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Abstract

Birkhoff normal forms for the (secular) planetary problem are investigated. Exis-
tence and uniqueness is discussed and it is shown the classical Poincaré variables and
the RPS—variables (introduced in [6]), after a trivial lift, lead to the same Birkhoff
normal form; as a corollary the Birkhoff normal form (in Poincaré variables) is degen-
erate at all orders (answering a question of M. Herman). Non-degenerate Birkhoff
normal forms for partially and totally reduced cases are provided and an application
to long—time stability of secular action variables (eccentricities and inclinations) is
discussed.
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1 Introduction

Let us consider the planetary (1 + n)-body problem, i.e., the motions of 1 + n
point—masses, interacting only through gravity, with one body (“the Sun”) having
a much larger mass than the other ones (“the planets”).

A fundamental feature of this Hamiltonian system (for negative decoupled energies)
is the separation between fast degrees of freedom, roughly describing the relative
distances of the planets, and the slow (or “secular”) degrees of freedom, describing
the relative inclinations and eccentricities (of the osculating Keplerian ellipses). A
second remarkable feature of the planetary system is that the secular Hamiltonian
has (in suitable “Cartesian variables”) an elliptic equilibrium around zero inclina-
tions and eccentricities. Birkhoff normal form (hereafter “BNF”) theory' comes,
therefore, naturally in. Such theory yields, in particular, information on the secu-
lar frequencies (first order Birkhoff invariants) and on the “torsion” (or “twist”) of
the secular variables (the determinant of the second order Birkhoff invariants). In-
deed, secular Birkhoff invariants are intimately related to the existence of maximal
and lower dimensional KAM tori?, or, as we will show below (§ 6), one can infer
long-time stability for the “secular actions” (essentially, eccentricities and mutual
inclinations).

A natural question is therefore the construction of BNFs for the secular planetary
Hamiltonian.

Already Arnold in 1963 realized that this is not a straightforward task in view of
secular resonances, i.e., rational relations among the first order Birkhoff invariants

1See [12] for generalities and Appendix A below for the theory for rotational invariant systems.
2Compare [2], [16], [10], [7] and [6] for maximal tori and [9], [3] and [6] for lower dimensional
elliptic tori.



holding identically on the phase space. Incidentally, Arnold was aware of the so—
called rotational resonance (the vanishing of one of the “vertical” first order Bikhoff
invariants) but did not realize the presence of a second resonance of order 2n — 1
discovered by M. Herman (compare [10] and [1]). These resonances, apart from
being an obstacle for the construction of BNFs, constituted also a problem for the
application of KAM theory. This problem was overcome, in full generality, only in
2004 [10] using a weaker KAM theory involving only information on the first order
Birkhoff invariants, waving the check of Kolmogorov’s non—degeneracy (related to
full torsion®); for a short description of the main ideas involved, see [6, Remark
11.1, (iii)].

In particular the question of the torsion of the secular Hamiltonian remained open.
M. Herman investigated such question thoroughly using Poincaré variables [11] but
declared not to know if some of the second order Birkhoff invariants was zero even
in the n = 2 case (compare the Remark towards the end of p. 24 in [11]).

A different point of view is taken up in [6], where a new set of variables, called RPS
(“Regularized Planetary Symplectic”) variables, is introduced in order to study
the symplectic structure of the phase space of the planetary system. Such variables
are based on Deprit’s action—angles variables ([8], [5]), which may be used for a
symplectic reduction lowering by one the number of degrees of freedom. A further
reduction is possible (at the expense of introducing a new singularity) leading to a
totally reduced phase space, compare [6, §9] and § 5.1 below. On the reduced phase
spaces, one can construct BNFs ([6, Sect 7 and 9]; § 2, § 5.1 below). Following such
strategy one can show that the matrix of second order Birkhoff invariants (for the
reduced system) is non—degenerate and prove full torsion. In particular, it is then
possible to construct a large measure set of maximal non—degenerate KAM tori ([6,
§11]).

In this paper we consider and clarify various aspects of BNFs for the planetary
system. In particular we analyze the connection between the BNF' in the classical
setting (Poincaré variables) and in the new setting of [6]. It turns out that after lift-
ing in a trivial way the RPS variables to the full dimensional phase space, such vari-
ables and the Poincaré variables are related in a very simple way, namely, through
a symplectic map which leaves the action variables A (conjugated to the mean
anomalies) fixed and so that the correspondence between the respective Cartesian
variables is close to the identity map (and independent of the fast angles); compare
Theorem 3.1 below. Since, up to such class of symplectic maps, the BNF is unique,
one sees that the BNF in Poincaré variables is degenerate at all orders, answering
negatively the question of M. Herman; see Theorem 2.1 below. We mention also
that the construction of BNF for rotational invariant Hamiltonian (such as the sec-
ular planetary Hamiltonian) is simpler than the standard construction: in fact, one
needs to assume non-resonance of the first order Birkhoff invariant for those Tay-

3That is, the non-vanishing of the determinant of the matrix formed by the second order
Birkhoff invariants.



lor modes k # 0 such that ) . k; = 0 (and not just k& # 0); compare Appendix A.
By this remark one sees that the secular resonances (both the rotational and the
Herman resonance) do not really affect the construction of BNF's.

In § 5.1 we discuss the construction, up to any order, of the BNFs in the totally
reduced setting (generalizing Proposition 10.1 in [6]) and, for completeness, we
consider (§ 5.2) the planar planetary problem (in which case the Poincaré and the
RPS variables coincide) and, after introducing a (total) symplectic reduction, we
discuss BNF's in such reduced setting, comparing, in particular, with the detailed
analysis in [11].

Finally, in § 6, we use the results of § 5.1 in order to prove that, in suitable open
non-resonant phase space regions of relatively large Liouville measure, the eccen-
tricities and mutual inclinations remain small and close to their initial values for
times which are proportional to any prefixed inverse power of the distance from the
equilibrium point (zero inclinations and zero eccentricities): such result is somewhat
complementary to NehoroSev’s original result [13], where exponential stability of
the semi major axes was estabilished, but no information on possible large (order
one) variation of the secular action was given.

2 Planetary BNF

After the symplectic reduction of the linear momentum, the (1 + n)-body problem

with masses mq, umy, «--, pm, (0 < p < 1) is governed by the 3n—degrees of
freedom Hamiltonian
o= 3 (G- ) e 2 (S
1<i<n 1<i<j<n
=t hpi A+ g S (2.1)

where () represent the difference between the position of the i*® planet and the
position of the Sun, y® are the associated symplectic momenta rescaled by u,
Ty = cicsriy; and |z| == (- z)Y/? denote, respectively, the standard inner
product in R? and the Euclidean norm;

Moy

M, = 0 My = mo + um; . 2.2
mo + pm; orH (22)

The phase space is the “collisionless” domain of R3" x R3"

{(y,x) = ((y(l),...,y(”)), (x(l),...,x(”))) st. 0#£2® £20) v 743} , (2.3)

endowed with the standard form w = Y7 dy® A dx® = 377 Z;’:l dyji) A dxéo
(

where yji), :r;g-i) denote the j* component of y®, (.



When g = 0, the Hamiltonian (2.1) is integrable: its unperturbed limiting value
hpi is the sum of the Hamiltonians

B0 _ D2 Mim,

_ (1) ..(2) 3 3 ._ 3 3

corresponding to uncoupled Two-Body Newtonian interactions.

In Poincaré coordinates — which will be reviewed in the next section — the Hamil-
tonian (2.1) takes the form

He (AN 2) = he(A) + pfo(A N 2) , z:=(M,p,§&,q) € R (2.5)

where (A, ) € R™ x T™; the “Kepler” unperturbed term hy, coming from hyy in
(2.1), becomes

n n

; m; M7
b= WA == (2.6)

i=1 =1

Because of rotation (with respect the k®-axis) and reflection (with respect to the
coordinate planes) invariance of the Hamiltonian (2.1), the perturbation f; in (2.5)
satisfies well known symmetry relations called d’Alembert rules, see (3.26)—(3.31)
below. By such symmetries, in particular, the averaged perturbation

;W(Av Z) =

S o, AN 2)A (2.7)

is even around the origin z = 0 and its expansion in powers of z has the form*

2

P+
2

v = Co(A) + Qn(A) + Qu(A) +0(|2") (2.8)
where Qy, Q, are suitable quadratic forms. The explicit expression of such qua-

dratic forms can be found, e.g., in [10, (36), (37)] (revised version).

By such expansion, the (secular) origin z = 0 is an elliptic equilibrium for f2’ and
corresponds to co—planar and co—circular motions. It is therefore natural to put
(2.8) into BNF in a small neighborhood of the secular origin; see, e.g., [12] for
general information on BNFs and Appendix A for Birkhoff theory for rotational
invariant Hamiltonian systems.

As a preliminary step, one can diagonalize (2.8), i.e., find a symplectic transfor-
mation

By (MAZ) € MO = (A7) € MO 1= B, (AA0) 29)
(the domain M will be specified in (2.15) below) defined by A — A and

A=A+¢(A,z), 1= pu(MA, &= pr(A)E, p=p,(A)D, a=p(N)d, (2.10)

40 - u? denotes the 2—indices contraction Zij Q,jusu; (Qij, u; denoting the entries of Q, u).

5



with pp, p, € SO(n) diagonalizing Qj, Q,. In this way, (2.8) takes the form

Ho(A A, Z) = Hp o Pp = hi(A) + nf (AN Z) (2.11)

with the average over A of f* given by

n ~2 | 72 no o~ | 2
rav ~ 1+E'z 7,+ i ~ ~ ~ T o~ o~
(0,7 = Co(h) + Y o2 S GRS oY), 7= (,8,5, )
i=1 i=1

(2.12)

The 2n real vector Q := (0,5) = (01, , 00,61, ,S,) is formed by the eigenvalues
of the matrices Qj and Q, in (2.8) and are called the first order Birkhoff invariants.

It turns out that such invariants satisfy identically the following two secular reso-

nances
n

D (oi+a)=0, =0 (2.13)
i=1
Such resonances strongly violate the usual non—degeneracy assumptions needed for
the direct construction of BNFs.

The first resonance, discovered by M. Herman, is still quite mysterious (see, how-
ever, [1]), while the second resonance is related to the existence of two non—
commuting integrals, given by the horizontal components C; and C, of the total
angular momentum C := > | x x y® of the system (compare [2]).

Actually, the effect of rotation invariance is deeper: the vanishing of the eigenvalue
G, is just “the first order” of a “rotational” proper degeneracy, as explained in the
following theorem, which will be proved in § 4.

Let w := (U,U) = (ulu'“ y Uon, V1, * 7U2n)7 w o= (uh”' y Uan—1,V1, """ 7,021171)
and
n 12n—1
G(A,w) = A — = u? +v?) . 2.14
()= 3= 5 S .14

Theorem 2.1 For any s € N, there exists € > 0, an open set A C {a; < --- < a,}
such that, if

6n .__ n 4n—2 2

Myt = AXT" x B."° x B} /& ,

one can construct a symplectic map ( “Birkhoff transformation”),

Oy (A Lw) € MY — (AN Z) € MY = @y(MY") (2.15)

with the following properties. The pull-back of the Hamiltonian (2.11) takes the
form

Hy(A, L, w) := Hp 0 &y = hy(A) + pfu(A, 1, w) (2.16)
where the average f2(A,w) := [, fedl is in BNF of order s:
av 2542 u’L2 + Ui2
(A w)=Co+ Q-1+ Py(r) + O(Jw|*™) w:= (u,v) r;:= 5 (2.17)



P, being homogeneous polynomial in r of order s, parameterized by A. Such normal
form is unique up to symplectic transformations ® which leave the A’s fixed and
with the z—projection independent of | and close to the identity in w, i.e.,

IL® = w+ O(|w]?) . (2.18)

Furthermore, the normal form (2.16)—(2.17) is “infinitely degenerate”, in the sense
that Hy does not depend on (tgn, Vop). In particular, there exists a unique polyno-
mial P, : R*"™1 — R (parameterized by A) such that

P.(r) =Py(F) where 7:= (ry, - ,Ton_1) . (2.19)

Remark 2.1 (i) Notice that the w-projection of M5 corresponds to a neigh-
borhood of w = 0, which is small only in the 4n — 2 components of w, while it
is large (maximal) in the remaining 2 components (compare Appendix B for the
natural radius 2v/G in the variables (U2n, q2n))- Indeed, to construct the normal
form, by rotation invariance, it is not necessary to assume that all inclinations are
small, but one can take the mutual inclinations to be small. This corresponds to
consider 2n — 1 secular degrees of freedom (roughly, corresponding to n couples of
eccentricities—perihelia and n — 1 couples of inclinations—nodes) instead of 2n. The
overall inclination-node of the system (corresponding to the remaining 2 secular
variables) is allowed to vary globally.

