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The aim of these lectures is to present, in a self contained way, the fundamentals
of KAM theory, which, as well known, deals with the problem of constructing
quasi-periodic motions in real-analytic or smooth conservative dynamical systems.

KAM theory is based upon quantitative techniques designed to overcome the so-
called small denominator difficulties arising in the construction of quasi-periodic
motions and works under rather stringent smallness and regularity assumptions.

For sake of presentation, we will consider only second order Hamiltonian systems
with a finite number of degrees of freedom (periodic in the “space” variables), i.e.,
systems governed by Hamiltonian functions of of the form

H(y, x) =
y2

2
+ V (x) , (1)

where y and x are standard symplectic variables (y, x) ∈ Rd×Td, and V : Td → R

is a (multi-periodic) smooth or real-analytic function; y2 := y ·y :=
∑d

j=1 y2
j . Here,

Td denotes the standard flat d-torus Td := Rd/(2πZd); the (standard) symplectic
structure is: dy ∧ dx =

∑d
j=1 dyj ∧ dxj and the Hamilton equations are

ẏ = −Hx , ẋ = Hy , (2)
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where Hy denotes the y-gradient (Hy1 , ...,Hyd
) and Hx denotes the x-gradient

(Hx1 , ...,Hxd
); dot denotes time derivative.

The point of view taken up in these lectures is that of non-linear functional analysis,
as we briefly proceed to explain. The problem of constructing (maximal1) quasi-
periodic solutions is essentially equivalent to solve a non-linear partial differential
equation on Td, E(u) = 0, with real-analytic or Ck coefficients. If one is given
an approximate solution, i.e. a function v for which E(v) is not zero but small
(in suitable norms), then, under suitable conditions, it is possible to find a true
near-by solution. The method we shall follow is based on a Newton (“quadratic”)
scheme, which allow to construct a sequence of better and better approximations
(living in larger and larger Banach spaces) converging to a true solution. The loss
of regularity (related to the inversion of non elliptic differential operators and to
the above mentioned small denominator problems) arising in solving the associated
linearized equation is overcome by the speed of convergence of the scheme.

The approach presented here - sometimes referred to as KAM theory in configu-
ration space - avoids completely the use of symplectic transformations and needs
less preparation than standard KAM theory.

The notes of the lectures are divided in two chapters:

In the first chapter a KAM theorem establishing the existence of quasi-periodic
solutions (with prescribed “diophantine” frequencies), in real-analytic setting, is
presented. The “potential” V in (1) is not assumed to be small; what allows to
start up the perturbative procedure is the existence of a good enough approximate
solution.

While no effort is put in trying to get “optimal estimates”, a certain care is devoted
to perform explicit estimates and also to discuss convenient norms (Fourier and
complex sup-norms).

In the second chapter, we shall consider Hamiltonians H in (1) with V ∈ C l(Td),
which shall be assumed to be small in C1 norm. Then, assuming l big enough and
using the approximation technique due to Bernstein, Jackson, Moser and Zehnder2,
we shall construct (using the real-analytic KAM theorem of the first chapter) a
sequence of real-analytic approximate solutions converging to C s quasi-periodic
solutions; explicit estimates on l and s will be given.

1I.e., quasi periodic-solutions with d independent frequencies; for the definition of quasi-
periodic solutions, see below.

2Such technique gives precise hypotheses in order to approximate C l functions with real-
analytic ones and, viceversa, to get C l functions out of limits of real-analytic sequences.
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1 Analytic KAM Theory

1.1 Warm up: Newton scheme for the standard IFT

The aim of this section is to discuss a proof of the (standard) Implicit Func-
tion Theorem in Rn based on the “Newton method” with the purpose of
illustrating, in a trivial case, the scheme of proof that we shall use to con-
struct quasi-periodic motions for Hamiltonian systems.

Let (ȳ, x̄) ∈ Rn ×Rm; denote by Dn
ρ the closed ball in Rn centered at ȳ with

radius ρ and by Dm
r̄ the closed ball in Rm centered at x̄ with radius r̄; let
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Xr,ρ denote the Banach space, C(Dm
r , Dn

ρ ), of continuous function from Dm
r

into Dn
ρ endowed with the sup-norm.

Theorem 1 Let F ∈ C(Dn
ρ×Dm

r̄ , Rn) be such that y 7→ F (y, x) ∈ C2(Dn
ρ , Rn)

for all x ∈ Dm
r̄ with Fy invertible on Dn

ρ ×Dm
r̄ . Let α and β be positive num-

bers such that
∥

∥

∥(Fy)
−1
∥

∥

∥

ρ,r̄
≤ α ,

α2

2
‖Fyy‖ρ,r̄ ≤ β , (3)

‖·‖ρ,r̄ being short for supDn
ρ×Dm

r̄
|·|. Suppose that, for some 0 < r ≤ r̄ and

0 < σ < 1, there exists u0 ∈ Xr,ρ such that ‖u0 − ȳ‖r := supDm
r
|u0 − ȳ| < ρ

and:

‖F (u0(x), x)‖r ≤ min

{

σ

β
,
1 − σ

α
(ρ − ‖u0 − ȳ‖r)

}

. (4)

Then, there exists a unique function u ∈ Xr,ρ such that:

F (u(x), x) = 0 , ∀ x ∈ Dm
r , (5)

and
‖u − u0‖r ≤

α

1 − σ
‖F (u0(x), x)‖r .

Remark 1 (i) The limiting case β = 0 corresponds to the linear case

F (y, x) = a(x) + A(x)y

(with A invertible), in which case the solution of F (u, x) = 0 is simply
u = −A−1a.

(ii) If F (ȳ, x̄) = 0, one can obviously take u0(x) ≡ ȳ (choosing suitably r so
as to meet condition (4)).

(iii) The function u0 is called an approximate solution of (5); the function

ε0(x) := F (u0(x), x) , (6)

is the associated error function. The inequality (4) should be interpreted as
a smallness condition on the error function and the IFT can be rephrased
by saying that if the smallness condition is verified by the error function ε0

associated to the approximate solution u0, than there exists a (unique) true
solution u, which is ‖ε0‖-close to the approximate solution u0.
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Proof We first show how to construct out of u0 a new approximate solution
u1 for which the associated error function ε1(x) := F (u1(x), x) is quadrati-
cally smaller that ε0.

Let ε0 be as in (6) and define

w0(x) = −
(

Fy(u0(x), x)
)−1

ε0(x) , u1 := u0 + w0 . (7)

We claim that u1 ∈ Xr,ρ and that w0 and ε1 := F (u1, x) verify:

‖w0‖r ≤ α‖ε0‖r , ‖ε1‖r ≤ β‖ε0‖2
r . (8)

In fact, the first estimate in (8) is immediate consequence of the definitions
of w0 and α. To show that u1 : Dm

r → Dn
ρ , we compute:

‖u1 − ȳ‖r := ‖u0 + w0 − ȳ‖r ≤ ‖u0 − ȳ‖r + ‖w0‖r

≤ ‖u0 − ȳ‖r + α‖ε0‖r ≤ ‖u0 − ȳ‖r + α
1 − σ

α

(

ρ − ‖u0 − ȳ‖r

)

< ρ ,

where we have used the assumption (4) on ε0 := F (u0, x). Observe that, by
the definition of ε1, w0 and Taylor’s formula, one gets:

ε1 := F (u1, x) := F (u0 + w0, x) = F (u0, x) + Fy(u0, x)w0 + Q

= ε0 + Fy(u0, x)w0 + Q = Q (9)

where3

Q =
∫ 1

0
(1 − t)Fyy(u0 + tw0, x)w0 · w0dt . (10)

Thus, by the estimates on w0 in (8) and the definition of β, we get

‖ε1‖r = ‖Q‖r ≤
1

2
‖Fyy‖ρ,r̄ ‖w0‖2

r ≤
α2

2
‖Fyy‖ρ,r̄ ‖ε0‖2

r ≤ β‖w0‖2
r , (11)

completing the proof of (8).

