5 “ pf 5qK “ 0 (for any f , recall (94)) we have

~~TKP
K
Λ f›~~r›,s› “ ~~fKK ~~K

p117q
“ δ´1ϑK

p116q

ď δ´1
pϑ›{8q

K`1
“ pϑ›{8q

K 8

eK
~~f ~~r,s , (128)

proving the second estimates in (77).

Finally, (using that K ě 2 and that ϑ› ď 1)

~~f›~~r›,s›
p126q
“ ~~fK ´ f

5~~K
p94q
“ ~~fKK ` f

5
K ´ f

5~~K ď ~~fKK ~~K ` ~~f 50 ´ f
5~~0 `

K
ÿ

i“1

~~f 5i ´ f
5
i´1~~i

(111),p116q

ď ~~fKK ~~K `
1

4K
ϑ›~~f ~~r,s `

1

δ

K
ÿ

i“1

pϑ›{8q
i`1

p128q,(127)

ď pϑ›{8q
K 8

eK
~~f ~~r,s `

1

4K
ϑ›~~f ~~r,s `

ϑ2
›

56δ
ď

1

K
ϑ›~~f ~~r,s ,

which proves also the first estimate in (77).

5 Geometry of resonances

We, first, discuss the Covering Lemma in frequency space in a ball BMp0q Ă tω P Rnu

and then we shall pull back through ω´1 in the action domain.
We define a covering tΩiu of BMp0q

Ω0
Y Ω1

Y Ω2
Ą BMp0q , (129)

as follows.
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Ω0: The definition of the completely non–resonant zone Ω0 is nearly tautological:

Ω0 :“ tω P BMp0q : min
kPGn1,K1

|ω ¨ k| ą α{2u . (130)

Ω1: Recalling the definition of Ω1,k in (27) we set

Ω1 :“
ď

kPGn1,K1

Ω1,k . (131)

Ω2: The set Ω2 is the union of neighbourhoods of exact double resonances29

Rk,` :“ tω ¨ k “ ω ¨ ` “ 0u , k P Gn1,K1
, ` P Gn1,K2

, ` R Zk , (132)

namely:
Ω2
“

ď

kPGn1,K1

ď

`PGn
1,K2
`RZk

Ω2
k,` (133)

where

Ω2
k,` :“ t|ω ¨ k| ă αu X t| pKk ω| ăMu X t| pKk ω ¨ `| ď 3αK2{|k|u . (134)

Indeed, from these definitions, (129) follows immediately.

Next, let us point out the non–resonance properties satisfied by the frequencies in Ωi.

(i) If 0 ‰ |k|1 ď K1 , then there exists k̄ P Gn1,K1
and a 0 ‰ j P Z such that k “ jk̄

and, therefore,

ω P Ω0
ùñ |ω ¨ k| “ |j||ω ¨ k̄| ě |ω ¨ k̄| ě min

kPGn1,K1

|ω ¨ k| ą α{2 . (135)

(ii) Let ω P Ω1,k with k P Gn1,K1
and let ` R Zk, |`|1 ď K2 . Then, there exist j P Zzt0u

and `1 P Gn1,K2
such that ` “ j`1. Hence,

|ω ¨ `| “ |j| |ω ¨ `1| ě |ω ¨ `1| “
ˇ

ˇ

ˇ

pω ¨ kqpk ¨ `1q

|k|2
` pKk ω ¨ `

1

ˇ

ˇ

ˇ

ě | pKk ω ¨ `
1
| ´

αK2

|k|
ą

3αK2

|k|
´
αK2

|k|
“

2αK2

|k|
. (136)

29Recall (22).
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(iii) It remains to evaluate the measure of Ω2. To do this, we first prove the following

Lemma 5.1 If ω P Ω2
k,` with k P Gn1,K1

, ` P Gn1,K2
, ` R Zk, then

distpω,Rk,`q ď
?

10αK2 |k| |`| . (137)

Moreover,

meas pΩ2
k,`q ď 3 ¨ 2nMn´2α2K2

|k|
. (138)

Proof Let v P Rn be the projection of ω onto RKk,`, which is the plane generated
by k and ` (recall that, by hypothesis, k and ` are not parallel). Then,

dist pω,Rk,`q “ dist pv,Rk,`q “ |v| (139)

and
|v ¨ k| “ |ω ¨ k| ă α , | pKk v ¨ `| “ | p

K
k ω ¨ `| ď 3αK2{|k| . (140)

Set

h :“ pKk ` “ `´
` ¨ k

|k|2
k . (141)

Then, v decomposes in a unique way as

v “ ak ` bh

for suitable a, b P R. By (140),

|a| ă
α

|k|2
, | pKk v ¨ `| “ |bh ¨ `| ď 3αK2{|k| , (142)

and

|h ¨ `|
p141q
“

|`|2|k|2 ´ p` ¨ kq2

|k|2
ě

1

|k|2

since |`|2|k|2´p` ¨ kq2 is a positive integer (recall, that k and ` are integer vectors
not parallel). Hence,

|b| ď 3αK2 |k| , (143)

and (137) follows since |h| ď |`| and |v| “
a

a2|k|2 ` b2|h|2 ď
?