(ii) Theorem 2.1 depends strongly upon the rotational invariance of the Hamilto-
nian (2.1), that is, on the fact that such Hamiltonian commutes with the three
components of the angular momentum C. To exploit explicitly such invariance, we
shall use a set of symplectic variables (“RPS variables”), introduced in [6] (in order
to describe the symplectic structure of the planetary N-body problem and to check
KAM non-degeneracies).

(iii) The rRPS variables are obtained as a symplectic regularization of a set of action—
angle variables, introduced by Deprit in 1983 ([8], [5]), which generalize to an ar-
bitrary number n of planets the classical Jacobi’s reduction of the nodes (n = 2).
The remarkable property of the Deprit’s variables is that there appear a conjugate
couple (C3 and ¢ below) plus an action variable G which are integrals. Thus, the
conjugate integrals are also cyclic and are responsible for the proper degeneracy
of the planetary Hamiltonian. Furthermore, the RPS variables have a cyclic cou-
ple ((pn, gn) below), which foliates the phase space into symplectic leaves (the sets
M?;{,;;) in (3.14) below), on which the planetary Hamiltonian keeps the same form.
So, the construction of the “non degenerate part” of the normal form can be made
up to any order (and is the same) on each leaf [6]. In particular, the even order
of the remainder in (2.17) is due to invariance by rotations around the C—axis of
the system. Finally, we prove that such normal form can be uniquely lifted to the
degenerate normal form (2.17)-(2.19) on the phase space M in (2.9).

The proof is based on the remarkable link between RPS and Poincaré variables,
described in the following section (see Theorem 3.1).



3 Poincaré and RPS variables

In this section we first recall the definitions of the Poincaré and RPS variables® and
then discuss how they are related. Recall that the Poincaré variables have been
introduced to regularize around zero eccentricities and inclinations the Delaunay
action—angle variables. Analogously, the RPS variables have been introduced to reg-
ularize around zero eccentricities and inclinations the Deprit action—angle variables.

. Fix 2n positive “mass parameters®” M;, m; and consider the two-body Hamil-
tonians h;(y®, 2) = hgl)t as in‘(2.4). Assume that h;(y@, ) < 0 so that
the Hamiltonian flow ¢j, (y@, ™) evolves on a Keplerian ellipse ¢; and as-
sume that the eccentricity e; € (0,1). Let a;, P; denote, respectively, the semi

major axis and the perihelion of ¢;. Let C® denote the i angular momentum
Cl) = (0 x 4@,

- To define Delaunay variables, one needs the “Delaunay nodes”
7=k xCO 1<i<n, (3.1)
where (K, k®) k®)) is the standard orthonormal basis in R

- To define Deprit variables, consider the “partial angular momenta”

%

) . Zc(j) : g — Zc(a’) =C; (3.2)
j=1

j=1
(notice that C is the total angular momentum of the system) and define
the “Deprit nodes”

Vigq = S0 x Cl+D) 1<i<n-1

V] = 1 (3.3)

Upi1 = kB x C =7 .

For u,v € R? lying in the plane orthogonal to a vector w, let a,(u,v) denote
the positively oriented angle (mod 27) between u and v (orientation follows
the “right hand rule”).

« The classical Delaunay action—angle variables (A, T, 0, ¢, g, 0) are defined as

{ A = Mi/mja; { I :=|C®

¢; := mean anomaly of () on ¢;

°For full details, see [10], and references therein, and [6].
6The RPS variables will depend upon these mass parameters, which, in the planetary case, will
obviously coincide with (2.2).



« The Deprit action—angle variables (A, ', ¥, ¢, ~,1) are defined as follows. The
variables A, I" and ¢ are in common with the Delaunay variables (3.4), while

N, IS 1<i<n-—1
%= oo (i ) V= { Cy:=C- kO i=n
by = aga+)) (Vig2, Vig1) 1<i<n-1
v = Qp3) ]{Z(l),ﬂ 1=n.
k
(3.5)

Define also G := |C| = |S™)|.
Notice that:

. Delaunay’s variables are defined on an open set of full measure P5", of the
Cartesian phase space P := R3" x R3" namely, on the set where ¢; € (0,1)
and the nodes 7; in (3.1) are well defined.

. Deprit’s variables are defined on an open set of full measure PS. . of P%"
where e; € (0,1) and the nodes v; in (3.3) are well defined.

. On P9, and PY ., the “Delaunay inclinations” i; and the “Deprit inclina-

e

tions” ¢;, defined through the relations

C(i—l—l) . S(z’—i—l)

— 2 1<i<n-—1
) @) |CEFD S|
COSY; '= — =7 > COS L; =
[CO NG
|C| 1T=N
(3.6)

are well defined and we choose the branch of cos™! so that i, ¢; € (0, 7).
Finally:

« The Poincaré variables are given by (A, A, z) := (A, A, 1, &, p,q), with the A’s
as in (3.4) and

A=+ g+ 6, { M = /2(Ai —T4) cos(6; +g:)

& = —/2(N; = Ty) sin (0; + g;)
(3.7)
{ pi = /2([; — ©;) cosb;
qi = —+/2(I'; — ©;) sinb;



« The RPS variables are given by (A, A, z) := (A, A\, n,&,p,q) with (again) the
A’s as in (3.4) and
= V2(A, — T, o
Ai =i+ v+ { n (A, 1) cos <% - ¢z—1)

fi = —1/ Q(Az — Fz) sin (’}/Z + 1/1?,1)

(3.8)

D = \/2(Fi+1 + ‘Ijifl - ‘Ijl) Cos wln

q; = —\/2(F1+1 + \1’1;1 - \Ilz) sin ?ﬂ?
where
Wo:=T1, Lpp1:=0, =0, ¢ := ij' (3.9)
i<j<n
Remark 3.1 From the definitions (3.8)—(3.9) it follows that the variables
Pn = 2<\Ijn71 - g’n) COoS wn =V 2<G - 03) COSC

(3.10)

n = —/2(V,_1 — WU,)sint), = —1/2(G — C3)sin(

are defined only in terms of the integral C. Thus, they are integrals (hence, cyclic)
in Hamiltonian systems which commute with the three components of the angular
momentum C (or, equivalently, in systems which are invariant by rotations).

Let ¢p and ¢gps denote the maps

(bP : (3/733) - (A7A7Z) ) ¢RPS : (y,flf) - (A7)\7Z> N (311>
The main point of this procedure is that:

« The map ¢, can be extended to an analytic symplectic diffeomorphism on

the set PS" which is defined as P52 ., but with e; and i; allowed to be zero.

« The map ¢gps can be extended to an analytic symplectic diffeomorphism on

the set PSr which is defined as PS ., but with e; and v; allowed to be zero.

The image sets MO . = ¢p(P2) and MO oo = ores(Pr) are defined by
elementary inequalities following from the definitions (3.7) and (3.8) (details in

Appendix B). Notice in particular that

« ¢; = 0 corresponds to the Poincaré coordinates 1, = 0 = &; and the RPS
coordinates n; = 0 = &;;

« i; = 0 corresponds to the Poincaré coordinates p;, = 0 = q;;

« t; = 0 corresponds to the the RPS coordinates p; = 0 = ¢;. In particular
pn = 0 = @, corresponds to the angular momentum C being parallel to the
k) axis.

10



. Let Z denote the set of variables

z = (Uafyﬁ, Cj) = ((771, e 77771)? (517~--a€n)7 (p17---apn—1)v <QIa ce >Qn—1)) :
(3.12)

(roughly, z are related to eccentricities—perihelia, and mutual inclinations—

nodes of the instantaneous ellipses ¢;). Then, M?ﬁax’RPs can be written as

MIGITLaX,RPS = ¢RPS(P]§Zp) ={(A\2) € Mfr?a;g ) pi + q?z <AG(A, 2)}
(3.13)
where G(A, 2) is just the length of the total angular momentum expressed in
RPS variables as given in (2.14) and M%7 % is a given subset of R” x T x R*"~2
(compare the end of Appendix B).

. We have already observed that for rotation invariant systems the variables
(Pn> @n) are cyclic. In this case, the phase space M3 .o is foliated into
symplectic leaves

MGy = Gus(P) = LA A 2) € Miuns Pn = Phs G = Gi} - (3.14)

Dy

In the next section, for the application to the planetary problem, we shall
substitute the set M%~2 in the definition (3.13) of M%" with a smaller

max max,RPS

set M2 compare (4.2) below.

Consider the common domain of the maps ¢p and ¢gps in (3.11), i.e. the set PS" N
ngjp. In particular, on such set, 0 < e¢; < 1,0 <1i; < 7, 0 < ; < w. On the
Orps—image of such domain consider the symplectic map

A (AN 2) — (A A, 2) == ¢ 0 s (3.15)

which maps the RPS variables onto the Poincaré variables. Such a map has a par-
ticularly simple structure:

Theorem 3.1 The symplectic map ¢3*° in (3.15) has the form
A=A+ ¢(A, z2) z=2Z(A\,2) (3.16)

where p(A,0) = 0 and, for any fivred A, the map Z(A,-) is 1:1, symplectic’ and its
projections verify, for a suitable V = V(A) € SO(n), with O3 = O(|z]3),

L Z=n+0;3, I.Z=E6+0;, I,Z=Vp+0;, II4Z=Vq+0;. (3.17)

To prove Theorem 3.1, we need some information on the analytical expressions of
the maps ¢p and ¢pps.

"Le., it preserves the two form dn A d¢ + dp A dgq.

11



. The analytical expression of the Cartesian coordinates ¥ and 2 in terms
of the Poincaré variables (3.7) is classical:

() g) ]E)Zl) ’ y() — g) yl()l) (318)

(4)

pl

where i)%l(f) is the Poincaré rotation matrix and xgl), Y

map. Explicitly,

is the planar Poincaré

— The planar Poincaré map is given by®

I(le) — (Xgo?ng)’ 0) , y<> (yﬁ”,yz ,0) = 6; 8)\11;101 (3.19)
where
¢ 2
ng) = mL (;};) (cos U — 51 (771 sin u; + &; cos u;)
_ i 1 — m2+€i2)
VA; 4A;
, 2
Xg) = mi (;}) (sin u; — % (m; sinw; + &; cos u;) (3.20)
& ni2+&°
+\//Tz' 1 4A; )
m2 M4
\ Bi = j\? :

and u; = u;(Ay, N, mi, &) = A+ O(|(m:,&)]) is the unique solution of the
(regularized) Kepler equation

1 1 1
w 1 77+§

VAi A

(i sinw; + & cosu) = A ; (3.21)

— The Poincaré rotation matrix is given by

, 1—q?¢; —pigici —q;Si
n() = —piqici 1 — pie —Disi (3.22)
qiSi PiSi 1—(p?+af)c

where ¢; 1= m and s; := \/¢;(2 — (p? + @2)cy).
« The formulae of the Cartesian variables in terms of the RPS variables, differ
from the formulae of the Poincaré map (3.18) just for the rotation matrix.

Namely, one has
R (3.23)

8Compare, e.g., [3].



where xsl), yl(fl) is the planar Poincaré map defined above. The expression of
the RPS rotation matrices 9{%35 is a product of matrices

R =RIRE_, - RIR; (3.24)
where R;, R} are 3 x 3 unitary matrices (R; = id) given by
1—qic;  —pigqic} —qis;
Ry = | —pigic; 1-pic —pis; : 1<i<n
qis} pis; 1= (7 +q})c;
(3.25)
1—¢’ ¢ —pic1gi-1 —qi—15;
R = —pic1gi—1 1 —p g —Di—15; , 2<1<n
qi—15 Di—15i 1—(p2q+alq)s

*

" . . n;+E7 pi+a; .
where ¢;, s;, ¢}, 57 are analytic functions of =+ and =5-*’s, for 2 <7 < n,
1 <j < nevenin z, with R;;;, R} independent of (py,q,), for 1 <j<n-—1
(for the analytic expression, see [6, Appendix A.2]).

Notice that the only matrix in (3.24) depending on (p,, g,) is R.