The idea is, now, to iterate such construction: Fix k ≥ 2 and assume that
u1,...,uk−1 are given approximate solutions belonging to the Banach space
Xr,ρ and such that, if one defines

wj := uj+1 − uj , εj(x) := F (uj(x), x) ,
(

0 ≤ j ≤ k − 2
)

, (12)
3“·” denotes, here, the standard inner product.
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then the following inequalities hold for all 0 ≤ j ≤ k − 2:

‖wj‖r ≤ α‖εj‖r , ‖εj+1‖r ≤ β‖εj‖2
r . (13)

Note that such inductive assumption has been verified for k = 2 with u1 as
in (7).

We claim that, under the inductive assumption (12) and (13), setting

εk−1(x) := F (uk−1(x), x) , wk−1(x) = −Fy(uk−1(x), x)εk−1(x) , (14)

then one has
uk := uk−1 + wk−1 ∈ Xr,ρ , (15)

and (13) holds also for j = k − 1.

In fact, the estimate on ‖wk−1‖r follows at once (as above) from the definition
of wk−1 and α (and the inductive assumption on uk−1). Let us, now, show
(15). Multiplying by β the second relation in (13) can be rewritten as

β‖εj+1‖r ≤ (β‖εj‖r)
2 , (16)

which iterated leads to

β‖εj‖r ≤ (β‖ε0‖r)
2j

, ∀ 0 ≤ j ≤ k − 1 . (17)

Thus, by (12), (13) (first inequality), (17) and (4), one has

‖uk − ȳ‖r =
∥

∥

∥u0 +
k−1
∑

j=0

wj − ȳ
∥

∥

∥

r

≤ ‖u0 − ȳ‖r +
k−1
∑

j=0

‖wj‖r

≤ ‖u0 − ȳ‖r + α
k−1
∑

j=0

‖εj‖r

≤ ‖u0 − ȳ‖r +
α

β

k−1
∑

j=0

(β‖ε0‖r)
2j

≤ ‖u0 − ȳ‖r +
α

β

∞
∑

j=1

(β‖ε0‖r)
j
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= ‖u0 − ȳ‖r + α
‖ε0‖r

1 − β‖ε0‖r

≤ ‖u0 − ȳ‖r + α
‖ε0‖r

1 − σ

≤ ‖u0 − ȳ‖r + α
1 − σ

α

ρ − ‖u0 − ȳ‖r

1 − σ
= ρ .

This shows (15). At this point, also the estimate on ‖εk‖r follows: just
replace ε1, u0 and w0 in (9)÷(11) by, respectively, εk, uk−1 and wk−1.

Thus, thanks to (4), the construction can be iterated indefinitely and {uk}
will converge to a function u ∈ Xr,ρ. Clearly, since ‖εj‖r → 0 (super-
exponentially fast), one has

F (u, x) = lim F (uk, x) = lim εk = 0 ,

showing (5).

Uniqueness is an obvious consequence of the invertibility of Fy.

Remark 2 (i) The approximate solutions uk’s belong to the same Banach
space Xr,ρ. This is so because wk−1 belongs to the same space of uk−1. In the
more complicate case of quasi-periodic solutions for Hamiltonian systems this
will not be the case any more: the analogous of F−1

y will be an unbounded
operator (involving small divisors) and (the analogous of) wk−1 will lie, in
general, in a smaller Banach space.

(ii) In fact, even formally, it will not be possible to solve the linearized equa-
tion4 exactly but only up to quadratically small terms.

(iii) The argument to prove (local) uniqueness in the quasi-periodic case will
be different (because of the lack of invertibility of Fy).

1.2 Quasi-periodic solutions (definitions)

Let, as above, T
d := R

d/(2πZ
d) be the standard d-dimensional flat torus and

let Ω be a bounded domain in Rd. Consider a smooth (say C2) Hamiltonian

4I.e., the equation Fy(u0, x)w0 + ε0 = 0.
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H(y, x) from Ω × Td to R and the associated Hamiltonian equations

{

ẏi = − ∂H
∂xi

ẋi = ∂H
∂yi

i = 1, . . . , d. (18)

An interesting example is when the system is nearly-integrable, i.e., when H
is of the form

H(y, x) = H0(y) + εH1(y, x)

with ε a small parameter. The corresponding Hamiltonian equations become

{

ẏi = −ε∂H1

∂xi

ẋi = ∂H0

∂yi
+ ε∂H1

∂yi

i = 1, . . . , d. (19)

When ε = 0 this system is completely integrable and all solutions,

{

y(t) = y(0) ,
x(t) = x(0) + ∂H0

∂y
(y(0)) t , ( mod (2π, . . . , 2π)) ,

are quasi-periodic:

Definition 1 A solution (y(t), x(t)) of (18) is said to be quasi-periodic, if
there exist a vector ω ∈ Rd (frequency vector) and two functions u, v ∈
C2(Td, Rd) such that

{

y(t) = v(ωt)
x(t) = ωt + u(ωt) ( mod (2π, . . . , 2π)).

(20)

for every t. If the frequency vector is rationally independent (i.e.5 ω · n 6= 0
for every n ∈ Zd \ {0}), then the solution (y(t), x(t)) is said to be maximal
quasi-periodic.

Remark 3 (i) Non-maximal quasi-periodic solutions include periodic solu-
tions: this is the case when there exist T > 0 and n ∈ Zd such that ωT = 2πn;
notice that in this case there exist d−1 linearly independent vectors nj ∈ Zd

such that ω ·nj = 0 for6 j = 1, ..., d− 1. More in general, frequencies may be

5For vectors a, b ∈ Rd we denote a · b :=
∑d

i=1 aibi
6In fact, if ωT = 2πn with T > 0 and n ∈ Zd \ {0} then there are exactly (d − 1)

independent vectors nj s.t. ω · nj = 0.
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classified in terms of the number of relations ω · m = 0 satisfied by ω with
independent vectors m ∈ Zd.

(ii) A maximal quasi-periodic solution is said to be non-degenerate if (ω is
rationally independent and) the map θ ∈ Td → θ + u(θ) ∈ Td is a diffeo-
morphism of Td so that the map θ ∈ Td → (v(θ), θ + u(θ)) ∈ Rd × Td yields
an embedding of the d-dimensional torus into the phase space Ω × T

d. The
relation (20) says that non-degenerate maximal quasi-periodic solutions cor-
respond to d-dimensional invariant tori on which the H-flow is conjugate to
the linear flow θ → θ + ωt.

(iii) In these lectures we shall consider only non-degenerate maximal quasi-
periodic solutions and, hereafter, “quasi-periodic solution” will be used as
synonymous of “non-degenerate maximal quasi-periodic solutions”. In par-
ticular, the frequency vector ω is always assumed to be rationally indepen-
dent.

Consider a quasi-periodic solution (y(t), x(t)) as in (20). Differentiating it
with respect to t we get

{

ẏ(t) = Dv(ωt)
ẋ(t) = ω + Du(ωt) ,

where

D := Dω :=
d
∑

i=1

ωi
∂

∂θi

.

Since (y, x) is a solution of (18), we have

{

Dvi(ωt) = − ∂H
∂xi

(v(ωt), ωt + u(ωt))

ωi + Dui(ωt) = ∂H
∂yi

(v(ωt), ωt + u(ωt))
i = 1, . . . , d ,

which, by density of the trajectory t 7→ ωt on7 Td, are equivalent to

{

Dv(θ) = −Hx(v(θ), θ + u(θ))
ω + Du(θ) = Hy(v(θ), θ + u(θ))

θ ∈ T
d. (21)

7As well known, θ ∈ Td → ωt ∈ Td is dense if and only if ω is rationally independent;
see, e.g., [V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag,
1989].
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Hereafter, (for simplicity) we shall consider only Hamiltonians H of the form

H(y, x) =
y2

2
+ V (x) :=

1

2

d
∑

j=1

y2
j + V (x) .