10αK2 |k| |`|.
To estimate the measure of Ω2

k,` we write ω P Rk,` as ω “ v ` vK with vK in the

orthogonal complement of the plane generated by k and `. Since |vK| ď |ω| ăM
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and v lies in a rectangle of sizes of length 2α{|k|2 and 6αK2 |k| (compare (142)
and (143)) we find

meas pΩ2
k,`q ď

2α

|k|2
p6αK2 |k|qp2Mq

n´2
“ 3 ¨ 2nMn´2α2K2

|k|
, (144)

finishing the proof of Lemma 5.1.

From (133) and (144) it follows immediately (recall that n ě 2) that

meas pΩ2
q ď cMn´2α2Kn`1

2
Kn´1

1
, (145)

for a suitable constant c depending only on n.

Proof (of Proposition 2.1) Recalling (130), (131) and (133), for i “ 0, 1, 2 set

Di :“ ty P D : ωpyq P Ωi
u . (146)

Then (129) implies (23), while (135), (136) and (145) imply immediately (24), (25)
and30 (26) respectively, proving Proposition 2.1.

6 Averaging Theory

Assumption B
Let r, s ą 0 and let h satisfy Assumption A in § 2.
Let f : Dr ˆ Tns Ñ C be a holomorphic function with

}f}D,r,s “ 1 (147)

and define

Hεpy, xq :“ hpyq ` εfpy, xq , py, xq P Dr ˆ Tns , ε ą 0 . (148)

Let K2 , K1 , ν and α be such that

K2 ě 3K1 ě 6 , ν ě n` 2 , α :“
?
εKν

2
. (149)

30Recall the definition of L̄ in Assumption A, § 2.
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For k P Gn1,K1
, define

r0 :“
α

4LK1

“
?
ε
Kν

2

4LK1

; rk :“
α

L|k|
“
?
ε
Kν

2

L|k|
, (150)

ϑ̄ :“ 214n2n L

s2n`1

1

K2ν´2n´3
2

; ϑ :“ 22n`10n2n L

s2n`1

1

K2ν´2n´3
2

. (151)

Putting together the Normal Form Lemma (Proposition 4.1) and the Covering Lemma
(Proposition 2.1) there follows easily the following averaging theorem for non–resonant
and simply resonant zones:

Theorem 6.1 Let Assumption B hold and assume that ε satisfies (40) and

K2ν´n´4
2

ě 213`nnn
Les{2

sn`1
, (152)

then the following holds.

(i) There exists a symplectic change of variables

Ψ0 : D0
r0{2

ˆ Tnsp1´1{K1 q
2 Ñ D0

r0
ˆ Tnsp1´1{K1 q

, (153)

such that
Hε ˝Ψ0 “ hpyq ` εgo

pyq ` εf o
››py, xq , xf o

››y “ 0 , (154)

where x¨y “ pt0u denotes the average with respect to the angles x and

sup
D0
r0{2

|go
´ xfy| ď ϑ̄ , ~~f o

››~~D0,r0{2,sp1´1{K1 q{2
ď 2

´2nK1

s

¯n

e´pK1´3qs{2 . (155)

(ii) D1
“

ď

kPGn1,K1

D1,k and for any k P Gn1,K1
there exists a symplectic change of variables

Ψk : D1,k
rk{2

ˆ Tns› Ñ D1,k
rk
ˆ Tnsp1´1{K2 q

, s› :“ sp1´ 1{K2q
2 , (156)

such that
Hε ˝Ψk “ hpyq ` εgkpy, xq ` εfk››py, xq (157)

where
gk “ p

kZg
k , p

kZf
k
›› “ 0 , (158)

and

~~gk ´ p
kZf ~~D1,k,rk{2,s› ď ϑ , ~~fk››~~D1,k,rk{2,sp1´1{K2 q{2

ă 2
´2nK2

s

¯n

e´pK2´3qs{2 . (159)
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Remark 6.1 (i) The functions gk and p
kZf depend, effectively, only on one angle