Extending results proven in [6], we now show that ¢5* in (3.15) “preserves rotations
and reflections”(Lemma 3.1 below).

Consider the following symplectic transformations

R, (A, A, z) = (A, 35— A, SMQZ) ; R (A, A, z) = (A, A, S@z)

(3.26)
Ry(A A 2) = (A A+ g, S,2)
where, denoting the imaginary unit by i,
([ S,_.(M.&D.q) = (=& 7,4, D)
S5, & p,q) := (0, &, —p, —q) (3.27)

| o <nj +1&;,m; +i£j) - <€_ig(ﬂj +i&;) , e79(p; +iq3'>> ‘

Such transformations correspond, in Cartesian coordinates, to, respectively, reflec-
tion with respect to the plane x1 = x5, the plane x3 = 0 and a positive rotation of
g around the k®)-axis:

R1<—>2 : I(l) - (‘xgz)? 'rgl)7 xi(;)) ) y(Z) - (_ yg)a _ygl)’ _yéz))
R, @ — Rs(g) z@ ¥y — Rs(g) y
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where R3(g) denotes the matrix

cosg —sing 0
Rs(g) ;== | sing cosg 0 | , geT. (3.29)
0 0 1

For future use, consider also the following transformations, which are obtained

obtained by suitably combining R, _, and R,:
Ry (A, A, z> =R_zR, ,Rz = <A, T — A, Sﬂz)
(3.30)
Ry (A A7) =RsR, LR 5 = (A -\ Sz
where
81_4('[]767137(1) = (_naa)p7 _q) ) 82_3(1175’137(1) = (T]a_Ew _p7q> . (331>

Notice in particular:

. (D’Alembert rules) Being H,, invariant by rotations around k® and by re-
flections with respect to the coordinate planes, the averaged perturbation f&"
does not change under the transformations z — Sz, where S is as in (3.27)
or in (3.31).

In particular, by D’Alembert rules, the expansion (2.8) follows.

Lemma 3.1 The map ¢ in (3.15) satisfies o5 R = R ¢, for any R =R
Ri, Ry, Ry, Ry as in (3.26)(3.31).

127

Proof It is enough to prove Lemma 3.1 for the transformations in (3.26) and (3.27).
But this follows from the fact that both in Poincaré variables and in RPS variables
the transformations in (3.28) have the form in (3.26)-(3.27). |}

Proof of Theorem 3.1 For the proof of (3.16) (since ¢5™ is a regular map), we
can restrict to the open dense set where none of the eccentricities e; or of the nodes
v;11 or p; vanishes. In such set the angles ~;, g;, 6; and 1; are well defined. By the
definitions of A; in (3.7) and of \; in (3.8), one has

Ai— N = <€z’+gi+91>—<€i+%+¢?_1>:(gz‘—%’)Jrei— i1 -

The shifts g, — v = acw (7, P;) — acw (v, Py) = ace (74, v;) (compare their defini-
tions in (3.4) and (3.5)), as well as the angles #; and 1; depend only on the angular
momenta C1), ... C™ ; hence, they do not depend upon .

14



With similar arguments one proves the second equation in (3.16).

Injectivity of Z(A,-) follows from the definitions. That, for any fixed A, Z(A,-) is
symplectic, is a general property of any map of this form which is the projection over
z of a symplectic transformation (A, A,z) — (A, A, z) which leaves A unchanged.

Notice now that ¢ preserves the quantities

|2 = |2]* = 2(|AlL = Cs) | (3.32)
and the quantities
;& =ni 4+ & =2(A — T)) (3.33)
Therefore, it also preserves
(b, a)l* = |(p.a)* - (3.34)
From the previous equalities one has that ¢S sends injectively (n;,&;) = 0 to

(i, &) = 0 and (p,¢) = 0 to (p,q) = 0.

From the analytical expressions of ¢p and ¢gps there follows that, when (p,q) =
0, the Poincaré variables (n,&) and A and the Deprit’s (n,£) and A respectively
coincide. Therefore, from (3.16) and (3.33), we have p(A,0) = 0 and the first two
equations in (3.17) follow. The fact that the remainder is O(|z|?) is because Z(A, )
is odd in z, as we shall now check. In fact, using Lemma 3.1 with R = R| or
R = R, one finds that the (n,q)—projection of Z(A,-) is odd in (7, q), even in
(&, p); the (&, p)—projection of Z is odd in (&, p), even in (7, ¢). In particular, Z(A,-)
is odd in z.

Equation (3.34) and the fact that Z is odd imply that (p,q) = %(p,q) + O(|z|?),
with /& € SO(2n). Since p is odd in (§,p) and q is odd in (7, ¢), one has that % is
block diagonal: ® = diag [V, V,]. The fact that V, = V, := V follows from Lemma
3.1, taking R =R, _,.

4 Proof of the normal form theorem

For the proof of Theorem 2.1, we need some results from [6], to which we refer for
details.

Let Hpyps denote the planetary Hamiltonian expressed in RPS variables:
Haies(A, A, Z) i= Hpy 0 Qby:pls = hi(A) + pfres(AS A, 2) (4.1)

where H,y is as in (2.1) and ¢gps as in (3.11).

Notice that, as Hpy; is rotation invariant, the variables p,, ¢, in (3.10) are cyclic
for Hgpps. Hence, the perturbation function fgps depends only on the remaining
variables (A, A, Z), where Z is as in (3.12).

15



To avoid collisions, consider the (“partially reduced”) variables in a subset of the
maximal set M : in (3.13) of the form

(AN 2) € M2 = A x T" x B2 (4.2)
where A is a set of well separated semi major axes
A::{A:gj<aj<5j for 1§j§n} (4.3)

where ay, ---, @,, @1, -+, @y, are positive numbers verifying a; < @; < a;, for
any 1 < j <n, Gpy1 = 00; B™ 2 is a small (4n — 2)-dimensional ball around the
“secular origin” z = 0.

As in the Poincaré setting, the Hamiltonian Hypg enjoys D’Alembert rules (namely,
the symmetries in (3.27) and in (3.31)). Indeed, since the map @5 in (3.15) com-
mutes with any transformations R as in (3.26)—(3.31) and H, is R-invariant, one

has thatHyps is R—invariant:
Heps o R = Hp 0 ¢§PS oR=HpoRo ngps =Hp o ngps = Hgps - (4‘4>

This implies that the averaged perturbation f&Y, also enjoys D’Alembert rules and
thus has an expansion analogue to (2.8), but independent of (p,, g,):

n? + &
9

Lo PR Logsy 4s)

S, 2) = Co(A) + Qu(A)- .

with @y, of order n and Q, of order (n — 1). Notice that the matrix Q, in (4.5) is
the same as in (2.8), since, when p = (p,p,) = 0 and ¢ = (g, ¢,) = 0, Poincaré and
RPS variables coincide.

The first step is to construct a normal form defined on a suitable lower dimensional
domain

(AN, 2) € MO2 .= A x T x B2 (4.6)

(where B*~2 is an open ball in R*~2 around ¥ = 0).

The existence of such normal form for the Hamiltonian (4.5) at any order s defined
over a set of the form (4.6) is a corollary of [6, §7]. Indeed (by [6]), one can first
conjugate Hyps = hx + pfrps to a Hamiltonian

7:(RPS = Hpps © QE = hx + MfRPs ) (4'7)
so that the average prs has the quadratic part into diagonal form:

~2

n—1 ~2
s (A, 2) = Co(A)+Zaim—+§"+Z#% O(Jz1 (4.8)
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where Z = (7, 3 ,D,q) and o3, G denote” the eigenvalues of the matrices Q) and Q,
in (4.5). Here, ¢ denotes the “symplectic diagonalization” which lets A — A and

A=A+ @A) n=UnM)7, €=UnA)E, p=Uu(A)p, 4=Uu(A)g, (49)
where Uy, € SO(n) and U, € SO(n—1) put Q; and Q, into diagonal form and will
be chosen later. Notice that ¢ leaves the set M® 2 in (4.2) unchanged.

Next, we can use Birkhoff theory for rotation invariant Hamiltonians, which al-
lows to construct BNF for rotation invariant Hamiltonian for which there are no
resonance (up to a certain prefixed order) for those Taylor indices k such that
> ki = 0 (rather than k # 0 as in standard Birkhoff theory; compare Appendix A
below). Indeed, as shown in [6, Proposition 7.2], the first order Birkhoff invariants
Q = (0,¢) € R" x R*™! do not satisfy any resonance (up to any prefixed order s)
over a (s-dependent) set A chosen as in (4.3), other than 327 oy + 377G = 0
and ¢, = 0. Thus, one can find a Birkhoff normalization ¢ defined on the set (4.6),
which conjugates Hups = hy + L prS to

rF(RPs = j:lRPS o (5 = hx + MfRPs ) (4'1())
where f&v is in the form (2.17), with r of dimension n + (n — 1) = 2n — 1 and
2 = (0,9) replacing 2 and Py as in (2.19).

It is a remarkable fact, proved in [6], that both the transformations gz~5 and (5 above
leave G(A, z) in (2.14) unchanged

Godp=Gogd=0G, (4.11)
(i.e., they commute with R,). Therefore, if we denote

MO = (AN (2,00, @) 0 (AN 2) € M2 02 + g2 < 4G (A, 2)} (4.12)
M= (AN (Zpargn)) - (AN 2) € M2 2 4 qn <4G(A,2)} (4.13)

where M=% and MOm=2 are as in (4.2) and (4.6), respectively, we have that ¢
and ¢ can be lifted to symplectic transformations

Prps : M — MO D MO MO (4.14)
through the identity map on (p,, ¢, ). Moreover:
(i) since Hyps is (pn, ¢n)-independent,
Hurs © Pups = Huws . Hues © Pros = Haes (4.15)

where Hyps and Hyps are as in (4.7) and in (4.10), respectively;

9In [6], the matrix Q is denoted by Qy; the (n— 1) components of ¢ are denoted by ;. Beware
that here we denote by ¢; also the n components of ¢ in (2.12). Actually, it will turn out that
G = (for i <n—1): compare (i) in Remark 4.1 below.
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(11) CDRPS iS given by (49_)7 Wlth (pa pn)v <Qa qn)a (ﬁap’rL)? (67 qn)7 UV = dlag [UV7 1]

replacing p, q, p, ¢, U,, respectively;

v

(iii) Prps is of the form (2.18) (with w and Z replaced by (2, pp, ¢n) and (2, pu, gn),
respectively), since a similar property holds for ¢.

Proof of Theorem 2.1. We prove only existence of the normal form; uniqueness
follows from the same argument of standard BNF theory: compare [12].
Let Hp as in (2.11), where ®, is as in (2.9)(2.10), for suitable fixed matrices py,
py diagonalizing Qy, Q, in (2.8). If Vis as in (3.17), Egs. (2.8), (4.5) and Theorem
3.1 imply that
VIQ,V = Q, = diag[Q,,0] . (4.16)
Thus, Q, is diagonalized by the matrix V'p,. We can therefore choose Uy, and U,
in (4.9) taking
Up :=pn s U, := diag [U,, 1] = V'p, . (4.17)
Analogously, let @, Ppps as in (4.14), ¢5* as in (3.15). Consider the transforma-
tion
Oy = (P;g o (i)RPS (4'18>

where . )
Pl =Dt o PF 0 By (4.19)

By (4.15), ®;, transforms H, into

Hse = 'HP o &,
=My 0 By 0 Dy
=Hpo0P, 0 &D;l o™ o Dpps © Ppps
=Hpo ™o Dpps 0 Prps
= Hups © Prps © Prvs

= Hgps © (T)Rps
= Hpps = hi + ,UfRPs = hg + ,UfB

where f2¥ = f& has just the claimed form.
To conclude, we have to check (2.18). It is sufficient to prove such equality (with
w replaced by (Z,pn, ¢,)) for the transformation @7, in (4.18) (by item (iii) above).
But this is an immediate consequence of (2.10), (3.17), (4.17), (4.19) and item (ii)

above. |

Remark 4.1 As a byproduct of the previous proof, we find that the matrices Q,
in (2.8) and Q, = diag[Qy,0] in (4.16) have the same eigenvalues, so that the
invariants ¢; and ¢; in (2.8) and (4.8) coincide (for i <n —1).
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5 Further reductions and BNF's

In this section we discuss complete symplectic reduction by rotations, together
with the respective BNFs, both in the spatial and planar cases (indeed, as in the
three—body case, the planar case cannot be simply deduced from the spatial one
in view of singularities). The BNFs constructed in the spatial case (§ 5.1) is at the
basis of the dynamical application given in § 6.