In this special case (18) takes the form
{

ẏ = −Vx

ẋ = y

or, equivalently,
ẍ = −Vx.

Notice that, in such a case, the second equation in (21) becomes simply

v(θ) = ω + Du(θ) , (22)

so that the system (21) becomes the following single (vector) equation for
u:

D2u(θ) = −Vx(θ + u(θ)) . (23)

The lectures are devoted to discuss solutions of (23).

It is clear that an important rôle in the study of (21) or (23) is played by the
linear equation

Du = f ,

with f a given function on Td. Proceeding formally, we expand both sides in
Fourier series getting

∑

n∈Zd

fnein·θ =
∑

n∈Zd

i(ω ·n)une
in·θ .

Equating Fourier coefficient, we get, for n = 0, the compatibility condition8

f0 = 〈f〉 = 0 , (24)

and, for n 6= 0,

un =
fn

i(ω ·n)
,

(

n ∈ Z
d \ {0}

)

. (25)

8We denote 〈 · 〉 :=

∫

Td

· dθ := (2π)−d

∫

Td

· dθ.
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The denominator (ω · n) in (25), even though never vanishes, might become
arbitrarily small making doubtful the convergence of the Fourier series

∑

n∈Zd

une
in·θ . (26)

Definition 2 We say that ω ∈ Rd is (γ, τ)-diophantine if γ, τ are positive
constants such that

|ω ·n| ≥ γ

|n|τ for every n ∈ Z
d \ {0} . (27)

Remark 4 For τ > d − 1 fixed, the set of diophantine vectors is of full
measure (exercise). For τ < d − 1 (27) is never satisfied (Liouville).

Suppose now that ω is (γ, τ)-diophantine and f is a smooth enough function
with vanishing mean value, 〈f〉 = 0. Then (26)-(25) actually define the
function u, solution of Du = f , up to an additive constant (the average of
u); the unique solution of the system:

Du = f , 〈u〉 = 0 ,

will be denoted by D−1f .

Exercise Find a lower bound on k so that if f ∈ Ck(Td) then D−1f has an
absolutely convergent Fourier series expansion.

Remark 5 The analysis described in these lectures could be easily extended
to the non-autonomous case, i.e, the case when the potential V = V (x, t)
depends also explicitly (and periodically) on time t, V : Td+1 → R. In such
a case Dω has to be replaced by

D =
d
∑

i=1

ωi
∂

∂xi
+

∂

∂t

with (ω, 1) ∈ Rd+1 rationally independent and equation (23) becomes

D2u(θ, t) = −Vx(θ + u(θ, t), t) .
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1.3 Newton scheme for Quasi-periodic solutions

In this section we describe the Newton scheme on which the construction of
solutions of the functional equation (23) will be based.

The strategy that we shall follow mimics the proof of Theorem 1: we shall
start from an approximate solution v of (23), i.e., a (smooth) function v such
that the associated error function

ε := E(v) := D2v + Vx(θ + v) , (28)

is “small” and try to construct a “better” approximate solution

v′ := v + w , (29)

whose associated error function

ε′ := E(v′) := D2v′ + Vx(θ + v′) (30)

is “quadratically smaller” than the error function associated to v.

Remark 6 The discussion in this section will be algebraic in character and
the necessary estimates will be discussed later (§ 1.5). Therefore, words such
as “small” or “quadratically smaller” are used, here, in a somewhat formal
way9. Roughly speaking, the idea is to look for w ∼ ε (i.e., “of the same
order of ε”) so that E(v + w) ∼ ε2. However, as clarified also in Remark 7
below, the reader can also disregard any reference to “smallness” following
only the algebraic identities involved.

Define Q1 as

Q1 := Vx(θ + v + w) − Vx(θ + v) − Vxx(θ + v)w. (31)

and note that, by Taylor’s formula, Q1 is quadratic in10 w. Expanding Vx(θ+
v + w) we find:

ε′ := E(v′) := D2v + D2w + Vx(θ + v + w)
9At an intuitive level, one should think to substitute the error function ε with µε

thinking µ as a small real parameter: the terms appearing with a µ in front will be
thought of as “small” terms and of the same “order” of the error function, terms with a
µ2 in front will be thought of as “quadratically smaller terms”, etc.

10Here and in what follows the symbol Qj ’s stand for terms “quadratic in ε”.
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= D2v + Vx(θ + v) + D2w + Vxx(θ + v)w + Q1

=: E(v) + D2w + Vxx(θ + v)w + Q1

=: ε + D2w + Vxx(θ + v)w + Q1 . (32)

The perfect analogue of the Newton scheme described in the proof of the
standard IFT given in § 1 would consist in finding an “explicit” solution of
the the following PDE on Td

ε + D2w + Vxx(θ + v)w = 0 . (33)

However this is not so easy and, in fact, we shall be able to solve (33) only
up to quadratic terms in ε.

To proceed further, we look at the variation equation for (23), i.e., the equa-
tion

εθ = D2vθ + Vxx(θ + v)(I + vθ) , (34)

which is gotten by differentiating with respect to θ the system (23); here, for
a given function u : Td → Rd, uθ denotes the Jacobian matrix

uθ =

(

∂ui

∂θj
(θ)

)

i,j=1,...,d

,

and I := Id denotes the unit (d × d) matrix.

Setting

M := I + vθ (35)

we can rewrite (34) in the form

εθ = D2M + Vxx(θ + v)M. (36)

Assume that M(θ) is invertible for all θ ∈ Td. From (36) we get

Vxx(θ + v) = (εθ − D2M)M−1

and plugging this equality in (32), we find

ε′ = ε + D2w + (εθ − D2M)M−1w + Q1

= ε + D2w − (D2M)M−1w + εθM
−1w + Q1

=: ε + D2w − (D2M)M−1w + Q2 (37)
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with
Q2 = Q1 + εθM

−1w . (38)

Setting
z := M−1w , (39)

we get:

ε′ = ε + D2(Mz) − (D2M)z + Q2

= ε + D(MDz) + D(DMz) − (D2M)z + Q2

= ε + D(MDz) + (DM)(Dz) + Q2. (40)

Denote by MT the transpose of the matrix M and let M−T := (MT )−1.
Then:

ε′ = M−T
(

MT ε + MT D(MDz) + MT (DM)(Dz)
)

+ Q2

= M−T
(

MT ε + D(MT MDz) − (DMT )(MDz) + MT (DM)(Dz)
)

+ Q2

=: M−T
(

MT ε + D(MT MDz)
)

+ g + Q2 , (41)

with

g := M−T (MT DM − (DMT )M)Dz . (42)

We claim that g is quadratic in ε. To check this, we, first, remark that

〈MT DM − (DMT )M〉 = 〈MT Dvθ − (DvT
θ )M〉

= 〈(I + vT
θ )Dvθ − (DvT

θ )(I + vθ)〉
= 〈vT

θ Dvθ − DvT
θ vθ〉 , (43)

(since 〈Du〉 = 0 for any periodic function u). Integrating by parts,

〈vT
θ Dvθ − DvT

θ vθ〉ij =
d
∑

k=1

∫

Td

(

∂vk

∂θi

(

D
∂vk

∂θj

)

−
(

D
∂vk

∂θi

)

∂vk

∂θj

)

= −
d
∑

k=1

∫

Td

(

∂2vk

∂θj∂θi
(Dvk) − (Dvk)

∂2vk

∂θi∂θj

)

= 0 ,

showing that

〈MT DM − (DMT )M〉 = 0 . (44)
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Thus, we can write:

MT DM − (DMT )M = D−1
[

D
(

MT DM − (DMT )M
)]

.