θ P T1: more precisely, setting

$

&

%

F k
j pyq :“ fjkpyq

Gk
j pyq :“ gkjkpyq

$

’

’

’

’

&

’

’

’

’

%

F k
py, θq :“

ÿ

jPZ

F k
j pyqe

ijθ

Gk
py, θq :“

ÿ

jPZ

Gk
j pyqe

ijθ

(160)

we have (recall (63))

p p
kZfqpy, xq “ F k

py, k ¨ xq , gkpy, xq “ Gk
py, k ¨ xq . (161)

From (159) and (64) it follows

~~Gk
´ F k~~D1,k,rk{2,|k|1s›

ď ϑ . (162)

The function θ P T1
|k|1s›

Ñ Gkpy, θq will be called the effective potential since,

disregarding the small remainder fk››, it governs the Hamiltonian evolution at simple
resonances.

(ii) We have assumed that }f}r,s “ 1 (see (147)), since this is the natural assumption in
term of genericity properties, however the Normal Form Lemma is formulated in term
of the stronger norm ~~ ¨ ~~. We need therefore to restrict slightly the angle–analyticity
domain in order to pass to the norm ~~ ¨ ~~. This can be done through (56), which yields
(for r “ r0 or r “ rk and K “ K1 or K2)

~~f ~~r,sp1´1{Kq

p56q,p147q

ď

ˆ

2nK

s

˙n

. (163)

(iii) The choice of α in (149) is not restrictive (since it is done through the introduction
of ν, a new parameter) and it has the effect of making disappear ε from the smallness
conditions and from the definition of the smallness parameters ϑ̄ and ϑ.
According to the choice of K1 and K2 one will get different kind of statements.

Remark 6.2 (i) Observe that r0 ď rk ď
?
εKν

2
{L so that assumption (40) ensures the

necessary condition:

r0 ď rk ď

?
εKν

2

L
ď r . (164)

(ii) The hypotheses of the Normal Form Lemma (Proposition 4.1) concern a com-
plex domain Dr, while the non–resonance properties of the Covering Lemma (Proposi-
tion 2.1) hold on real domains. The following simple observation allows to use directly
the Covering Lemma:
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If a set D Ď Rn is pα,Kq non–resonant modulo Λ for h, then the complex domain Dr

is pα´LrK,Kq non–resonant modulo Λ, provided LrK ă α, where L is the Lipschitz
constant of ω on the complex domain Dr.

Indeed, if y P Dr there exists y0 P D such that |y ´ y0| ă r and |ωpy0q ¨ k| ě α for all
k P Zn zΛ, |k|1 ď K. Thus, for such k’s, one has

|ωpyq ¨ k| “ |ωpy0q ¨ k ´ pωpy0q ´ ωpyqq ¨ k| ě |ωpy0q ¨ k| ´ LrK ě α ´ LrK .

Proof (of Theorem 6.1) (i): By Remark 6.2–(ii), (24) and the choice of r0 in (150),
the domain D0

r0
is pα{4, K1q completely non–resonant (or non–resonant modulo the

trivial lattice t0u) and, in view of (163) and (152), one can apply Proposition 4.1 to
Hε in (148) with31

f ù εf , D ù D0 , r ù r0 , Λ ù t0u , α ù α{4 ,

K ù K1 , s ù sp1´ 1{K1q . (165)

Thus, recalling (73), using (150) and that K1 ě 2, one sees that

ϑ› ù ϑ0 :“ 215
LK3

1
~~f ~~r0,sp1´1{K1 q

K2ν
2
sp1´ 1{K1q

(163),p149q
ă 216 LK

3
1

sK2ν
2

´2nK1

s

¯n

p149q

ď 213nn
L

sn`1

1

K2ν´n´3
2

p152q

ď e´s{2 ď 1 , (166)

showing that (73) holds and also that s̄ ù sp1´ 1{K1q{2 in (80). Then, by (79) and
(163), one has:

sup
D0
r0{2

|go
´ xfy| ď ϑ0

´2nK1

s

¯n p149q

ď

´nK2

s

¯n

ϑ0

(166),p151q

ď ϑ̄ ,

~~f o
››~~D0,r0{2,sp1´1{K1 q{2

ď 2e´pK1´2qsp1´1{K1 q{2
´2nK1

s

¯n

ď 2
´2nK1

s

¯n

e´pK1´3qs{2 ,

from which (155) follows.

(ii): By Remark 6.2–(ii), the definition of rk in (150) and (25), the domain D1,k
rk

is

p2αK2{|k| ´ rkLK2 , K2q “ pαK2{|k|, K2q

31Recall that the notation “a ù b” means “with a replaced by b”.