5.1 The totally reduced spatial case

Proposition 5.1 below is a generalization at arbitrary order s of [6, Proposition
10.1]; the proof is reported, for completeness, in Appendix C.

Let us consider the system Hy = hy + pfs given by Theorem 2.1. Since the couple
(Pn, @) = (Ugn, v2,) does not appear into Hy, we shall regard H;; as a function of
(6n — 2) variables (A,l,w), where w = (4,0) := (ug, -+ ,Usy_1, V1, , V1) 18
taken in the set M52 := A x T" x BI"~2. Without changing names to functions,
we have a Hamiltonian of the form (compare (2.16)—(2.17))

Hu (A, 1, w) = hy + pfs(A L, w) with
B B B (5.1)
NN w)=Co+Q-T+iT- P4+ Py+ -+ P+ P(Aw)

with P; homogeneous polynomials of degree j in 7; := u?;vg and P(A,w) =
O(w[***?). We recall that Hy has been constructed, starting from the Hamilto-
nian Hpps in (4.1), as Hy = Hpps © QS (;S where <b (;5 are given, respectively, in (4.7)
and (4.10). Recall also that, since ¢ and ¢ verify (4.11), the function G in (2.14) is
an integral for Hy.

Incidentally, notice that, since ¢ and QUS leave A’s unvaried, their respective z, Z—

projections actually preserve the Euclidean length of z, Z:
M0 $(A X, 2)| =2, [Tz0 (AN 2)| =4 . (5.2)

The Hamiltonian (5.1) is thus preserved under the G—flow, i.e., under the trans-
formations, which we still denote by R, defined as in (3.26)-(3.27), with (A, A, z)
replaced by (A,l,w). It is therefore natural to introduce the symplectic transfor-
mation

(NG Lg.w) — (A1)

o :

w:(a7@)7 a:(ﬂ17"'7ﬂ2n—2)) @:(@la 7@2n—2>
which acts as the identity on A and, on the other variables, is defined by the
following formulae

6_ig(ﬂj+i@j), j#2n—1
¢: lj:l]—Fg Uj+i?}j: (53)

e/ —|w]?, j=2n-1
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where o = o(A, G) is defined by

0 =2( Z A —G) . (5.4)

The map ¢ is well defined (G, g, A, [,%) € Ry x T x M54, where M~ is the
subset of (A,[,1) € A x T" x R*"~1) described by the following inequalities

lw|<p<e. (5.5)

As it immediately follows from (5.3), the action variables G is the integral (2.14).
Hence, its conjugated variable ¢ is cyclic for the Hamiltonian, parametrized by G,

ﬂ::HBOQEZHRPSOCEOq;OQg:hK_FMf. (56)

and we may regard H as a Hamiltonian of (3n — 2) degrees of freedom. Notice,
however, that H is no longer in normal form.

Now, let A and ¢ be, respectively, as in (4.3) and (5.5), and, for 0 < d <6 <e,
define the following sets'®

A=A0,0)={AecA: <0<}, (5.7)

6n—4

. 6n— . . o . 1.
M= MG 6y = (A € A(3,6), AeT @] < 26} (5.8)

Proposition 5.1 (BNF for the fully reduced spatial planetary system)
For any integer s > 2, there exists 0 < 0* < €, and for any 0 < § <8 <6 one
can find a real-analytic symplectic transformation ¢g: (A, X, w) € MG"_4(5, y) —
(A, 5\,111) € M5 such that the planetary Hamiltonian H in (5.6) (regarded as a
function of (6n — 4) variables, parametrized by G) takes the form

H ="Ho dps(A M) = hie(A) + pnf(A, X, @) with

(5.9)
f=P,+O(lw|**Y), Pyi=Co+Q -7+ 37 +Ps+- -+ P,
where W = (U,0) = (G, ,Ugp_2,01," ,Vop_2) and the 75j ’s are homogeneous
)
polynomials of degree j in 7; = & ;Ui , with coefficients depending on A.

The first order Birkhoff invariants Q; of such normal form do not satisfy identically
any resonances and the matriz 7 of the second order Birkhoff invariants is non
singular. The transformation ¢, may be chosen to be 521 —close to the identity.

10The number 1/4 in (5.8) is arbitrary: one could replace it by any 0 < 9 < 1.
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5.2 The totally reduced planar case

Let us now restrict to the planar setting, that is, when the coordinates y®, z(? in
(2.1) are taken in R? instead of R3. Also in this case, in view of the presence of the
integral Y, xgi)yg) — a:g;)yf), a (total) symplectic reduction is available (compare,
also, [9]).

In the case of the planar problem, the instantaneous ellipses ¢; defined in § 3 become
coplanar and both the Poincaré variables (A, A, z) and RPS variables (A, A, z) reduce
to the planar Poincaré variables. Analytically, the planar Poincaré variables can be
derived from (3.7) by setting #; = 0 and disregarding the p and q.

To avoid introducing too many symbols, we keep denoting the planar Poincaré
variable

(AN 2z) = (AAM,E) e MY = AX T" x B> CR? x T" x R*"

where A can be taken as in (4.3) above and B*" the (2n)-dimensional open ball
around the origin, whose radius (related to eccentricities, as in the spatial case), is
chosen so small to avoid collisions; beware that z = (1, &), here, is 2n—dimensional.
The planetary Hamiltonian in such variables is given by Hyi(A, A, z) = hkep(A) +
pfpi(A, A, z) obtained from H, in (2.5) by putting, simply, p = 0 = g; clearly, also
the expression of the averaged perturbation, [, can be derived in the same way
from (2.7).
Since, in particular, the “horizontal” first order Birkhoff invariants o do not satisfy
resonances of any finite order s on'' A, the Birkhoff-normalization up to the any
order can be constructed in the planar case and it coincides with the expression of
& in (2.17), where one has to take w = (u,v) =: (%, D), (€, 4)) = ((,0), (E, 0)).
We recall in fact that the transformation ®; in Theorem 2.1 sends injectively
p=0=qtop=0=qand hence the restriction ®|3_9—y performs the desired
normalization in the planar case.

Let us denote by
Hoa(A A7) = h(A) + 0 fn (A A7), (A A7) € M= Ax T" x B (5.10)

the planar Birkhoff-normalized system, that is, the system such that the averaged
perturbation f*(A,z) is in BNF: the BNF of order 4 is given by

L o1 o 3
(N z) = Co(A) + Z oi(A)7; + 5 Z T (M) +O(|2°) - (5.11)
1<i<n 1<i,5<n
with 7; = F@
The asymptotic evaluation of the first order invariants ¢ and especially of planar
torsion 7 in (5.11) for general n > 2 can be found in the paper by J. Féjoz [10]

HCompare [10] or, equivalently, use again [6, Proposition 7.2]).
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and in the notes by M. Herman [11]. However, since the asymptotics considered in
such papers is slightly than the one considered in [6] for the general spatial case
different'? | we collect here the asymptotic expressions of o and 7 as they follow
from [6] (compare also below for a short proof):

« The first order Birkhoff invariants o into (5.11) satisfy

—im1m2a1\1(a1+0( )) , j=1
95 = (5.12)
4?1)Xm;3 Zl<z<] m;a (1 _I— O( )) ) 2 S ] S n

« The second order Birkhoff invariants 7 into (5.11) satisfy, for'® n = 2,

2 [ 3 __9
Femma (B, TR ) (14 0(a") (513)
3 \ TInA, T A2

and for'* n > 3,

__(7+0(5)  0O(s) = g?
T= ( O(6)  Tum + O(8%) > where 0374 o

with 7 of rank (n — 1) and

My, 1 a?
Tn——?)p Z mja<a—%+0<

n1<j<n

)) . (5.15)

« Eq. (5.12) implies in particular non resonance of the o,’s into a domain of
the form of (4.3) (with a;, @; depending on s).

zg% | M.g,p

12n [10] , [11] the semi major axes a; < --- < a, are taken well spaced in the following sense:
at each step, namely, when a new planet (labeled by “1”) is added to the previous (n—1) (labeled
from 2 to n) ag, ---, a, are taken O(1) and a; — 0. In [6] one takes aj, -+, ap—1 =O(1) and
a, — 00. The reason of the different choice relies upon tecnicalities related to the evaluation of
the “vertical torsion” (i.e., the entries of the torsion matrix in (2.17) with indices from n + 1 to
2n) in the spatial case. The asymptotics in [10] and [11] does not allow (as in [6]) to evaluate
at each step the new torsion simply picking the dominant terms, because of increasing errors
(of O(1)): compare the discussion in [11, end of p. 23]. To overcome these technicalities (and
to avoid too many computations), Herman introduc! es a modification of the Hamiltonian and
a new fictictious small parameter §, also used in [10]. Notice that, since Herman computes the
asymptotics using Poincaré variables, by the presence of the O-eigenvalue ¢,, he could not use
the limit a,, — o0, being such limit singular (not continuous) for the matrices p, in (2.10).

13The evaluation of the planar three-body torsion (5.13) is due to Arnold. Compare [2, p.138,
Eq. (3.4.31)], noticing that in [2] the second order Birkhoff invariants are defined as one half the
7;;'s and that a3 should be aj. Compare also with [11, beginning of p. 21], (where a factor a3 at
denominator of each entry is missing).

M Compare (5.14) and (5.15) with the inductive formulae obtained in the other asymptotics in
[11, end of p. 21].
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. Using (5.13)-(5.15) and A? = m?mpa;(1 + O(p)), one finds that, for n > 2
and 0 < §, < 1 there exist'” i > 0,0 <a, <@, <--- < a, < a, such that,
on the set A defined in (4.3) and for 0 < p < fi, the matrix 7 is non-singular:

det 7 = d, (1 + 4,), where |d,| < d, and

. 11
d = (—1)"" !

3. no1 my a1
4_8(%) e 1= (5.16)

Proof of (5.12)—(5.15). Egs. (5.12)—(5.15) can be obtained, e.g., as a particular
case of more general formulae, proved in [6]: For Equation (5.12), for n = 2, use
[6, Eq. (7.5)], and “Herman resonance” o; = —¢ — 09; in the case n > 3, compare
the asymptotic expression of o, after [6, Eq. (7.7)]. Equation (5.13) corresponds'®
to [6, Eq. (8.33)]. Equation (5.14) is obtained from [6, Eq. (8.45)] picking only the
entries which are relative to the horizontal variables # In particular, the matrix
7 of (5.14) is the horizontal part (that is, the upper left (n—1) x (n—1) submatrix)
of the matrix 7 of [6, Eq. (8.45)]. For Eq. (5.15), notice that 7,, is the upper left

entry of the 2 x 2 matrix 7 in [6] and use the asymptotics for ri(as, a;) given in [6,
Eq. (8.32)]. 1

We describe, now, briefly a (total) symplectic reduction for the planar problem and
discuss the relative BNF. The discussion is based on tools and arguments similar
to those used in § 5.1 above for the spatial case.

Indeed, quite analogously to the spatial case, the Hamiltonian (5.10) is preserved
under the G—flow, where now G denotes the function in (2.14) with 2 = (1, £,0,0).

Therefore, as in (5.3), one introduces the symplectic transformation ¢, which lets
A — A and

A S ..y e9(R; + &) for j #n
A=A ; ) = 2 ) ' 5.17
Pp1 j g, (M +ig)) {elg\/m Cforj=n, (5.17)
where ¢? is as in (5.4) and Z has components (fy, - - -, fp_1, &1, e, én_l).
Again, in order for ¢y to be well defined, the domain M of (G, g, A, A, 2) will
be taken of the form

(ALG)eAxRy, (AgeT™ ', 2eR™, |2l <o\G)<e <&, (5.18)

where H, € are as in (5.10). We denote by 7:(p1 = 7:{p1 o QAﬁpl the planar “reduced
Hamiltonian”.

Adapting the proof of Proposition 5.1 above to the planar case, we then have:

1571 is taken small only to simplify (5.16), but a similar evaluation hold with i = 1. Notice that
the normal planar torsion is not sign—definite [Herman]. A similar results holds true also in the
spatial case [6, Eq. (8.38)].