But, by (36),

D
(

MT DM − (DMT )M
)

= MT D2M − (D2MT )M

= −MT VxxM + MT εθ + MT VxxM − εT
θ M

= MT εθ − εT
θ M ,

showing that
〈MT εθ − εT

θ M〉 = 0 , (45)

and that
MT DM − (DMT )M = D−1(MT εθ − εT

θ M) .

Thus
g = M−T (D−1(MT εθ − εT

θ M))Dz (46)

is quadratic in ε. Furthermore (41) can be rewritten as

ε′ = M−T
(

MT ε + D(MT MDz)
)

+ Q3 , (47)

with

Q3 := Q2 + M−T (D−1(MT εθ − εT
θ M))Dz. (48)

We can now show that the equation

MT ε + D(MT MDz) = 0 (49)

can be explicitly solved.

We have already studied the inversion of the differential operator D and
therefore we know that a necessary condition to solve our equation is that
the average 〈MT ε〉 of MT ε over Td is equal to 0. This is indeed the case, as
we proceed to show.

First, by the definitions of M and ε,

〈MT ε〉 = 〈(I + vT
θ )(D2v + Vx(θ + v))〉

= 〈vT
θ D2v〉 + 〈MT Vx(θ + v)〉 (50)
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where the latter equality follows since 〈D2v〉 = 0. Let us compute the i-th
component of 〈vT

θ D2v〉. Integrating by parts

〈vT
θ D2v〉i =

d
∑

k=1

∫

Td

∂vk

∂θi
D2vkdθ

= (−1)
d
∑

k=1

∫

Td
vk

∂

∂θi

(D2vk)dθ

= (−1)2
d
∑

k=1

∫

Td
(Dvk)D

∂vk

∂θi
dθ

= (−1)3
d
∑

k=1

∫

Td
(D2vk)

∂vk

∂θi
dθ

= −〈vT
θ D2v〉i . (51)

Thus 〈vT
θ D2v〉 = 0 and, in view of (50), it remains to check that

〈MT Vx(θ + v)〉 = 0 .

By the chain rule:

〈MT Vx(θ + v)〉i = 〈
d
∑

k=1

∂(θ + v(θ))k

∂θi
Vxk

(θ + v)〉 = 〈 ∂

∂θi
V (θ + v)〉 = 0 ,

showing that
〈MT ε〉 = 0 . (52)

Inverting D in (49) we find that

MT MDz = −D−1(MT ε) + c , (53)

where c is a suitable constant vector that we shall shortly identify.

Let

P = MT M (54)

and notice that P = P (θ) is, for θ ∈ Td, a strictly positive defined matrix:
P > 0. Thus P is invertible and P−1 > 0. Rephrasing (53) in terms of P :

Dz = −P−1D−1(MT ε) + P−1c. (55)
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By the positiveness of P−1 and its integrability over Td, we have that also
〈P−1〉 is positive and in particular invertible. By taking the average on both
sides of (55), we see that in order for (55) to make sense we have to choose:

c := 〈P−1〉−1〈P−1D−1(MT ε)〉. (56)

We can now solve for z obtaining:

z = b + D−1(−P−1D−1(MT ε) + P−1c)

=: b + ẑ (57)

having defined ẑ as

ẑ = D−1(−P−1D−1(MT ε) + P−1c), (58)

and b denotes the arbitrary average of z. We fix this ambiguity by requiring
that

〈v′〉 = 〈v〉 , (59)

which is equivalent to

0 = 〈w〉 = 〈Mz〉 = 〈Mb〉 + 〈Mẑ〉 = 〈M〉b + 〈Mẑ〉 = b + 〈Mẑ〉 ,

i.e.,

b = −〈Mẑ〉. (60)

The above analysis may be summarized in the following

Lemma 2 (KAM scheme) Let V : Td → R be smooth enough and let
ω ∈ R

d be a diophantine vector. Assume that a smooth enough function
v : Td → Rd is given so that

M = I + vθ

is an invertible matrix on Td and define

ε(θ) := D2v + Vx(θ + v) ,
(

D :=
d
∑

i=1

ωi
∂

∂θi

)

.
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Then:
〈MT ε〉 = 0 and 〈MT εθ − εT

θ M〉 = 0 . (61)

Furthermore, if we let:

P := MT M

c := 〈P 〉−1〈P−1D−1(MT ε)〉
ẑ := D−1(−P−1D−1(MT ε) + P−1c)

b := −〈Mẑ〉
z := b + ẑ

w := Mz

Q1 := Vx(θ + v + w) − Vx(θ + v) − Vxx(θ + v)w

Q2 := Q1 + εθz

Q3 := Q2 + M−T (D−1(MT εθ − εT
θ M))Dz

v′ := v + w

ε′(θ) := D2v′ + Vx(θ + v′) ,

then:
ε′ = Q3 and 〈v′〉 = 〈v〉. (62)

Remark 7 (i) The above lemma does not contain any quantitative state-
ment, nor its proof uses in any way the fact that ε should be a “small”
function.

(ii) The proof of Lemma 2 is based upon a series of identities: (50)÷(52)
and (43)÷(45) [proof of (61)]; (32), (37), (40), (41), (46), (48), (49), (59)
[proof of (62)].

(iii) At this level, the above KAM scheme is purely “algebraic” and it will
be only after having equipped it with quantitative estimates that it will be
possible to iterate the scheme and to actually construct solutions of (23).

1.4 Banach spaces of analytic functions and technical
lemmata

In this section we introduce “monotone families” of Banach spaces of real-
analytic functions on Td; such families will depend upon a parameter ξ ≥ 0
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and “monotone” means that a space parameterized by ξ > ξ ′ is smaller than
the space parameterized by ξ ′.

Usually in KAM theory one works either with complex sup-norms or with
Fourier norms. In connection with smooth theory (chapter two below) sup-
norms are more convenient, while for the extension of KAM theory to infinite
dimensions Fourier norms are more suited. In this section we shall discuss
sup-norms and for completeness we present the analogous technical results
also for Fourier norms in Appendix B.

In these lectures we use the following standard notation: for n ∈ Zd, α ∈ Nd

and x ∈ Cd, we let

|n| =
d
∑

i=1

|ni| , |α| =
d
∑

i=1

αi , ∂αf :=
∂α1+...+αdf

∂xα1
1 . . . ∂xαd

d

, xα := xα1
1 . . . xαd

d ;

(63)
Fourier coefficients of a periodic function will be denoted fn; denote, also, by
∆d

ξ the complex strip

∆d
ξ := {x ∈ C

d : | Imxj| < ξ, j = 1, . . . , d} . (64)

For ξ ≥ 0 we define11

Rξ(T
d, RN) :=

{

f ∈ C(Td, RN) with bounded analytic extension on ∆d
ξ

}

.

Rξ(T
d, RN) endowed with the sup-norm

‖f‖ξ := sup
∆d

ξ

|f |

is a Banach space.

Remark 8 In the following, we will consider function f ∈ Rξ(T
d, X) with

values in a matrix or tensor space X; in such cases the definition of the norm
will be adapted in the obvious way12.

11R0 denotes simply C(Td,RN ) endowed with the sup-norm.
12For example, if X = Mat(n×n), then fn ∈ X and, in the definition of the norm ‖f‖ξ,

the expression |fn| denotes the standard “operator norm” sup|c|=1 |fnc|.
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We proceed to discuss, from a quantitative point of view, the equation Du =
f (for f with 〈f〉 = 0) for ω diophantine. While it is elementary to get a
bound of the form13

‖u‖ξ−δ ≤ c(d, τ)
1

γδa
‖f‖ξ

(with 0 < δ ≤ ξ) for some a > 0, to get the optimal dependence on the
“analyticity loss” δ (i.e., the best a) is a subtle matter, which was solved by
H. Rüssmann. We present a version of Rüssmann’s result due to J. Moser
(compare also Salamon’s paper [2]).