39



non–resonant modulo Zk.
Using again (163), we can apply Proposition 4.1 with

f ù εf , D ù D1,k , r ù rk , α ù αK2{|k| ,

K ù K2 , s ù sp1´ 1{K2q , Λ ù Zk , (167)

and (recall (73) and that |k| ď K1)

ϑ› ù ϑk :“ 211
LK2

2
|k|2ε~~f ~~rk,sp1´1{K2 q

α2sp1´ 1{K2q

p149q,p163q

ď 2n`10nn
L

sn`1

1

K2ν´n´4
2

p152q

ď e´s{2 ď 1 , (168)

showing that (73) holds and also that s̄ ù sp1 ´ 1{K2q{2 in (80). From (79), (168)
and (163) there follows (159); indeed

~~gk ´ p
kZf ~~D1,k,rk{2,s› ď

1

K2

´2nK2

s

¯n

ϑk
(168),p151q

ď ϑ ,

~~fk››~~D1,k,rk{2,sp1´1{K2 q{2
ď 2e´pK2´2qsp1´1{K2 q{2

´2nK2

s

¯n

ď 2
´2nK2

s

¯n

e´pK2´3qs{2 ,

7 Proofs of main results

Under the above standing hypotheses, apart from a finite number of simple resonances
the effective potential Gk at simple resonances is close to a (shifted) cosine:

Proposition 7.1 Let the assumptions of Theorem 6.1 hold, let k P Gn1,K1
and let Gk

be as in (160), (158). Then, if
|k|1 ą 3{s , (169)

one has that
~~Gk

´ T1F
k~~D1,k,rk{2,2 ď ϑ es`5e´|k|1s ` 28 e´2|k|1s . (170)

Proof Observe that by definition of32 TN and TKN ,

Gk
´ T1F

k
“ T1G

k
´ T1F

k
` TK1 G

k . (171)

32Recall (59).
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Now, since 3{s ă |k|1 ď K1 ď K2{3,

sup
D1,k
rk{2

|Gk
˘1
´ F k

˘1
|
p162q

ď ϑe´|k|1s›
p156q

ď ϑe´|k|1sp1´2{K2 q ď ϑese´|k|1s

so that

~~T1G
k
´ T1F

k~~D1,k,rk{2,2 “ |G
k
1 ´ F

k
1 |e

2
` |Gk

´1 ´ F
k
´1|e

2
ă 2e2esϑe´|k|1s . (172)

Next, recalling (160), we have that

~~TK1 G
k~~D1,k,rk{2,2 “

ÿ

|j|ě2
jPZ

|gjk|e
2|j|
ď

ÿ

|j|ě2

|fjk|e
2|j|
`

ÿ

|j|ě2

|gjk ´ fjk|e
2|j| . (173)

Let us estimate the two sums separately. Since }f}s “ 1, |f`| ď e´|`|1s so that |fjk| ď
e´|j||k|1s and:

ÿ

|j|ě2

|fjk|e
2|j|
ď

ÿ

|j|ě2

e´|j||k|1s e2|j|
“ 2

e´2p|k|1s´2q

1´ e´p|k|1s´2q
ď 4e4e´2p|k|1sq , (174)

where in the last inequality we used the assumption |k|1s ą 3 ą 2` log 2.
Then (again, because |k|1s ą 3), we see that

ÿ

|j|ě2

|gjk ´ fjk|e
2|j|

“
ÿ

|j|ě2

|gjk ´ fjk|e
|j||k|1s› e´|j||k|1s›`2|j|

p162q

ď sup
jě2

´

e´jp|k|1s›´2q
¯

ϑ ď e´2p|k|1s›´2q ϑ

ď e4e´2|k|1sp1´2{K2 qϑ ď ϑ e2s`4e´2|k|1s . (175)

Putting (174) and (175) together, by (171) and (169), (170) follows.

Proposition 7.2 Let the assumptions of Theorem 6.1 hold; let s ą 0, 0 ă δ ď 1 and
fix any 0 ă γ ď 1. Assume (38) and (34). If k P Gn1,K1

satisfies

|k|1 ą τopδ; γq , (176)

(with τopδ; γq defined in (37)) then,

~~Gk
´ T1F

k~~D1,k,rk{2,2 ď γ δk , (177)

where
δk :“ δ|k|´n

1
e´|k|1s . (178)
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Remark 7.1 Conditions (38) and (176) are stronger than the ones on ν in (149), (152)
and (169). In particular the assumptions of Proposition 7.1 hold.