161n [6, Eq. (8.33)], T is denoted by 7).
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. For any s € N, one can always find a set of symplectic variables (A,?v\,i)
varying on some domain ./\v/lé?_2 C R" x T" x R?*"~2 of the form (5.7)—(5.8)
with 6n — 4 replaced by 4n — 2, such that, in such variables, the reduced
Hamiltonian 7:[p1 is put into the form 7:lp1 = hx + i fpl, with the averaged
perturbation ng in normal form of order 2s. The first and second Birkhoff
invariants are given by

6i(A; G) = 03(A) — 0u(A) + O(2%)

(5.19)
7ij(A; @) = 7 (A) = Tin(A) = Tjn(A) + Tan(A) + O(e?) -
Using (5.12)—(5.15), one immediately sees that
« The invariants 6 and T in (5.19) are asymptotically close (for ay, -+, a,_1 =

O(1), a, — oo and ¢ — 0) to the unreduced o; and 7;; (fori,j <n—1).
Therefore, the following corollary follows at once.

Corollary 5.1 Fizn > 2 and 0 < 6, < 1, s > 4. Then, there exist i > 0,
0<a <@ <---<a, <a, such that for any p < @i and for any A €Ag, where
Ag is the set in (5.18), the first order Birkhoff invariants ¢ are non-resonant up

to the order s and the matriz 7 is non-singular: det 7 = d,(1 + 9,,), with |3,| < d,
and

d, = (5.20)

where d,, is as in (5.16).

6 Long—time stability of planetary actions

In the 70’s N.N. Nehorosev [13] proved exponential stability of the semi major axes
in the planetary problem: during the motion, the semi major axes'’ a;(t) stay close
to their initial values for exponentially long times, i.e.,

1 1
lai(t) — w(0)| < Cub, Vi < Gy O (om> , (6.1)
for suitable positive constants C' a, b, provided p is sufficiently small and that the
initial values @;(0) are in the well separated regime (4.3). The numbers C,a and b
given by Nehorosev, were later improved in [14].

Notice that, while the semi major axes stay close to their initial values, the “secular”
Poincaré variables z = (1, &, p, q) in (3.7) (also used by Nekhoroshev in describing

1"Which are related to the Poincaré variables A as in (3.4).
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the motion) may, in principle, vary on a relatively large ball Bi" around the origin:
indeed, in [13] and [14] no information is given on possible “order one” variations
of eccentricities and relative inclinations.

Here, we prove a complementary result, namely, that in a suitable partially'® non—
resonant open set in phase space, the secular actions related to eccentricities and
inclinations stay close to their initial values for arbitrarly long times compared to
the distance from the secular equilibrium. More precisely, we have:

Theorem 6.1 Let A be as in (4.3); let s > 2, 7 > n — 1 and §* be as in Propo-
sition 5.1. Then, there exists ¢ > 1 and 0 < € < §*/2 such that, for any
0<é<e<e, (6P < p< (6/c)? and k > 0, one can find an open set
A, C A, of Lebesgue measure

*

meas A, > (1 — C—\/é) meas A , (6.2)
K

so that the following holds. Let My, M, be the phase space regions in (5.7), (5.8)
given, respectively, by M4 (¢, €) with A replaced by A, and byM®"~*(€/2, 2¢) with
with A replaced by A, and 1/4 replaced by 3/4. Then, any trajectory generated by
H with initial datum in My, remains in M., and satisfies'’

max{[A;(t) — Ai(0)[} < €, max{|7;(t) — 75 (0)]} < e (6.3)

for all |t| <t with

f=— (6.4)

C*M 625—1

In particular, the action variables 7; verify max;{|7;(t) — 7;(0)|} < é* provided
7#1(0) < €% and A;(0) belong to a set of density (1 — c*e*/*).

Remark 6.1 Stability estimates hold up exponentially long times in completely
non-resonant regions, i.e., essentially in an open neighborhood of KAM tori. Let
K € M,, denote the Kolmogorov set (i.e., the union of KAM tori) of 7. Then,
for initial data on the open set K4 around K, hence, of measure®

meas Kq > meas K > (1 — V/é) meas My,

KE2

* A0

one can replace (6.4) with [t| < tex,(d) := T (for some 0 < o0 <1< d’).

Here is a sketch of proof. The set K; is a high order non resonant set, being
equivalent to the direct product Ny x T*"~2 where Ny is (o, K) ~ (d'77,d)

18] e., A-non-resonant, but possibly resonant in the secular variables.

~2 ~2
YRecall that o = (i, ) = (i1, - - , dign_2, D1, , an_2) and that 7 = ot

2
208ee [6].
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non-resonant for the frequency map (A, 7) — @i (A, 7) = O ) (hx(A) + Py (A, 7).
Here, hy and Pj are as in (5.9).

By Averaging Theory, one can find an open set A; CA, a number 0 < ¢ < 1 and a
real-analytic symplectic transformation

O : ((A, 7’),19) eA; x 2578_2 x T2 — @((A,T),ﬁ) e MO
where M5~ is as in (5.7)(5.8) and Z; is the interval Zs = (¢d,8) € R, which
conjugates the Hamiltonian (5.9) (with s = 2) to a new Hamiltonian of the form
H((Ar),9) :=Ho®((A,r),9) = h(A) + uPo(A,r) + O(p; (A, 1), 9) .

Consider the frequency map (A,7) — wi(A,7) = Oz (he + pPy) and, for any
0 < v <= and 7 > 3n — 2, consider the generalized (71,2, 7")-Diophantine
numbers of the form?!

T if by £0
D . { R3—2 . A |&|™ ] } )
Y1,72,T ﬂ w e jw - k[ > 2 otherwise
0k= (k1 ,ka) EZN x 202 k2|

By KAM theory?, for any w € D,, ,,, lying in the w,-image of A; x 13278’2,

one can find a Lagrangian, analytic torus T, := ¢(T*" "% w) € K, defined by an
embedding

O(-w): ¥ eT" 2 = ¢(%w) = (v(¥w),d +u(;w)) €A, x 1578*2 x T2

with ¥ — ¥ + u(d;w) a diffeomorphism of T3"~2, such that, on 7, the Hamil-
tonian flow is ¥ = w. Being 7, Lagrangian, the embedding ¢(-;w) can be lifted
to a symplectic transformation (y,9) — ¢(y,9;w) defined around 7, such that
$(0,9;w) = ¢(¥;w) which — since T, = ¢(T*" % w) = ¢(0, T>"%;w) is invariant

and is run with frequency w — puts H in Kolmogorov normal form
K, :=Ho¢(y,J,w) =cw) +w y+Qy,J;w) (6.5)

namely, with c(w) independent of ¥ and Q(y, ¥; w) = O(y?). Notice incidentally that
the matrix fT3n_2 Qyyd0, being close to the block-diagonal matrix Qy = diag [0*hyo
w1 (w), Fow Hw)], satisfies the so—called Kolmogorov condition to be not singular,
which, together with (6.5), says that the tori of I are indeed Kolmogorov tori. From
(6.5) using standard Averaging Theory (since w is Diophantine), one sees that, if
ly| < d = const 2=, one can conjugate K, to

KT’+1 Y
K2 = c(w) +w-y+ Qy;w) + Qy, ¥ w).
where Q does not depend on 9 and |Q(y, )| < const d?e ¥ = const d%e™
This implies the claim with 0 = 1/(7'+ 1) and ¢/ =2. |

ey1/(r'+1)
d .

21 The set D., ~,,~ has been used for the first time in [2]. For 71 = 72 it corresponds to the
usual Diophantine set.
22Compare [4, Theorem 1.4].
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Proof of Theorem 6.1 Let k > 0 and ¥ € (0,1). Let, also, ¢, 8 and p be such
that

3 3 64 . .\° Bgey x
f<e<@<min{ o, 20}, 0e(23), (c?&e> <p<( L 6)" ,
(6.6)
with ¢ and d, to be defined below; finally, let
A x L. Ve s 22 2, 2 =2
E<e<e, Vé<ée<e, —<U< = +ét—¢ (6.7)
€
Notice that, by the choice of €* in (6.6), ¢ verifies € < € < 2e.
Pick two positive numbers 7y and 7, with 7, and 7 so small that
1 2 ~ 64 2 1
<= (142 *)0A<19~, ( 19)<— _&) 6.8
sy, (hoemesie, (0 < @-), 69
and, moreover,
GO 1 c 64
P24+ )+ o) <k 6.9
4(%—1) % 3 (L7 70) Yo 3 (6.9

The number ¢ in (6.6) and (6.9) will be defined below, independently of 7, 7o, 6,
Kk, € and e. Notice that, because of the definition of € in (6.7), the numbers 7, and
7 depend on ¥, Y, K, but not upon é and, moreover, that the number 74, can be
chosen to be

const (¢
Mo = A ) (6.10)
K
Now, let Mf:g 1= Ax T x Big; Y. let H be as in Proposition 5.1 and let

Hrog Mfgg 4 — R be an analytic extension of H on ./\/lf;"‘g * namely a real-analytic

Hamiltonian on Mfeng * such that

Hieg = H = h+puf on MY E ), (6.11)
where, for 9, € and ¢ as in (6.7),

Ybn—4/~ v\ . . q~ ~ v n n 4(n—1) 6n—4
MG TE ) ={A e A fu| <& e<o<él xT" CAXT" x By, ./\/l]feg :
(6.12)
Since f* is in (2s)-BNF (5.9) and the polynomial Py = Co+Q-#+ 377+ Py +- - -+
P, is obviously analytic on/\/lf:g 2 we can choose Hreg of the form Hreg = hx+p freg

with 2%, =P, + O(Jw|**'), having the same normal form P, as f*.

By (6.11), all the motions of H,,; which remain confined in ./\V/l%""l(é, ¢) are indeed
motions of H.
Put ny :=n, ny := 2(n 2), Hy := h, P := freg, po := maX{\/_ VeyLvi= A

€ == 6—;19& a = W where ¢, will be defined below and A, denotes the set
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{Ae A: B, (A) C A}. Notice that A is non-empty for small €*, because of
the choice of ,u in (6.6). Let €, be as in Proposition D.1 in Appendix D and take, in
(6.6), 6* := €*, so that, by the above choice of €, € = ¢ < &e* < ¢,, which fulfills
one of the assumptlons of Proposition D.1. Notice that. (i) ﬁfg has the same BNF
as f* hence, in particular, the first order Birkhoff invariants are non resonant; (ii)
that assumptions (D.2) of Proposition D.1 are trivially implied by (6.6) and the

above choice of a and 6. This allows to apply Proposition D.1 with ny, no, Hy, P,

- as above.
We then find suitable cg, ¢, py, Ax C A;O C A, ¢, as in the thesis of Proposi-
tion D.1. Take in (6.6) and (6.9), ¢ := ¢, and, in the definition of py, ¢ = ¢y,
so that py = p,.. Notice also that: p, = 1 max{\/_ Vel > Ve by (D.7), the

definition of py, the assumption on p in (G 6) and, finally (6.10), A, is easily seen
to satisfy (6.2); the transformation ¢, acts as

Ou t (A X Thyyoa X Byt — (Vi)ang, x Tt x Bal, " (6.13)

and transforms Hreg into H, := Hreg o ¢, with

H*<A*7l*7w*) - hK(A*) + /’LN*<A*7T*) + MP*(A*,U*,/U*)
+ uc*e_(ﬁ)af*(/\*,l*,w*) ) (6.14)

In applying Proposition D.1, take in (D.5) 79 = 49 and n = 7, where 7, 7 satisfy
(6.8)-(6.9) above, with ¢ = ¢,. By (D.5), the transformation ¢, satisfies

0 ((A)puse X Thy 1y 1 yyas % Byt o)) 2 (Adpua X Ty x By

14--)/48 196(1+%)
(6.15)
and, by the first inequality in (6.8),
T B4(n71)
P (A*)p*(Hﬁ)/? x so(L+i+5- 5)/48 X 196(1+77+%)
4(n—1
C (A)spuatpunss X Thy(ryme 2 as X B (6.16)
Let 1, € and € be as in (6.6) and define the set
MO ) ={A € A, , |b|<Vé, é<p<elxT; (6.17)

notice that M2 74(é,€) C A, x T" x By (n RSPV i

reg

From the above definitions (see (6.7), (6.8) (6.12)) the following inclusions follow

MGn 4( )CMGn 4( )CM6n4_

reg
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We will prove that motions of Hep with initial data (A(0),7(0),@(0)) inM52%(¢,¢)
remain in /\/lg”_4(€, ¢) for |[t| < t. At the end, to obtain the thesis of the theorem,
we shall take § = 3, 9 = 1/4 ,é = ¢/2 and 0 = 3/4.