Lemma 3 (Rüssmann, Moser) Let d ≥ 2, γ > 0 and τ ≥ d − 1; let
ω ∈ Rd be (γ, τ)-diophantine and let f ∈ Rξ be such that 〈f〉 = 0. Denote
(as above) by u := D−1f the unique solution of Du = f with zero average.
Then, there exists a constant c = c(τ, d) > 0 such that for every

0 < δ ≤ min{1, ξ} ,

one has

‖u‖ξ−δ = ‖D−1f‖ξ−δ ≤
c

γδτ
‖f‖L2,∆d

ξ
(65)

where

‖f‖L2, ∆d
ξ

:= sup

{

(∫

Td
|f(u + iv)|2du

) 1
2

, |v| < ξ

}

.

Remark 9 Clearly ‖f‖L2, ∆d
ξ
≤ ‖f‖ξ.

In order to prove the above lemma, we shall make use of the following general
estimates, the proof of which are deferred to the Appendix A.

Lemma 4 Let f ∈ Rξ. Then, for every n ∈ Zd,

|fn| ≤ ‖f‖L2, ∆d
ξ

e−|n|ξ (66)

≤ ‖f‖ξ e−|n|ξ .

Furthermore, there exists a constant c0 = c0(d) > 0 such that, for every
positive number δ < min{1, ξ} and for every x ∈ ∆d

ξ−δ, one has:

|f(x)| ≤
∑

n∈Zd

|fn|e−(n· Im x) ≤ c0

δ
d
2

‖f‖L2, ∆d
ξ

. (67)

13Exercise.
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Proof of Lemma 3 As already discussed above, the unique analytic solu-
tions with vanishing mean value of Du = f is given by

u(θ) := (D−1f)(θ) =
∑

n∈Zd\{0}
unei(n·θ) , un :=

fn

i(n · ω)
.

In order to establish the inequality (65) we first single out the subset

J0 :=
{

n ∈ Z
d \ {0} : |n · ω| ≥ γ

2

}

and define
u0(x) =

∑

n∈J0

unei(n·x) .

By Lemma 4, we get that, for | Imx| < ξ − δ:

|u0(x)| ≤
∑

n∈J0

|n · ω|−1|fn|e−(n· Im x)

≤ 2

γ

∑

n∈Zd

|fn|e−(n· Im x)

≤ c1

γδτ
‖f‖L2,∆d

ξ
(68)

where c1 := 2c0 and we have used that τ ≥ d − 1 ≥ d
2
.

The more delicate part of the estimate concerns the integer vectors in Zd \J0.
First of all, let us assume, without loss of generality, that

|ωk| < |ωd| , ∀ 1 ≤ k ≤ d − 1 ; (69)

let us also introduce the following notation: if y = (y1, ..., yd) is a vector
with d components, we denote by ŷ := (y1, ..., yd−1) the vector formed by the
first (d − 1) components of y. Let, now, K ≥ 1 be a fixed number and for
ν = 1, 2 . . ., define

J(ν, K) := {n ∈ Z
d, 0 < |n| ≤ K : 2νγ−1 < |n · ω|−1 ≤ 2ν+1γ−1}

= {n ∈ Z
d, 0 < |n| ≤ K : 2−(ν+1)γ ≤ |n · ω| < 2−νγ} .

Here is a list of properties of ω and J(ν, K):

(i) |ωd| > |ωk| ≥ γ;
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(ii) if n ∈ J(ν, K) then n̂ 6= 0;

(iii) if n, n′ ∈ J(ν, K) and n̂ = n̂′ then n = n′;

(iv) if n ∈ Zd is such that n̂ 6= 0 then

|n · ω| ≥ γ

(3|n̂|)τ
. (70)

(v) if n, n′ ∈ J(ν, K) and n 6= n′ then |n̂ − n̂′| ≥ 2
ν−1

τ

3
;

(vi) there exists a constants c2 = c2(d) > 0 such that

Card J(ν, K) ≤ c2K
d−12−

ν(d−1)
τ ;

(vii) J(ν, K) = ∅ when 2
ν
τ ≥ K;

(viii) there exists a constant c3 = c3(d) > 0 such that the following holds. If
J(K) denotes the set

J(K) := {n ∈ Z
d : 0 < |n| ≤ K and |n · ω| < γ/2} =

⋃

ν≥1

J(ν, K) ,

then
∑

n∈J(K)

1

|n · ω| ≤ c3
Kτ

γ
. (71)

Proof of properties (i)÷(viii)

(i): The first inequality is (69). The second inequality follows from the Diophantine
property (27) by taking n = ek (the unit versor in Zd).

(ii): If n ∈ J(ν, K), then
|n · ω| < 2−νγ ≤ γ/2 ; (72)

thus from n̂ = 0 it would follow, by (i), that |n · ω| = |ndωd| ≥ |ωd| > γ, which would
contradict (72).

(iii): Assume (by contradiction) that n, n′ ∈ J(ν, K) with n̂ = n̂′ and nd 6= n′
d. Then, by

(i) and (72):

γ < |ωd| ≤ |nd − n′
d| |ωd| = |n · ω − n′ · ω| ≤ |n · ω| + |n′ · ω| <

γ

2
+

γ

2
= γ ,

which is impossible.
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(iv) Fix n̂ 6= 0 and choose nd ∈ Z so that nmin := (n̂, nd) minimizes |n · ω|. Clearly, nmin

minimizes also |n̂ · ω̂
ωd

+ nd| = |n · ω|/|ωd|. Thus, |n̂ · ω̂
ωd

+ nd| ≤ 1. Therefore, by (69),

|nd| ≤ 1 + |n̂ · ω̂
ωd

| ≤ 1 + |n̂| ≤ 2|n̂|, which implies that |nmin| = |n̂| + |nd| ≤ 3|n̂|. In

conclusion, by (27), and the above estimates,

|n · ω| ≥ |nmin · ω| ≥ γ

|nmin|τ
≥ γ

(3|n̂|)τ
.

(v): By (iii), n̂ 6= n̂′. Thus, by (iv) (applied to the difference n− n′) and by the definition
of J(ν, K), we find |n̂− n̂′|−τ ≤ 3τ

γ |(n−n′) ·ω| ≤ 3τ

γ (|n ·ω|+ |n′ ·ω|) ≤ 3τ2−(ν−1), proving
the claim.

(vi): By (iii), J(ν, K) is in a one-to-one correspondence with Ĵ(ν, K) := {n̂ ∈ Zd−1 :
n ∈ J(ν, K)}. By the estimate in (v), the distance between two points in Ĵ(ν, K) is at

least 2
ν−1

τ

3 . Thus a simple geometrical argument yields the desired upper bound on the

cardinality of Ĵ(ν, K) and hence on the cardinality of J(ν, K).

(vii): If n ∈ J(ν, K), by definition |n · ω| < γ2−ν ; on the other hand the Diophantine
property (27) implies that |n · ω| ≥ γ|n|−τ ≥ γK−τ implying that K > 2ν/τ , which is
equivalent to the claim.

(viii): In view of (vii), J(K) =
⋃ν∗

ν=1 J(ν, K) where ν∗ denotes the integer part of
τ log K/ log 2 (i.e., ν∗ is the maximal integer ν for which 2ν/τ ≤ K: for ν > ν∗, J(ν, K) =
∅). Thus, by (vii), the definition of J(ν, K), (vi), one finds

∑

n∈J(K)

1

|n · ω| ≤
ν∗
∑

ν=1

∑

n∈J(ν,K)

1

|n · ω|

≤
ν∗
∑

ν=1

∑

n∈J(ν,K)

2ν+1

γ
=

ν∗
∑

ν=1

2ν+1

γ
CardJ(ν, K)

≤ 2c2K
d−1

γ

ν∗
∑

ν=1

2ν
(τ+1−d)

τ

≤ c3

γ
Kτ .