Proof of Proposition 7.2 As mentioned in the above remark, Proposition 7.1 holds.
Let us estimate the two terms in (170) separately. Recalling the definition of ϑ in (151)
(and that |k|1 ď K1 ď K2{3), we find:

ϑ es`5e´|k|1s
p151q
“ es`5e´|k|1s22n`10n2n L

s2n`1

1

K2ν´2n´3
2

“ es`522n`11n2n L

s2n`1

|k|n
1

K2ν´2n´3
2

1

γδ

γδk
2

ď es`52n`11n2n L

s2n`1

1

K2ν´3n´3
2

1

γδ

γδk
2

p38q

ď
γδk
2
. (179)

As for the second term in (170), we use the following calculus lemma, whose elementary
check is left to the reader:

Lemma 7.1 If a ą 2 log 2, 0 ă ε ă e´a
2{2 and t ą 4 log ε´1, then e´tta ă ε.

Indeed, by the lemma (with a ù n, t ù s|k|1 and ε ù snγδ{29) and in view of (34)
and (176), one has

28e´2|k|1s “ ps|k|1q
ne´|k|1s

29

snγδ
¨
γδk
2
ă
γδk
2

. (180)

The bounds (179) and (180) prove the claim.

The quantity δk defined in (178) is a “Fourier–measure” for the non–degeneracy of
analytic potentials f holomorphic on Tns , since such potential will have, in general,
Fourier coefficients fk „ e´s|k|1 .

7.1 Positional potentials: proof of Theorem 2.1

In order to conclude the proof of Theorem 2.1 we need the following
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Lemma 7.2 Let s ą 0, 0 ă δ ď 1 and fix any 0 ă γ ď 1. Let the assumptions of
Theorem 6.1 hold; assume (38), (34) and that the positional potential f P Hs,τopδq with
the tail function τo defined in (176). Then, for τopδ; γq ď |k|1 ď K1 ď K2{3, one has

sup
yPD1,k

rk{2

~~Gkpy, ¨q ´ T1F
kp¨q~~2

|fk|
ď γ (181)

and
1

|fk|
~~fk››~~D1,k,rk{2,sp1´1{K2 q{2

ď
210nn3n

s3nδ
e´K2s{8 . (182)

Proof Since Proposition 7.2 holds, by (177) and since f P Hs,τopδq we get (181). By
(159) we get

1

|fk|
~~fk››~~D1,k,rk{2,sp1´1{K2 q{2

ă
|k|n

1
e|k|1s

δ
2
´2nK2

s

¯n

e´pK2´3qs{2

ď
2n`1nn

snδ
Kn

1
Kn

2
e´pK2´2K1 qs{2

(149)

ď
nn

snδ
K2n

2
e´K2s{6 .

Then using that33

K2n
2
e´K2s{24

ď

ˆ

48n

s e

˙2n

ď
210nn2n

sn
,

we prove (182).

Recalling the definition of TN given in (59), we have that

T1F
k
pθq “ fke

iθ
` f´ke

´iθ
“ 2|fk| cospθ ` θpkqq

for a suitable constant θpkq. Setting

Gkpy, θq :“
Gkpy, θq ´ cospθ ` θpkqq

2|fk|
,

fkpy, xq :“
fk››py, θq

2|fk|
,

we get (42). Finally Theorem 2.1 follows from Lemma 7.2, in particular (43) and (44)
follow from (181) and (182), respectively.

33Using that for α ą 0 we have maxxą0 x
αe´x “ pα{eqα.
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7.2 The general case (y-dependent potentials)

For k P Znzt0u let bk ą 0 such that

ÿ

k‰0

bk ă 8 .

For Z Ď Znzt0u we set

bZ :“
ÿ

kPZ
bk .

For definiteness we will fix
bk :“ |k|´

n
2 ,

but every other possible choice is fine.

Proposition 7.3 Let r, µ ą 0 and Z Ď Znzt0u. For any k P Z let ϕkpyq be holomor-
phic functions on the complex ball ty P Cn : |y| ă ru with

sup
|y|ăr

|ϕkpyq| ď 1 , and |ϕkp0q| ě δ̂k ą 0 .

Then, for every y P Rn with |y| ă r{2e, up, at most, to a set of measure34

1

2
meas n´1pS

n´1
qbZ

´ r

2e

¯n

µ ,

we have

|ϕkpyq| ě δ̂k

ˆ

µbk
30e3

˙log 1{δ̂k

, @ k P Z . (183)

The proof relies on the following classical result in function theory (see, e.g., [10]):

Lemma 7.3 (Cartan’s Estimate) Assume that f : C Ñ C is holomorphic and
bounded by M ą 0 on the complex ball |z| ă 2eR. If |fp0q| “ 1 then, for 0 ă η ă 1

|fpzq| ě
´ η

15e3

¯logM

(184)

for any z P C, |z| ă R up to a set of balls of radii rj satisfying

ÿ

j

rj ď ηR .