Consider now motions of F,, with initial data in M%7 *(¢, ¢). Taking the real part

in (6.15), all such motions are the ¢,—images of some subset of motions of H, with

e ey n 4(n—1

initial data (A.(0),%(0), w.(0)) € (A)p, 2 x T x Bﬂi‘(w%)'

Using (6.4), (6.14), one finds that for [t| < t, the actions A (t) and r.(t), where
uf—i—vf

T, = =5, with w, = (u,, v,), satisfy, for an eventually smaller value of €,

(1 ya
(A)i(t) = (Ai(O)] < pese =" 1]
s e, e~ (E) ()
(c* )a _* Cx €
nt S c* 6‘28—1
é2 . €2

NN
< -
< m1n{c2\/z, i }

= €2—€2

N
< m1n{§p*,T}. (6.18)

< ucse

Similarly, taking the derivatives of (6.14) with respect to w, = (u,,v,) and using
that, on the domain of ¢, in (6.13), |P,| < ¢(29¢)? ™!, for some constant ¢ depending
only on P, one finds that, for an eventually larger value of ¢* in (6.4),

|(r);(t) = (r);(0)] < u<0(2§€)25+1+c*e(cju)a>tg4iié—?j). (6.19)

Inequalities (6.18)—(6.19) imply that for |¢| <t, the motion ¢t — (A(t), L(1), wi(t))
n—1
)

. oo 4 :
remain confined inside the set (A),, 1172 X T" X B, . In particular,

1
[wloo < furfz < 08(1+ 77+ 7—) . (6.20)
0

By (6.16) and the fact that 7 < 2,

motions remain confined in (A,)sp, /a4p,7/2 X T" X ng"_l) C (Ay)p

the ¢,—images t — (A(t),1(t),w(t)) of such
x T x Bi=b
5 de
We now prove that such trajectories are confined in M%"_4(€, , and hence, by

€)
(6.11), they are actually motions of H. By the definition of M(¢, €), we have to
prove that

*

€< o(A),G) <€, Vit <t. (6.21)

Using (D.6), (6.8) and that, by (6.6), u < (¢/c,)%?, one finds the following bound
for the A—projection of ¢,:

A=Ay < 222 [ pe
70



By this inequality and the first bound in (6.18), we have
2|A(t) — A(0)|; < 2|A(t) — A(0)] +2sup|A, — Al <& — &, (6.22)

proving the first inequality in (6 3). Moreover, since, by (6.17), € < o(A(0),G) < €,
G-

< (A(O), G)* +2|A(t) | — 2]A(0)x

= oAt),G) <+ - =&, (6.23)

2 ~2)

which proves (6.21). To conclude, it remains to prove the bound in (6.3) for the
actions 7;.

Assumption (6.6) and the bounds in (D.6) imply that w, and @ are at most at the
distance

* 64
i — W] < ==t . (6.24)
Yo 3
There follows from (6.20) and (6.24) that
1 c, 64
[0(t)]oo < [wilos + [wilt) = w(t)[oo <PE(L+ 7+ —) + ——-1¢
Yoo 0 3
(6.25)
giving finally, by (6.9) and (6.19),
7(t) =7 (0)los < [7u(t) = (1) (0) oo + [0 — wioo (|wi] oo + []o)
(en)? c, 64 9 1 c, 64
< DR (20 + 7+ =) + = =0)
4(n —1) 703()() (147 %) Yo 3
< kE <. i
Theorem 6.1 actually implies stability of eccentricities ey, - - -, e, and of the mutual
inclinations iy, - - -, i,_a, where e; and i; are defined as®
B (el , - cU+1) . g0)
€; = 1— ( AZ ) s COst; = W s (626)

CU+D and SU) being as in (3.2). Indeed, we have the following

Corollary 6.1 For any c > 0, there exists C' > 0 such that, for all motions starting
in the set M, of Theorem 6.1, e; and i; verify

max{|e;(t) — e(0)], [55(t) = 5O)|} <ce, V|| < —5= (6.27)

23Notice that in the completely reduced setting the number of independent inclinations is
(n — 2). Indeed, the overall inclination of C has no physical meaning by rotation invariance and
the inclination i,,_1 between S~ and C™ is a function of A1, -+, Ay, €1, -+, €n,y i1, -+ bn2
and G.
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Proof For ease of computations, we shall consider the functions

e; :=e; and i;:=1—cos’i; (6.28)

and we shall check that, for any ¢ > 0, one has
max{le;(t) — e(0), [ij(t) —(0)]} < e, (6.29)

which implies, clearly, (6.27). The proof of (6.29) comes from the relation between
¢;, i; and the variables (A, [, w); in particular, on how ¢; and i; are related to the
stable actions Ay, -+, A,, 71, -+, Top_o.
Recall that the RPS variables (A,\,Z) are related to the variables (A,l,w) by
(A, N, 2) = (A, I, w) with o

p:=¢ogogop (6.30)
where &, ¢ and ¢ are as in § 5.1 and where we have denoted by ¢ the (6n — 2)—
dimensional transformation obtained from the (6n—4)-dimensional transformation
¢s given by Proposition 5.1, lifted on G and g in the obvious way (see the proof of
Theorem 5.1 in Appendix C). Let us remark the following facts:

(i) the transformation ¢ in (6.30), is defined in (4.9). Its A-projection is the
identity and, we claim, its z—projection of ¢ is A, 52_close to the identity.
Indeed, such projection is defined by the matrices Uy, and U, in (4.9), which
make the quadratic part in (4.5) diagonal. By induction: For n = 2, Q, is of
order 1, so U, = 1, and Qy, is 2 x 2. Its explicit expression can be found in [6,
Appendix BJ. Using such expression one readily checks that, for n = 2, Uy, is
actually Ay 52_close to the identity. For n > 2, as proven in [6, Eq. (8.10), with
§ just after Eq. (7.7)], the matrices U} and U at rank n are related to the
corresponding ones Uy, and U, at rank (n—1) by U;” = diag [Uy, 1]+ O(A;°),
UF = diag[U,, 1] + O(A;%) and the claim follows.

V]

(ii) ¢ is the Birkhoff transformation defined in (4.10) which acts as the identity
on A (Appendix A), and is O(|w|*)-close to the identity in the w-variables
(parity). By items (iii) and (iv) below, the projection IT; 0 (dogog) is e3—close
to the identity, where € is any number such that o(A, G) < ¢;

(i) ¢ is explicitly given in (5.3); recall that the Euclidean length |@|? is sent into
o(A, G)?, with (A, G)? as in (5.4);

(iv) ¢ is constructed in (the proof of) Proposition 5.1. In particular, it leaves
(A, G) fixed and is €2*T!—close to the identity in w;

(v) in terms of the RPS variables (A, A, Z), the functions ¢; = ¢;(A, p,1), i; =
2 4 ¢ 2 2
T]z —géz and rj - pJ q]

i;(A, p, 1) are rational functions of A; and of p; := 5

explicitly given by
28 — |zjl* — 15
2(Aj1 — pj+1) (28541 — |2]?)

_ P
A

Pi .
(2 - —) y Yy = 2erj+1 y Ci41 =

A

€
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Where £i = Zlgjgi Aj, Zi = (7717 e ,771‘4_1, gl, Ce ,&_,_1,]?1, ey Pisqry .- a%)
Such expressions may be found from (3.8) above; compare also [6, Appendix
A 2], for more details.

From (i)-(v) above there follows that e;, i;, expressed in the variables (A, ) have
the form, respectively ¢;(A, %) +¢(A, 7), i;(A, 7) +1;(A, 7) where &, i; are functions
of order O(e2A; ™% + ¢3). This, by (6.3), implies (6.29) and hence (6.27). |}

A BNFs and symmetries

In this appendix we analyze the properties of Birkhoff-normalizations qg used in (4.10)
for, respectively, partial and total reduction in case of symmetries.

Let us consider®” again the transformation R, R,_, and R3 in (3.26)—(3.27), but gen-

eralized replacing A, 1, &, p, q with A € T, (7, é) € R?™(p,4) € R?*™2 for some n, mq
and mo € N. Put m := m1 + mo. Let A be an open, bounded set of parameters in R";
consider a function f: A x B¥™ — R of the form of f2% in (4.8), with the numbers n,
n — 1 into the summands replaced by m;, ma.

Proposition A.1 Let f be Ry, R,_, and Ry —invariant. Assume that the first order
Birkhoff invariants Q = (0,<) verify, for some integer s,

ir}lf\Q-k] >0, VkeZm: 2/@-:0, 0 < |k|x ::2;1@\ <2 . (A1)
Then, there exists 0 < € < € and a symplectic transformation
b (AA2) = (AN (1,6,5,q) € Ax T x B — (AN, 2) € Ax T x B™

which puts f into BNF up to the order 2s. Furthermore, (5 leaves the A-variables un-
changed, acts as a A—independent shift on X\, is A—independent on the remaining variables,
preserves the function G(A, 2) == |A|; — |2|3/2 and finally verifies

poR=Rod (A.2)

for any R =Ry, R,_,, Rs. Moreover, (A.2) holds for any of such b’s.

Remark A.1 (i) Since (Z) commutes with Ry, its (p, §)—projection
6 = (3,0) + O(|(5,0)*)

24(Clearly, Proposition A.1 below is general. However, to avoid to introduce too many symbols,
we use notations (i.e., A, n, Q = (0,9), € o, N\, Z = (1,§,p,4), A\, 2 = (1,&,P,q)) already used
in the paper, which make the application transparent: compare the second item in Remark A.1
below.
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is odd in (p,q); its (7,€) and A\-projections
M6 =A+@(A,2), 56 =&+ 007

are even in (p,q). Using also the commutation with R,, one finds that the (77/,5)7
projection of ¢ is odd in (7, 5)

(i) Tt is not difficult to derive Ry, R,., and Rz -invariance of f2% from that of fyps in
(4.1) (or see the comments between [6, Eq. (7.24) and Eq. (7.25)]).

(iii) Proposition A.1 is closely related? to [6, Proposition 7.3]. The difference being that,
in [6], (A.2) was proven only for R,. To extend the proof in [6], we briefly recall the
setting, referring to [6] for full details.

Proof of Proposition A.1. We recall that d; can be constructed in (2s — 2) steps, as
a product ¢o o - 0 ¢os_o. The first step is as follows. To uniform notations, put w =

(u,v) := ((ﬁ,ﬁ), (€, (j)) One introduces the “Birkhoff coordinates”

b — uj—iv;
(") = ((t1y ey tm), (E, ) { ti ik, (A.3)
J T V2i

Consider then the polynomial of degree 4 (f is even in w, since it is Ry-invariant) into
the expansion of f in powers of w:

Pi= > &I e (A.4)

la1 +]a* |1 =4 1<j<m
Let ¢9 be the time—one flow generated by the Hamiltonian
)

Ca

K 6) = 3 gty I 6 (A5

|a\1:|a*\1:2 1§]§n

Since f is Rgy-invariant, K4 is so, hence G is an integral for the K4flow; taking this

flow at time 6 = 1, we have that ¢o preserves G. Notice that f being R — invariant

12
implies that the coefficients cgf)a* in (A.4) satisfy c((j)a* = cgjl),a, So, the function Ky in
(A.5) is skew—symmetric in (¢,¢%): Ka(A, (t,t*)) = —Ky (A, (t*,¢)). Writing the motion
equations of K4 with initial datum (A,7/2 — A, t*,t), the claim follows. The function
fo :=1fo¢po = f(A,-) 0 Za(A,-) where Za(A,-) is the projection on (t,t*) of ¢, is now in
normal form of order 4 and it is easy to seen to be again R,_, — invariant; so that the
procedure can be iterated. The commutation with Ry is proved similarly. The (standard)

proof of independence of (A.2) upon the choice of ¢ is omitted. §

v

B [6] A, Q, A, N 2 A, 5, Ry, € € are denoted B, Q, I, ¢, w, ¢, 0, RI, ¥, r, respectively.
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B Domains of Poincaré and RPS variables

6n

In this appendix, for completeness, we describe analytically the global domains M5, .,

M
max,RPS*

« The domain M . is the subset of (A, A,z) € R} xT™ x R*" where their respective

action variables satisfy

0<F1§AZ’, _Fi<@igri (B.l)
where the action variables I';, ©; are regarded as functions of the Poincaré variables
in (3.7) i.e.,

2 2 2 2 2 2
Fi:Ai_ni;—E'i, @i:Ai_ni;‘ﬁi_Pi;%

« The domain M g is the subset of (A, A, z) € R} x T™ x R4 where?S the action
variables satisfy

0<I; <A, 1<i<n,
W1 — Do < W <V 4+ T, 1<i<n-1, (B.2)

_\I/n—l < \I/n < \I/n—l .