We are now ready to conclude the proof of (65).

‖u − u0‖ξ−δ ≤
∑

n6∈J0

|fn||n · ω|−1e|n|(ξ−δ)

(∗)
≤ ‖f‖L2,∆d

ξ

∑

n6∈J0

|n · ω|−1e−|n|δ

= ‖f‖L2,∆d
ξ

∞
∑

k=1

∑

n6∈J0, |n|2=k

|n · ω|−1e−
√

kδ
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= ‖f‖L2,∆d
ξ

∞
∑

k=1

∑

J(
√

k)\J(
√

k−1)

|n · ω|−1e−
√

kδ

= ‖f‖L2,∆d
ξ

∞
∑

k=1

∑

n∈J(
√

k)

|n · ω|−1
(

e−
√

kδ − e−
√

k+1δ
)

(∗∗)
≤ ‖f‖L2,∆d

ξ

(

∞
∑

k=1

δ

2
√

k
e−

√
kδ
)(

∑

n∈J(
√

k)

|n · ω|−1
)

†
≤ c3

2γ
‖f‖L2, ∆d

ξ

∞
∑

k=1

k
τ−1
2 δe−

√
kδ

≤ c3

2γ

1

δτ
‖f‖L2, ∆d

ξ
sup

0<λ≤1

∞
∑

k=1

λτ+1k
τ−1
2 e−

√
kλ

‡
≤ c4

γδτ
‖f‖L2, ∆d

ξ
,

where: (∗) is by (66); (∗∗) follows from the elementary bounds e−s − e−s−ε ≤
εe−s (any s > 0, ε > 0) and

√
t + 1 −

√
t ≤ (2

√
t)−1 (any t > 0); (†) is

by property (viii) above; (‡) holds for a suitable constant c4 = c4(d, τ) > 0

since sup0<λ≤1

∑∞
k=1 λτ+1k

τ−1
2 e−

√
kλ < ∞. The proof is completed if one takes

c = max{c1, c4}.

Another fundamental tool are the so-called Cauchy estimates, i.e., the esti-
mates of the sup-norm of derivatives of f ∈ Rξ in ∆d

ξ−δ.

Denote by Dd
r(x) the complex polydisc

Dd
r(x) = {θ ∈ C

d : |θi − xi| ≤ r, ∀i} ,

and let r > 0 be such that14 Dd
r(x) ⊂ ∆d

ξ . Then, by Cauchy Integral Formula,

∂αf(x) =
α!

(2πi)d

∫

∂Dd
r (x)

f(θ)

(θ1 − x1)α1+1 . . . (θd − xd)αd+1
dθ .

In particular, taking r = δ, we have for every x ∈ ∆d
ξ−δ:

14Notice that f is bounded on ∆d
ξ so f cannot have singularities on the boundary of the

strip.
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|∂αf(x)| ≤ α!

(2π)d

∫

∂Dd
δ

|f(θ)|
|θ1 − x1|α1+1 . . . |θd − xd|αd+1

dθ

≤ α!

(2π)d

‖f‖ξ

δ|α|+d

∫

∂Dd
δ

dθ

=
α!

δ|α|
‖f‖ξ .

Thus, the following Cauchy estimate holds

‖∂αf‖ξ−δ ≤ α!δ−|α|‖f‖ξ . (73)

Combining the above estimates one gets easily the following

Lemma 5 Let f ∈ Rξ(T
d, X), let p ∈ N, α ∈ Nd and assume 〈f〉 = 0 when

α = 0. Let 0 < δ ≤ ξ. Then, there exist C(p, α, τ) > 0 such that

‖D−p∂αf‖ξ−δ ≤
C(p, α, τ)

γpδpτ+|α| ‖f‖ξ ,

Exercise Give an explicit estimate of C(p, α, τ).

Remark 10 We shall use also the following trivial facts:

(i) Let f ∈ Rξ(T
d, X), g ∈ Rξ(T

d, Y ), with X and Y tensor spaces (RN ,
matrices or higher dimensional tensors) and assume that the product fg is
well defined. Then

‖f g‖ξ ≤ ‖f‖ξ‖g‖ξ .

(ii) Let V ∈ Rξ∗(T
d, R), g ∈ Rξ(T

d, Rd), with ξ∗ > ξ. If ‖ Im gj‖ξ ≤ ξ∗ − ξ
for all j = 1, . . . , d, then ‖V (x + g(x))‖ξ ≤ ‖V ‖ξ∗.

Remark 11 The same estimates could be done also for the non-autonomous
case. In this case we consider a function f(x, t) defined on the (d + 1)-
dimensional torus and we require ω to be (γ , τ)-diophantine in the sense
that

|ω · n + m| ≥ γ

|n|τ
for some τ ≥ d, γ > 0 and every (n, m) ∈ Zd × Z with n 6= 0.
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1.5 An analytic KAM theorem

In this section we prove a KAM theorem in the real-analytic setting.

Theorem 6 Fix 0 < ξ̄ < ξ < ξ∗ ≤ 1. Let V ∈ Rξ∗(T
d, R), let v ∈

Rξ(T
d, Rd) be such that

‖ Im v‖ξ ≤ ξ∗ − ξ , (74)

and let ω be (γ, τ)-diophantine15. Let, also, λ, η and α be numbers greater
or equal than one such that

λ ≥ ‖I + vθ‖ξ , η ≥ ‖(I + vθ)
−1‖ξ , α ≥ ‖Vxxx‖ξ∗

γ2
.

There exists a constant C = C(τ, d) > 1, such that if16

E :=
C

γ2
‖E(v)‖ξ α (λη)10 (ξ − ξ̄)−(4τ+2) ≤ 1 , (75)

then there exists u ∈ Rξ̄(T
d, Rd) with 〈u〉 = 〈v〉, which solves the Euler

equation
D2u + Vx(θ + u) =: E(u) = 0 . (76)

Furthermore, there exists a constant K = K(τ, d) > 0 such that

max
{

‖u − v‖ξ̄ , ‖∂θu − ∂θv‖ξ̄

}

≤ K E . (77)

Proof As a first step, we equip the KAM scheme described in Lemma 2
with analytical estimates. The second step will be to iterate the procedure
controlling the convergence.

Remark 12 Here and below for simplicity we will use the notation “const”
to denote finite (different) constants, which depend only on τ and d.

15Recall Definition 2.
16Recall that E is the differential operator defined as E(v) := D2v + Vx(θ + v) where

D :=
∑d

i=1 ωi∂θi ; notice, also, that, since ‖ Im vj‖ξ ≤ ξ∗ − ξ, then θ + v ∈ ∆d
ξ∗

whenever

θ ∈ ∆d
ξ .
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Define
ε(θ) := D2v + Vx(θ + v) .

and let µ > 0 be such that
‖ε‖ξ ≤ µ .

Recalling the definition of M = I + vθ, we have, by hypothesis,

‖M‖ξ ≤ λ , ‖M−1‖ξ ≤ η .

Fix17 ξ̄ < ξ′ < ξ and let δ = (ξ − ξ ′)/2:

ξ′ =: ξ − 2δ , δ =
ξ − ξ′

2
, (78)

and let us denote, as above,

P = MT M .

Then
‖P‖ξ ≤ λ2 , ‖P−1‖ξ ≤ η2 . (79)

We start by estimating c in (56). To estimate it, we will use the fact18 that
for each positive symmetric matrix T : Td → Mat(d × d),

‖〈T 〉−1‖ ≤ sup
θ∈Td

‖T−1‖ . (80)

Therefore, by (80) and (79),

‖〈P−1〉−1‖ ≤ ‖P‖0 ≤ λ2 .