34As usual Sn´1 :“ ty P Rn| |y| “ 1u.
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Remark 7.2 Note that (184) holds in the complex ball |z| ă R up to a set of measure
smaller than πη2R2. Moreover it holds on the real interval p´R,Rq up to a set of (real)
measure 2ηR.

Proof of Proposition 7.3 Fix k P Z. Fix ξ “ pξ1, . . . , ξnq P Rn with |ξ| “ 1 and
ξ1 ě 0. We apply Cartan’s estimates simultaneously for every k P Z with

fpzq ù
ϕkpzξq

ϕkp0q
, R ù

r

2e
, M ù

1

δ̂k
, η ù

µ

2
bk.

By (184) estimate (183) for the fixed k holds on the segment tyξ : y P p´r{2e, r{2equ,
up, at most, to a set of measure35

µ

2e
bkr .

Integrating on the half-sphere |ξ| “ 1, ξ1 ě 0, we get that (183) for the fixed k holds
on the ball |y| ă r{2e up, at most, to a set of measure

1

2
meas n´1pS

n´1
q

´ r

2e

¯n

µbk .

Summing on all k P Z we get that (183) holds for all k P Z.

Fix 0 ă µ, γ ă 1. Define the following tail function

τ˚pδ; γ, µq :“ (185)

26n2

s̃
max

"

log3 26n2

s̃
,

ˆ

log
30e3

δµ

˙

log2

ˆ

4

s̃
log

30e3

δµ

˙

, log
30e3

µ
log

1

δ
, log

210

δγ

*

,

where
s̃ :“ mints, 1u .

Fix y0 P D and assume that
fpy0, ¨q P Hs,τ˚pδq . (186)

Set
ϕkpyq :“ fkpyqe

|k|1s . (187)

35Recall Remark 7.2.
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We have that

sup
yPCn, |y´y0|ăr

|ϕkpyq|
(147)

ď 1 , |ϕkpy0q| ě δ̂k :“ δ{|k|n
1
, @ k P Gn1 , |k|1 ą τ˚pδq .

(188)
Let µ ą 0. Then by Proposition36 7.3 there exists a set37

D Ď Br{2epy0q satisfying meas pBr{2epy0qzDq ď
b

2
meas n´1pS

n´1
q

´ r

2e

¯n

µ , (189)

with
b :“

ÿ

|k|1ąτ˚pδ;γ,µq

|k|´n{2
1

ď
ÿ

k‰0

|k|´n{2
1

,

such that

|fkpyq|e
|k|1s “ |ϕkpyq| ě δkpµq :“ δ̂k

˜

µ

30e3|k|
n{2
1

¸log 1{δ̂k

,

@ y P D , k P Gn1 , |k|1 ą τ˚pδq . (190)

Theorem 7.1 Let the assumption of Theorem 6.1 hold. Fix 0 ă µ, δ ă 1{e8 and
0 ă γ ă 1. Assume that for some y0 P D we have fpy0, ¨q P Hs,τ˚pδq. Set

µ̃ :“ µ{30e3 , ñ :“ 2ν ´ 2n´ 3 , κ :“ 22n`10n2n L

s2n`1
. (191)

Assume that

K2 ě max

#

K
2n2

ñ
logK1

1
, K

9
ñ

log 1
δµ̃

1 , e
4
ñ

log 1
δ

log 1
µ̃ ,

ˆ

4es`5κ

δγ

˙
4
ñ

,
25

s
log2 1

δµ
,

214n4

s2

+

.

(192)
If k P Gn1,K1

with |k|1 ą τ˚pδ; γ, µq then

sup
yPpD1,kXDqr̂k

~~Gkpy, ¨q ´ T1F
kpy, ¨q~~2

|fkpyq|
ď γ , (193)

sup
yPpD1,kXDqr̂k

~~fk››py, ¨q~~sp1´1{K2 q{2

|fkpyq|
ă

4e3s{2nn

δsn
e´K2s{8 , (194)

36With ϕkpyq ù ϕkpy ` y0q.
37Both D and Br{2epy0q are real sets.
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where D was defined in (189) and38

r̂k :“
1

2
mintrk , δkpµqu . (195)

Proof First we note that by (190), (188), (195) and Cauchy estimates

|ϕkpyq| ě
1

2
δkpµq , @ y P Dr̂k , k P Gn1 , |k|1 ą τ˚pδq . (196)