Here, T';, U, are regarded as functions of the RPs—variables as in (3.8), i.e.,

( 2 2
L= A — B35

Y

2

U= A - S - P 1<i<n-1,  (BY)

2 2
k Uy, =W, 1 — pn;qn .
Notice in particular that the only inequality in (B.2) involving (py, gn) is the third one.
Using (compare (B.3))
2 2 2
+ Z

W Py (o= G,z = - 2
one has that such inequality is just the second one in (3.13), i.e., \/p2 + ¢2 < 2v/G. The
set MS"~2in (3.13) is then defined by the first two inequalities into (B.2), with I'y, - - -,

max

I, Uy, -+, ¥, functions of A and z as in (B.3).

%6Recall that: I'; = [CO| = Aj\/1—€?; U,y = [C|; ¥,, := C3 = C-k®); ¥, = |S0HD] =
|S@ + U+,
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C Proof of Proposition 5.1

The proof is obtained as a generalization of [6, Proposition 10.1]: in [6] the proof is
divided into four steps, and here we just remark how to modify such steps, in order
to get the generalization at arbitrary order. For the purpose of this proof we shall use
the notations adopted in [6], which we now recall. The variables (A, I, ) = (A, I, (a, w))
defined in (5.3) are denoted there by (A, A, Z), with again Z = (4, 0). The variables 7,

-+, Ton_o correspond to Ry, ---, Ron_o in [6, Proposition 10.1]. Moreover, in [6], the
variables (A, G), (X, g}) are called I, ¢, respectively, and the same convention is next used
during the proof: ¢*, ¢, ¢ are names for (A\*, g*), and so on. Notice also that functions
H, f, in (5. 6) and the function P in (5.1) for 2s = 4 are called, in [6], Ha, fa, P, while
the average f is denoted fg ay, compare [6, Egs. (7.30), (9.7), (10.1)].

Step 1 Fix s € N, 9 € (0, 1). We shall prove Proposition 5.1 with 9 at the place of 1/4 in
(5.8); at the end we shall take ¥ = 1/4. Let n € (0, 1) be so small such that the number
¥+ 2sn is still in (0,1), 0* < e, where ¢ is as in (5.5).

Take the number 6 in [6, Eq. (10.15)] to be 6 := 94 2s7. Replace the function (@) defined
just after [6, Eq. (10.16)] by the function

2
F19 = CoA, 0)+¢* (Rt TA(A)- R2+Pa(R: A) -+ P (R 1) 402 (A, 2,0) ). (C.1)

where?” f(0) — p2t2Q — Cy(A, o) + 0 (QR+ %%(A) R24- -+ Py(R; A)) is a polynomial

. . ~ U2 +02 . . . .
in the variables R; = —t5—, which is of degree 2s in (1,

(10.26)], the remainder a®*72Q in (C.1) is
0?*12Q(A, 2,0) = P(A ad: () (C2)

with P as in (5.1) and, quite analogously to [6, Eq. (10.17)], qB(l) denotes the projection
on Z of the transformation (5.3) with ¢ = 0, ¢ replaced by 1 and w replaced by z. Notice
that the functions 2 and 7 are g2-close to the functions defined in [6, Eq. (10.6)(10.7)].
In particular, Q) do not satisfy resonances up to order 2s, for small §*. Replace then the
definition of the function F' just before [6, Eq. (10.19)] with

F(z,a) = 0:(f(% —Cy(A,a))a?

2
= 8{2 <Q(A7 Oé) . R+ %%(A) . RQ 4.4 0425_2735(1:{; A) 4 QZSQ(A,Z,O[)> )

0). Next, comparing to [6, Eq.

Then, quite similarly, for small values of «, by Implicit Function Theorem, one finds an
equilibrium point Ze(A, ) for F' which satisfies, instead of [6, Eq. (10.21)], the following
estimate (with possibly a bigger value of ¢4)

|%e| < 2m|F(0,0)| < cs0® (C.3)

2"Notice incidentally that the monomials Py i=Q- R, Py := LR2, ..., P, in (C.1) are related
to the corresponding monomials Py := Q- 7, Py := 2772, .-+, Py in (5.1) simply replacing in P;
7; with 7; for i # 2n — 1 and a1 with o? 1 ;. Such invariants may be taken to be, up
to O(0?), as the first approximation of the invariants Q, 7, ---, P, in (5.9).
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with m as in [6, Eq. (10.19)]. Thus, the function fg .y has an equilibrium point Z.(A, G) :=
o(A, G)we(A, o(A, Q)) satisfying |2.(A, Q)| < Co(A, G)**!, with a suitable constant C
independent of A and G.
Next, instead of taking ¢ < €2, where €5 is an upper bound for ¢ with the property at
the end of [6, Step 1] take o(A, G) < 6, where 0* is so small that, for o(A,G) < §*, the
following inequality holds

|ze(A, G)| < Co(A, G)*** < no(A,G) . (C.4)

Step 2 Define a change of variables (I, ¢*, 2*) — (I, ®, 2) defined by [6, Eq. (10.22)] and
by the last equation at the end of [6, Step 2], but modify the choice of the domain of ¢*
as follows

TeAXRy, ¢ e, [ < (04 (25— n)e= (0 —n)o < (C.5)

By the triangular inequality, (C.4) and Equation [6, Eq. (10.22)], ¢* is well defined on
such domain. Exploiting the definition of ¢* and (C.4) one finds that ¢* (acts as the
identity on I = (A, G), as a ¢*~independent shift on ¢* and moreover) verifies

|0 (1,0%,2%) = (1, ¢, 2")] < Co(A, G)*

with C independent of ¢* and z*. Finally, letting H* := H o ¢* = hi + puf*, one has that
the averaged perturbation becomes®®

(f*)aV(I’ z*) — (f o ¢*)av _ fav o ¢*
= C"()+Q"(A)-R* + %T*(A) . (R*)2 + -+ PR A)
+0O%(1,2%) , (C.6)

for suitable Q*, 7*, ---, P*, which are g>-close to Q, 7, -, Psin (C.1) and Q* defined
as in [6, Egs. (10.25)—(10.26)], with P replaced by the function P in (5.1). In particular,
Q* do not datisfy resonances up to order 2s, provided §* is suitably small.

Step 3 Replace [6, Egs. (10.27)—(10.30)] as follows. Denote by

Q(l,z") = > K+ O(l**) (C.7)

k€{07 725}7k;é1

the Taylor expansion around z* = 0 of Q in (C.6). In the case 2s = 4, Qf, Q3, 9Qf,
Q3 correspond to the functions QF, Q*, C*, F* of [6, Eq. (10.27)]. By the definition
of Q% it is not difficult to see that Qj are 0(257k+2)_close to zero. Since Q5 is %
close to zero, for an eventually smaller §*, one can find a symplectic transformation
¢ (1,9%,2*) — (I, ¢*, z*) which leaves I unvaried, as a ¢*~independent shift on ¢*, is
linear on w* and puts Q*-R*+ Q3 into the normal form Q*-R*, where Q* are ¢?*—close of
Q* and hence do not satisfy resonances up to order 2s for an eventually smaller §*. Such

28The operation of composition with ¢* commutes with \*-averaging, since ¢* acts ¢*—
independent shift on ¢*. This fact is common to the transformations ¢*, ¢2s_2 below and it
will not be mentioned anymore.
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transformation ¢* is easily seen to be p**T1-close to the identity and the transformed

hamiltonian H* := H*0¢™ = hx(A)+pf*(A.I*, w*) g*—independent and has the quadratic
part of (f*)* = (f*)®o¢* in diagonal form. Finally, since ¢* is 0®**1-close to the identity,
with an eventually small §* for which |2* — z*| < C¢?**1 < g, one can take as domain
of ¢* the set

I'e Ax R-‘r ) (P* € Tn+1 ’ |Z*’ < (19 + (28 - 2)77)9 = (0 - 277)49(A7 G) < & ) (CS)

which implies that z* satisfies (C.5). Moreover, ¢* puts f}, into the form
fo=faodt = O+ R 457" (R 4 PIR",A)
O Q) O P (C.9)

ke{3,-,2s}
where Qf are monomials of degree k in z*, which are ¢**-close to Qj in (C.7) and hence
Q25+2_kfclose to zero. This implies in particular that * are (2s) non resonant and the
matrix 7% is p?~close to 7 in (C.1), hence, non-singular. Notice that, in the case 2s = 4,
C*, Q*, 7 correspond to the functions Cp, €, 7 in the last equation in [6, Step 3]. ; 3,
Qj to the functions C*, F*.

Step 4 Apply now a Birkhoff transformation qubgs_z in (2s — 2) steps (which is possible
thanks to non-resonance of 2*). From the claimed properties of the polynomials Q in
Step 3 above, one has that (525_2 can be chosen to be ¢**T1-close to the identity, and
acting as a the identity on I, as a ¢—independent shift on ¢. Letting §* to be so small
that |2 — 2*| < Cp?**1 < (2s — 2)7, one has that the domain of $2s—2 may be chosen to
bel € AxRyp e T |z < Jo(A, G) < 6%, so that z* satisfies (C.8). This implies
in particular that ¢ := ¢* o ¢* o gbgs 2 is well defined on the domain defined in (5. 7)
above, with ¥ = 1/4 and arbitrary § < & < §*. Moreover, the (A, N, 2)- projection of b,

s = H(A,)\ 2) 0¢ is easily seen to be symplectic with respect to the 2-form dAAdA+daAdw
and satisfying the thesis of Theorem. 1

D Properly—degenerate averaging theory

In this Appendix we shall prove a result in averaging theory, which is needed in the proof
of Theorem 6.1.

Let us fix some standard notations: B]"(z) denotes the complex ball of radius r in C™,
centered in z; the ball around the origin B)"(0) is simply denoted by B;*. If V' C R™
is an open set, V, denotes the complex set |J,oy B,'(z) and Tg" denotes the complex
neighborhood of T™ given by {z € C™ : |Imz;| < s,1 < j < m}/(2rR™). Also, if
fu,0) =3 pegn fr(u)e* ¥ is a real-analytic function on Wy, = Vi, X T%, || f||s,s denotes
its “sup-Fourier” norm: || f|ly.s :== 3 jczn supy, | fxle¥ls, where |k| == |k|1 == >0, [Kil.

Proposition D.1 Let ny, ng € N; let V' be an open set in R™; Wy, ¢ 50 1= Vo X T x
B2z et H(I,0,p,q; 1) © Wpyeo,50 — C be a real-analytic Hamzltoman on Wy .eo.s0 Of

€0

the form
H(I,¢,p,q; 1) = Ho(I; ) + puP(I, 0, p,q; 1) (D.1)
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where the average P,y = anl P(I,0,p,q; 1) (%)nl has an elliptic equilibrium in p = q =

0 for all I € V. Assume that the map I — 0?Ho(I; 1) is a diffemorphism of V'; that the

first order Birkhoff invariants Q of Py, do not satisfy resonances on V' up to the order
2s. Let 1 >n — 1.