By Lemma 5 we get

‖〈P−1D−1(MT ε)〉‖0 ≤ ‖P−1‖0‖D−1(MT ε)‖0 ≤
const

γξτ
η2‖MT ε‖ξ ,

which leads to

|c| ≤ const
λ3η2

γξτ
µ . (81)

17Later we shall make a specific (somewhat arbitrary) choice.
18For the proof see Lemma 12 in Appendix A.
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We proceed to estimate ẑ (see (58)). Applying Lemma 5 twice, we have

‖ẑ‖ξ′ ≤ const
1

γδτ
‖ − P−1D−1(MT ε) + P−1c‖ξ−δ

≤ const
η2

γδτ

[

‖D−1(MT ξ)‖ξ−δ +
λ3η2µ

γξτ

]

≤ const
η2

γδτ

[

λ3η2µ

γξτ
+

λµ

γδτ

]

≤ const
λ3η4µ

γ2δ2τ
.

Thus,

‖ẑ‖ξ′ ≤ const
λ3η4

γ2δ2τ
µ . (82)

Now, since z = b + ẑ and b = −〈Mẑ〉, we have

|b| = |〈Mẑ〉| ≤ λ‖ẑ‖ξ′ .

Therefore,

‖z‖ξ′ ≤ const
(λη)4

γ2δ2τ
µ , ‖w‖ξ′ ≤ const

λ5η4

γ2δ2τ
µ . (83)

Let us estimate now the remainder Q1. Using again the standard formula
for the remainder of the Taylor expansion and applying Remark 10 and the
definition of α, we have

‖Q1‖ξ′ ≤
1

2
‖Vxxx‖ξ∗‖w‖2

ξ′ ≤ const‖Vxxx‖ξ∗

λ10η8µ2

γ4δ4τ
≤ const

αλ10η8

γ2δ4τ
µ2 , (84)

provided (compare Remark 10)

‖ Im (v + sw)‖ξ′ ≤ ξ∗ − ξ′

for every s ∈ [0, 1]. But, by (74) and (83),

‖ Im (v + sw)‖ξ′ ≤ ‖ Im v‖ξ + ‖w‖ξ′ ≤ ξ∗ − ξ + ‖w‖ξ′

≤ ξ∗ − ξ + const
λ5η4

γ2δ2τ
µ

≤ ξ∗ − ξ′ ,
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which is implied if we assume that

const
(λη)5

γ2δ2τ+1
µ ≤ 1 . (85)

Since Q2 = Q1 + εθz, by Lemma 5 and Remark 10, we find

‖εθ‖ξ−δ ≤
µ

δ
, (86)

and

‖Q2‖ξ′ ≤ ‖Q1‖ξ′ + ‖εθz‖ξ′ ≤ ‖Q1‖ξ′ + ‖εθ‖ξ′‖z‖ξ′ ≤ ‖Q1‖ξ′ +
µ

2δ
‖z‖ξ′ .

Thus, by (83) and (84),

‖Q2‖ξ′ ≤ const
αλ10η8

γ2δ4τ
µ2 . (87)

Here we implicitly used the fact that τ ≥ 1/2 and δ ≤ 1.

We turn to the estimate of the norm of Q3 (defined in (48)): we will use
again Lemma 5. First, observe that Dz = Dẑ and that

Dẑ = −P−1D−1(MT ε) + P−1c .

Thus

‖Dẑ‖ξ′ = ‖ − P−1D−1(MT ε) + P−1c‖ξ′ ≤ const
λ3η4

γδτ
µ .

Recalling (86), we find

‖D−1(MT εθ − εT
θ M)‖ξ′ ≤ const

1

γδτ
‖MT εθ‖ξ−δ ≤ const

λ

γδτ+1
µ .

As for the second term in the formula for Q3, we find

‖M−T (D−1(MT εθ − εT
θ M))Dz‖ξ′ ≤ const

ληµ

γδτ+1

λ3η4µ

γδτ
≤ const

λ4η5

γ2δ2τ+1
µ2 .

Finally, recalling (87), we get the following bound

‖Q3‖ξ′ ≤ const
αλ10η8

γ2δ4τ
µ2 ≤ const

α(λη)10

γ2δ4τ
µ2 . (88)
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Our next step will be to estimate v′, M ′ := M + wθ and ε′ in terms of v, M
and ε.

Let us start with wθ. Here again, as we have already done for ẑ, we will
apply Lemma 5 twice. In fact,

‖wθ‖ξ′ ≤
1

δ
‖w‖ξ−δ .

Then, since ξ′ = ξ − δ = ξ − δ/2 − δ/2, using twice Lemma 5, we get:

‖ẑ‖ξ−δ ≤ const
1

γδτ
‖ − P−1D−1(MT ε) + P−1c‖ξ−δ/2

≤ const
η2

γδτ

[λ3η2µ

γξτ
+ ‖D−1(MT ε)‖ξ−δ/2

]

≤ const
η2

γδτ

[λ3η2µ

γξτ
+

λµ

γ(δ/2)τ

]

≤ const
η4λ3

γ2δ2τ
µ .

Since z = b + ẑ and w = Mz, we get the estimate

‖wθ‖ξ′ ≤ const
λ5η4

γ2δ2τ+1
µ . (89)

Next, using (89), we easily get

‖M ′‖ξ′ ≤ ‖M + wθ‖ξ′ ≤ λ + const
λ5η4µ

γ2δ2τ+1

= λ
(

1 + const
(λη)4µ

γ2δ2τ+1

)

=: λ′ . (90)

As for the inverse matrix

‖(M ′)−1‖ξ′ ≤ ‖(M + wθ)
−1‖ξ′ = ‖(I + M−1wθ)

−1M−1‖ξ′

≤ η

(

1 − const
(λη)5µ

γ2δ2τ+1

)−1

,
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provided

const
(λη)5µ

γ2δ2τ+1
< 1 .

In fact, assuming that

const
(λη)5

γ2δ2τ+1
µ ≤ 1

2
, (91)

one finds19

‖(M ′)−1‖ξ′ ≤ η
(

1 + const
(λη)5

γ2δ2τ+1
µ
)

=: η′ . (92)

Note that (91) is the same condition (up to the constant) as (85). Since, by
definition, ε′ = Q3, we have obtained

‖ε′‖ξ′ ≤ const
α(λη)10

γ2δ4τ
µ2 =: µ′ . (93)

It will be useful to introduce also a “dimensionless” parameter

µ̄ = µγ−2 , (94)

in terms of which (93) may be rewritten as

‖ε′‖ξ′γ
−2 ≤

(

const

√
α(λη)5µ̄

δ2τ

)2 ≤
(

const

√
α(λη)5µ̄

δ2τ+1

)2
=: µ̄′ . (95)

From now on we will replace (91) by the stronger condition

const

√
α(λη)5µ̄

δ2τ+1
≤ 1 . (96)

Let us now turn to the second step, i.e., to the control of the convergence of
the iteration process. For i ≥ 0, let the input data v, ε, ξ correspond to the
i-th step of iteration, and let the output v′, ε′ and ξ′ correspond to (i+1)-th
step: in particular the function v and the parameter ξ in the statement of
Theorem 6 will be denoted, respectively, v0, ξ0. Thus,

vi = v0 +
i−1
∑

j=0

wj ,

19This follows from the following inequality: (1 − x)−1 ≤ 1 + 2x valid for 0 ≤ x ≤ 1/2 .
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and our aim is to show that this sequence converges to some real-analytic
function u, which solves the Euler equation

D2u + Vx(θ + u(t)) = 0 .