By (170), (187) and (196) we have that for every y P D , k P Gn1,K1

~~Gkpy, ¨q ´ T1F
kpy, ¨q~~2

|fkpyq|
ď

2es`5 ϑ ` 29 e´|k|1s

δkpµq
. (197)

Then, in order to prove (193), it is enough to show that

4es`5 ϑ

δkpµq
ď γ ,

210 e´|k|1s

δkpµq
ď γ . (198)

Let us consider the first inequality in (198). Since by (191) and recalling (151) we have
ϑ “ κ{K ñ

2
, then, recalling (188) and (190), for |k|1 ď K1

4es`5 ϑ

δkpµq
ď

4es`5κKn
1

δK ñ
2

˜

Kn{2
1

µ̃

¸logKn
1
δ´1

“
4es`5κ

δ
eA ,

where

A :“

ˆ

n

2
logK1 ` log

1

µ̃

˙ˆ

n logK1 ` log
1

δ

˙

` n logK1 ´ ñ logK2 .

Since

A ď ´
ñ

4
logK2

by (192), we obtain that

4es`5 ϑ

δkpµq
ď

4es`5κ

δ
e´

ñ
4

logK2

(192)

ď γ ,

38Note that by (164) r̂k ď r{2.
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proving the first estimate in (198).
Regarding the second inequality in (198) we have

210 e´|k|1s

δkpµq
“

210

δ
eB ,

with

B :“

ˆ

n

2
log |k|1 ` log

1

µ̃

˙ˆ

n log |k|1 ` log
1

δ

˙

` n log |k|1 ´ |k|1s .

We note that

B ď ´
1

4
|k|1s

by (185), indeed39

2

s
n2
ď

|k|1
log2

|k|1
,

4n

s

ˆ

1

2
log

1

δ
` log

1

µ̃
` 1

˙

ď
|k|1

log |k|1
.

Then
210

δ
e´

1
4
|k|1s

(185)

ď γ .

This proves (198) and, therefore, completes the proof of (193).
Let us now show (194). By (159) and (196) we get

sup
yPpD1,kXDqr̂k

~~fk››py, ¨q~~sp1´1{K2 q{2

|fkpyq|
ă

2e|k|1s

δkpµq
2
´2nK2

s

¯n

e´pK2´3qs{2

(190)
“

2e|k|1s|k|n
1

δ

˜

30e3|k|n{2
1

µ

¸logp|k|n
1
{δq

2
´2nK2

s

¯n

e´pK2´3qs{2

(149)

ď
4e3s{2nn

δsn

˜

30e3Kn{2
2

3n{2µ

¸logpKn
2
{3nδq

K2n
2
e´K2s{6

“
4e3s{2nn

δsn
e´K2s{8e´Q

where

Q :“
1

8
K2s´

ˆ

n log
K2

3
` log

1

δ

˙ˆ

n

2
log

K2

3
` log

1

µ
` log 30` 3

˙

´ 2n logK2 .

39 Note that x{ log x ě α if x ě α log2 α and α ě 5; analogously x{ log2 x ě α if x ě α log3 α and
α ě 26.
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Then (194) follows if we prove that Q ě 0. Recalling (149) we get40

Q ě
1

8
K2s´ 8n2 log2K2 ` 2 log2 1

δµ
ě 0

by (192).

We rewrite Theorem 7.1 in the fashion of Theorem 2.1.

Theorem 7.2 Let n ě 2, 0 ă s ď 1. Fix 0 ă µ, δ ă 1{e8 and 0 ă γ ă 1. Consider a
Hamilonian Hεpy, xq “ hpyq`εfy, pxq as in (1) such that h satisfies the non–degeneracy
Assumption A (§ 2) and f has norm one: }f}D,r,s “ 1. Assume that for some y0 P D
we have fpy0, ¨q P Hs,τ˚pδq, with τ˚ “ τ˚pδ; γ, µq defined in (185). Let K2 ě 3K1 ě 6
with K1 satisfying (192) and (152). Let r̂k as in (195) and D as in (189) . Finally
assume that ε satisfies (40).

Then, for any k P Gn1,K1
with τ˚pδ; γ, µq ď |k|1 ď K1, there exists a symplectic change

of variables Ψk as in (41) such that the following holds.