There exist positive numbers ci, co such that, for all 0 < a < ﬁ one can find a
number 0 < €, < 1 such that for all
1 € 1
Y>1, 0<eé<e and (€)20F) < p < ( ) 1-2a(r+D) (D.2)
&0

one can find an open set Vi, C 'V, /35 a positive number ¢ and a real-analytic symplectic
transformation

Gx: (Vi x Tl ) % x B22 — (Vi)31,, x T™

2
3¢/32 50/6 % B2 (D.3)

where py 1= Z—g max{\/g, Verus? < £8, which carries H into Hy := H o ¢, where

H,(I,,p,q) = Ho(I) + uNo(I,7) + uPy(I, p, q) + cpe” ) “foo,pq) (DA

pi® + q;®

where N, is a polynomial of degree s in r; = whose coefficients are (€, u/€)—

close to those BNF' associated to Pay; P, has a zero of order (2s+ 1) in (p,q) = 0 for all
I € (Vi)p, and fy is uniformly bounded by 1.
The transformation ¢, may be chosen so as to satisfy

mn 2n 2n
¢*<(V;)p*/2 X Tsol(1+i)/48 x B (2 )/64) 2 (V*) NZR T50/48 B3e/264

ni 2n
¢*<(V*)p*(1+n)/2 x T so(L+n+55)/48 x B (21+n+ )/64) <
ni 2n
(Vedsp. jatpumso X T so(1+n+:5)/48 x 35(21+n+ 2) /64 (D.5)
for all m € (0,1) and, moreover, if (I, Px, Px, @x) 18 short for ¢.(1,,p,q), the following

bounds

a/2

|I, — I| < &min{\/,ué,
0

C.
|<,0* i ()0‘ < lua(67+5)/2
Y0

max{|p, —pl, ¢« —ql} < *max{f \[} (D.6)

7]
7€}M

The set V, can be chosen to have Lebesgue measure

meas Vy, > (1 — £,(&, )" T2 ) meas V| (D.7)

with f,(€ ) == \/ﬂmax{\/g, NG Y

If, instead of (D.2), one assumes

W>1, 0<é<e and 0<p< é(loge 172+ (D.8)

C<Y0
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(where €, and c, depend only on s) then p,, (D.4), (D.6) and (D.7) are respectively
replaced by p, = X max{ \/g, NG

_a

H*(Ia (pvpa q) = HO(I) + MN*(I7 T) + /-LP*(vaa Q) + CM628+1Q*(17 gpvpv q)

- L] < &min{yje, 2}(loge™)™ o — ] < & minfe, £}(loge)!

Cx

p—pil s la— gl < Ssmin{e, Z}(loge )"
meas V, > (1 — f,(€, 1) (log E_l)T'H) meas V' (D.9)
where N, and P,, f, are as above and |Q,| < 1.

The proof is based upon a technical result proven in [15] or [4].

Lemma D.1 (Averaging Theory) Let K, 5 and s be positive numbers such that Ks >
6; let a > 0 and £ € N. Let H(u,¢) = h(I) + f(u, ), with f(u,p) = >, fe(u)e*?, be
real-analytic on Wy sy s := Ar X By, X B;q X T§+S, where A x B x B' C R x R™ x R™
and v = (r,1p,74). Finally, let A be a (possibly trivial) sub-lattice of Z* and let w denote
the gradient Or h. Assume that

lw-k|>a VIEA ,Vk¢éA, |k|<K (D.10)
d 1
E = fllvs+s < ﬁ , where d =min{rs, rpre} , cm = e(—;em) .(D.11)

Then, there exists a real-analytic, symplectic transformation

v (I d) e Wej2,svs6 = (L p,q) € Woss (D.12)
such that
Hy:=HoV=h+g+ f,
with g in normal form and f, small:
12 27¢,, B> _ E
4

9= gI'.p,d)e** lg = TATZ fllos2.545/6 < 17 —0g
keA

||f*||v/2,§+s/6 < e_KS/ﬁE . (Dl?))

IN

)

Moreover, denoting by z = z(I',¢',p',q'), the projection of W(I',¢',p',q") onto the z-
variables (z =1, ¢, p or q) one has

max{as|] —I'|, ar|e — |, arglp—p'|, arpl¢ — |} <9E. (D.14)

Proof of Proposition D.1
Assume (D.2). Pick two numbers Cy and C > 1; let the numbers ¢, and €, of the

R
> 174+ he proof will be based on

statement verify ¢, > (20Cp)? and €, < (m
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the following inequalities (implied by (D.2)) for € and p and on the definition of the
number § = (€, 1) as

1
— 1 1—4a(7+1)
€< <(zcco)2)

1 1
(20 < () &

7= 200 max { /4 KTH2, VERTH2L with K= L.

The numbers Cy and C will be chosen later, independently of 79, @ and, obviously, on €
and .

Step 1(Averaging over the “fast angles” ¢’s)

Let (1o, 0,0, qo) denote the variables in (D.1). We can assume that Pyy(po, go; lo) is in
BNF of order 2s. The first step consists in removing, in H, the dependence on ¢ up an
exponential order (namely, up to O(e~/#")). Let po, €, so denote the analyticity radii
of H in Iy, (po,qo), o, respectively and take € < ¢y. We apply Lemma D.1 ;| with equal
scales, i.e., taking a1 = ag := a (see below). Next, we take £ := {1 4+ lo = nj, m = ny
h=Hy, f=puP, B=B ={0},r,=r,=c¢€p,s=250,5=0,A={0} €Zm, A= D,
v = p, where D, p are defined as follows. Let 7 > nj, M := max; ; supy, \8%H0(IO)|,

co = %, pi= max{\/g, \/E}u“/Q. Take

D=a' (DI )0V and p= 32%3,3 — 2M?‘<T+1 < 0, (D.16)
where D5 - C R™ is the set of (7, 7)-diophantine numbers in R™, i.e.:
Dy, = {wER”lz |w - k| >]IZ\T for all ke Z™ , k:;é()} .
Let now py, V, be defined as
pe=25=2p. V=D, (D.17)

The following measure estimate is standard, since Wy = dHy is a diffeomorphism of V'
and 7 >n — 1. ) )

meas (V \ V*> < meas (V \ D) < Coymeas (V) (D.18)
where Cj is a suitable number depending only on V. Take in (D.15) Cy > Cy and
C > 2—1\/50M29cn2\|13u(
By a standard argument, for Iy € Dﬁ, the unperturbed frequency map wg = 0Hj verifies

(D.10), with aq = a2 = a := 5=, r and A as above. The smallness condition (D.11)

is easily checked by the choices (D.15): since eK = eu~ @ < e!=/a(7+1)) < 1 and C >
271\/$0M290n2||P||(p0750760)780,

£0,€0,€0),50 °

- 402 < 7 ap
€0,€0),50 80M290n2 ek — SOM2gcn2K2T+2 - 27cn2K50 .

E = p][Pllp,,
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Inequality Ksy > 6 is also trivially satisfied. Thus, by Proposition D.1, we find a real-
analytic symplectomorphism

¢ : (f> o, D, (.7) € Dp()/Q X TZOI/(; X BZ)Q/Q - (107(10071)03(]0) € D,Do X T?Ol X B’er? (Dlg)

and H is transformed into

H(I,,p,q) = Hod(I,$,5,q) = Ho(I) + p N(I,p,q) + pe 5/ P(I, 5, 5,7) -

By (D.13), ||P

0,5 S C and

_ _ o 27+1
sup [N — Py | < C
Dsy2

(D.20)

Since € < g, in particular, ¢ is defined on the smaller set W(s/2,e/2),5» and the following
inclusion holds

¢: Dy x To s % Bijy — D; x T3 x BL? (D.21)
as it follows from the following inequalities
__ _uKT uC . g 1 2C~p max{ \/E, VG p
[Ip—I| < C—— = 12rnln{ ,—1 < =—
Y 20KV NG 128 128
3 _ —,uf_(T ;LC_' . e 1 3 €
J— s —_ < C = — T = < ey < =
lpo —pl, lg—ql < S TN SIE mln{\/; \/g} < et <3
) R c o 50
—p| < C = -1 < D.22
oo ¢ < O = feaminte, ) < (022

Notice that the former bounds in each line follow from (D.14); the latter ones follows
from the definition of p in (D.16), from (D.15), Cauchy estimates and vy > 1.

Step 2 (Determination of the elliptic equilibrium for the “secular system”)

In view of (D.20), N — P,y is of order uK* 71572 Using the Implicit Function Theorem
and standard Cauchy estimates for small values of this parameter, for any fixed I € D 5/2>
N also has an equilibrium point (pe(I), ge(I)) which satisfies, by (D.15) and taking C' >

\/64C/3 and using v > 1

s ¢ o o c

e I s e I S — = y — S y oy D23

(0 D)) < O = fymine, ) < b minge, £y < £ (D23)
Consider now a neighborhood of radius 3¢/8 around (pe(I), ge(1)). We let

¢:(I,8,5,4) € Dy x T 1o X By — (I,%,p,q) € Dyjo x T} s x Bl (D.24)

the transformation which acts as

T=1, p=plD+5. a=alD+d, p=¢-0;(p+pD) (a-all).

Such transformation is easily seen to be symplectic, having

5,9 0) = 1@+ (5+pe()) - (7 (D)
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as generating function. Notice that ¢ is well defined, since, in view of (D.15), (D.23),
Cauchy estimates, one has

L 3 7 . 3 o
P — Dl [pe| < 25672 min{€, =}, 17—l =lg| < 25672 ;=)
1o — @ < émaX{EZKTJrl MEKST+2} < c Iua(67'+5)/2 < S0 < 50
o y ’ ’73 — 2Cwg — 192 12
(D.25)

where we have used yp < 1 and C' > 192@

Finally, 6 puts H into the form H := Hogb Ho(I) + puN(, Y q) + pe K5/P(I, 4, p,§),
with N := No¢, P := Pog. Observe that HP |5.5 < C and N has an elliptic equilibrium
point into the origin and, being uK2?" 152 close to P,y (see (D.20)), its quadratic part
is uK? 1572 close to be diagonal.

Step 3 (Symplectic diagonalization of the secular system)

We now proceed to diagonalize the quadratlc part (in (,§)) of N. By (DD.20), since Py,
is in BNF, one has that N is zK2" 1572 close to be diagonal. Therefore, one finds a
symplectic transformation

(b : <f7 ¢7ﬁ7 qA) € Dﬁ/B X TZO/ X B _/16 (j7 @7137 q~) € Dﬁ/4 X Tgol/12 X ng/g (D26>
which is estimated by

e AMERPTH C 3 3e
— C = =
15—l |q—ql = 1072 min{e*, p} < 25672 YIRST:
=2 173174+2 A
~ ~ HE K C a(67+5)/2 50 50
—ol<C < <0 0 D.27
o -al< o - 2070” ~ 192y 24 ( )

having used again Cauchy estimates, 79 > 1, € < € < 1 and the second inequality in
(D.25). By construction, the quadratic part of N, where N is defined by the equality

H = Hod=Hy(l)+pN(Lp,4) + ne XD, $,p.4), (P:=Pod),

is in diagonal form. Moreover, choosmg an eventually bigger ¢4, one has that the first
order Birkhoff invariants 2 of N, being pK?* 1572 close to the corresponding ones of
P,y, are non resonant of order (2s). Notice that, since N is uK? 152 close to N, by
(D.20), is also uK?* 152 close to be in (2s)-BNF.

Step 4 (Birkhoff normal form of the secular part)

We finally use Birkhoff theory to put N in BNF of order 2s. This is possible since,
as above remarked, the first order Birkhoff invariants € of N are non resonant up to
the order (2s). Recalling that N is uK 2715 2-close to be in (25)-BNF, we then find a
real-analytic and symplectic transformation

(ZBZ (I 90,]?7 ) € Dp/16 X Tso/48 X Bg /32 (ja@aﬁa ) p/8 X TS /24 B;m/lﬁ (D'28>

which acts as the identity on the I-variables and, on the other variables, is estimated by

=2 r2r+1 >
o - werK C . 3 3 _  3_
p—2l, 1gd—4q| < = 10772 min{e>, pe} < 256736 < 558
3 3K3T+2 8. s s
~ C a(67+5)/2 < 70 <24 D.29
P —ol< 5 =50t = 1927 © 48 (D-29)
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by Cauchy estimates, s < 1 and again by the second inequality in (D.25). Moreover, ¢
puts H into the form

H:=Ho¢ := Ho(f)+uN(f,7‘)+u15+,uefks/6f (D.30)
. P2+ G2 .
where N is a polynomial of degree s in 7; = % and P has a zero of order (2s+ 1)

in (p,q) = 0.

Step 5 (Conclusion)

Take the transformation ¢, in (D.3) as ¢y := dododod where ¢, b, ¢, ¢ are as
above, H, = H, N, = N, P, = P as in (D.30) and f, by default. The transformation
¢, is easily seen to be well defined by the definitions of V, and of p, in (D.17) and by
the inclusions (D.21), (D.24), (D.26) and (D.28). Moreover, the bounds (D.22), (D.25),
(D.27) and (D.29) and usual telescopic arguments easily imply (D.5) and (D.6). This
completes the proof of the first part of the proposition.

The proof that (D.8) implies (D.9) in place of (D.4), (D.6) and (D.7) proceeds along
the same lines above, replacing the “power low” choice of K and 7 in (D.15) with the
following “logarithmic” ones

[ 6(2s + 1)(log(671))71 =207 max{\/g, Va R 1

S0
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