For every y P pD1,k X Dqr̂k there exist a phase θpkqpyq and functions Gkpy, ¨q P B1
2 and

fkpy, ¨q P Bnsp1´1{K2 q
2 satisfying

Hε ˝Ψk “: hpyq ` 2ε |fkpyq|
´

cospk ¨ x` θpkqpyqq ` Gkpy, k ¨ xq ` fkpy, xq
¯

(199)

with
sup

yPpD1,kXDqr̂k

~~Gkpy, ¨q~~2 ď γ (200)

and

sup
yPpD1,kXDqr̂k

~~fk~~sp1´1{K2 q{2
ď

4e3s{2nn

δsn
e´K2s{8 . (201)

Proof It directly follows from Theorem 7.1. We only note that θpkqpyq is defined such
that

|fkpyq| cospk ¨ x` θpkqpyqq “ T1F
k
py, xq ,

while

Gkpy, xq :“
Gkpy, ¨q ´ T1F

kpy, ¨q

|fkpyq|
,

fkpy, xq :“
fk››py, xq

|fkpyq|
,

40Using that log2 x ď
?
x for x ě 213.
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Note that θpkqpyq, Gkpy, xq and fkpy, xq are not analytic in y (due to the presence of
|fkpyq|), but, obviously, Hε ˝Ψk is real–analytic in x and y.

Acknowledgments We are grateful to V. Kaloshin and A. Sorrentino for useful dis-
cussions.

A An elementary result in linear algebra

Lemma A.1 Given k P Zn, k ‰ 0 there exists a matrix A “ pAijq1ďi,jďn with integer
entries such that Anj “ kj @ 1 ď j ď n, detA “ d :“ gcdpk1, . . . , knq, and |A|

8
“ |k|

8
.

Proof The argument is by induction over n. For n “ 1 the lemma is obviously true.
For n “ 2, it follows at once from41

Bezout’s Lemma Given two integers a and b not both zero, there exist two integers x
and y such that ax`by “ d :“ gcdpa, bq, and such that maxt|x|, |y|u ď maxt|a|{d, |b|{du.

Indeed, if x and y are as in Bezout’s Lemma with a “ k1 and b “ k2 one can take

A “

ˆ

y ´x
k1 k2

˙

. Now, assume, by induction for n ě 3 that the claim holds true for

pn ´ 1q and let us prove it for n. Let k̄ “ pk1, ..., kn´1q and d̄ “ gcdpk1, ..., kn´1q

and notice that gcdpd̄, knq “ d. By the inductive assumption, there exists a matrix

Ā “

ˆ

Ã
k̄

˙

P Matpn´1qˆpn´1qpZq with Ã P Matpn´2qˆpn´1qpZq, such that det Ā “ d̄ and

|Ā|
8
“ |k̄|

8
. Now, let x and y be as in Bezout’s Lemma with a “ d̄, and b “ kn. We

claim that A can be defined as follows:

A “

¨

˚

˚

˚

˚

˚

˝

k̃ x̃

Ā

¨

˚

˚

˚

˝

0
...
0
kn

˛

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‚

, k̃ “ p´1qny
k̄

d̄
, x̃ :“ p´1qn`1x . (202)

41The first statement in this formulation of Bezout’s Lemma is well known and it can be found in
any textbook on elementary number theory; the estimates on x and y are easily deduced from the
well known fact that given a solution x0 and y0 of the equation ax` by “ d, all other solutions have
the form x “ x0 ` kpb{dq and y “ y0 ´ kpa{dq with k P Z and by choosing k so as to minimize |x|.
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First, observe that since d̄ divides kj for j ď pn ´ 1q, k̃ P Zn´1. Then, expanding the
determinant of A from last column, we get

detA “ p´1qn`1x̃ det Ā` kn det

ˆ

k̃

Ã

˙

“ p´1qn`1x̃ d̄` knp´1qn´2 det

ˆ

Ã

k̃

˙

“ p´1qn`1x̃ d̄` knp´1qn´2
p´1qn

y

d̄
det Ā

“ xd̄` kny “ d .

Finally, by Bezout’s Lemma, we have that maxt|x|, |y|u ď maxtd̄{d, |kn|{du, so that

|k̃|
8
“ |y|

|k̄|
8

d̄
ď
|k̄|

8

d
ď |k|

8
, |x̃| “ |x| ď

|kn|

d
ď |k|

8
,

which, together with |Ā|
8
“ |k̄|

8
, shows that |A|

8
“ |k|

8
.
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[15] J. Pöschel, Nekhoroshev estimates for quasi–convex Hamiltonian systems. Math. Z. 213, pag.
187 (1993).

52


	Introduction
	Statements
	Functional setting and generic holomorphic classes
	Analytic function spaces
	Generic properties of periodic holomorphic classes

	A normal form lemma with ``small'' analyticity loss
	Geometry of resonances
	Averaging Theory
	Proofs of main results
	Positional potentials: proof of Theorem 2.1
	The general case (y-dependent potentials)

	An elementary result in linear algebra