We fix a sequence {ξi} as follows

ξi = ξ̄ +
ξ − ξ̄

2i
.

So, {ξi} is a decreasing sequence, which tends to ξ̄. In view of the above
definition of δ, we fix also

δi :=
ξi − ξi+1

2
=

ξ − ξ̄

2i+2
.

If (96) holds at each each step of the iteration, i.e., if

const

√
α(λjηj)

5µ̄j

δ2τ+1
j

≤ 1 , j = 0, 1, . . . , i , (97)

then, in particular, we see that (compare (90) and (92) attaching the indices
i and i + 1 in the obvious way)

λj ≤ 2jλ0 , ηj ≤ 2jη0 , j = 0, 1, . . . , i . (98)

In terms of λ0 and η0 condition (97) can be rewritten in the form

C0

√
α(λ0η0)

5(22τ+11)iµ̄i

(ξ − ξ̄)2τ+1
≤ 1 ,

where C0 = C0(d, τ) denotes the largest constant “ const ” occurred until
now. Denoting,

A :=
(

C0

√
α(λ0η0)

5

(ξ − ξ̄)2τ+1

)2
, B := 22τ+11 ,

we see that (95) yields
µ̄i+1 ≤ ABiµ̄2

i ≤ 1 . (99)
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Such relation may be rewritten as

µ̂i+1 ≤ µ̂2
i , µ̂i := ABi+1µ̄i ,

which, iterated, leads to

µ̄i ≤
(ABµ̄0)

2i

ABi+1
. (100)

In particular, one can conclude that the iteration process converges if

ABµ̄0 < 1 , µ̄0 ≥
‖ε0‖ξ0

γ2
,

showing, in particular, that v +
∑∞

j=0 wj converges uniformly on the complex
strip of width ξ̄ to the real-analytic function

u := v +
∞
∑

j=0

wj ,

which (since εj → 0 uniformly) will satisfy the Euler equation (76).

Finally, we prove (77). First of all note that in fact E is nothing else but

E = ABµ̄0 .

Now, (compare (98)),

‖wj‖ξ̄ ≤ const
22τ(j+2)λ5

jη
4
j µ̄j

(ξ − ξ̄)2τ
= const(4τjλ5

jη
4
j µ̄j)

≤
(

const(λ0η0)
5
)

210j+2τjµ̄j =: C̃210j+2τjµ̄j ,

where C̃ := const (λ0η0)
5. Since by (100)

µ̄i < (ABµ0)
2i

,

we have

∞
∑

j=0

210j+2τjµ̄j ≤
∞
∑

j=0

22(5+τ)j(ABµ̄0)
2j

=
∞
∑

j=0

(C2
1)

jE2j

,
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where we have denoted C1 = 25+τ . Continuing the last inequality, we get

∞
∑

j=0

C2j
1 E2j

<
∞
∑

j=0

C2j

1 E2j

=
∞
∑

j=0

(C1E)2j

≤
∞
∑

j=1

(C1E)j =
C1E

1 − C1E

≤ C1E(1 + 2C1E) ≤ 2C1E ,

provided 0 < C1E ≤ 1/2. This last assumption can be always satisfied by
the right choice of the constant.

We conclude this section with an immediate application of Theorem 6 to the
“nearly-integrable” case.

Corollary 1 If

‖Vx‖ξ ≤
γ2

C

(ξ − ξ̄)4τ+2

max{1, ‖Vxxx‖ξ∗γ
−2} , (101)

then there exists a function u ∈ Rξ(T
d, Rd) such that 〈u〉 = 0 which solves

the Euler equation D2u + Vx(θ + u) = 0 with

‖u‖ξ̄ ≤
C

γ2
‖Vx‖ξ

max{1, ‖Vxxx‖ξ∗γ
−2}

(ξ − ξ̄)4τ+2
.

Proof Take as initial approximate solution the function v ≡ 0. Then E(v) =
E(0) = Vx(θ) and one can take λ = η = 1 so that (101) is recognized to be
(75) .

Remark 13 Let ‖Vx‖ξ, ‖Vxxx‖ξ ≤ ε. From the properties of diophantine
numbers it follows that, if we denote

Ωr =
{

ω ∈ Bd
r : |ω ·n| ≥ γ

|n|τ ∀n ∈ Z
d \ {0}

}

,

then
meas(Bd

r \ Ωr) ≤ const meas(Bd
r )γ .
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Now, condition (101) can be met by taking γ =
√

εĈ with Ĉ big enough,
showing that the set of ω’s for which we can find simultaneously a solution
for the Euler equation fills (as ε → 0) a ball of radius r up to a set of measure
at most const

√
ε.

1.6 Local uniqueness

In this section we formulate a sufficient condition which provides “local”
uniqueness for the solution of Euler equation. First we remark that if u
verifies

D2u + Vx(θ + u) = 0 (102)

then also
ū : (θ) 7→ c + u(θ + c)

is a solution of the same equation, for every constant c ∈ Rd. Since 〈ū〉 =
〈u〉+c, it is natural to investigate local uniqueness of solutions with prescribed
average.

Proposition 7 Let ω ∈ Rd be (γ, τ)-diophantine. Let V ∈ Rξ∗(T
d, R) and

u, ū ∈ Rξ(T
d, Rd). Assume that u and ū are two solutions of (102) such that

〈u〉 = 〈ū〉. Assume moreover that I + uθ is invertible everywhere on Td and
that

‖u‖ξ, ‖ū‖ξ ≤ ξ∗ − ξ

‖(I + uθ)
−1‖ξ ≤ η < +∞

‖I + uθ‖ξ ≤ λ < +∞.

Define

c := c0
γ2ξ2τ

λ5η4‖Vxxx‖ξ∗

, (103)

where c0 = c0(d, τ) ≥ 1 is a suitable constant. Then, if ‖u− ū‖ξ < c one has
that u ≡ ū.

Proof Let
w := ū − u
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and notice that 〈w〉 = 0. Since ū and u are solutions of (102), we have

0 = D2ū + Vx(θ + ū)

= D2w + D2u + Vx(θ + w + u)

= D2w + Vx(θ + w + u) − Vx(θ + u)

= D2w + Vxx(θ + u)w + Q (104)

where

Q =
∫ 1

0
(1 − s)Vxxx(θ + u + sw)ww ds.

From the expression of Q and Lemma 15 [Remark 10] we easily get

‖Q‖ξ′ ≤
1

2
‖Vxxx‖ξ∗‖w‖2

ξ′ (105)

for every ξ′ ∈ [0, ξ].

Let M = I + uθ. Differentiating with respect to θ equation (102) we get the
equality

Vxx(θ + u) = −(D2M)M−1 (106)

that we can plug in (104) obtaining

0 = D2w − (D2M)M−1w + Q.

Letting
z = M−1w

we have

0 = D2(Mz) − (D2M)z + Q

= D(MDz) + D(DMz) − (D2M)z + Q

= D(MDz) + (DM)(Dz) + Q ,

which can be rewritten as

0 = M−T (MT D(MDz) + MT (DM)(Dz)) + Q. (107)
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Moreover from (106), we have that the matrix (D2M)M−1 is symmetric and
so

0 = MT (D2M) − (D2M)T M

= D(MT DM − (DMT )M);

in particular, since D−10 = 0 we have

MT DM − (DMT )M = 〈MT DM − (DMT )M〉.

By equation (44) we already know, however, that

〈MT DM − (DMT )M〉 = 0

for every matrix M of the form I + uθ. Thus

MT DM − DMT M = 0,

i.e.
MT DM = DMT M.

From (107) it follows:

0 = M−T (MT D(MDz) + (DMT )MDz) + Q

= M−T D(MT MDz) + Q

which means, setting P = MT M , that PDz = −D−1(MT Q) + c1 for a
suitable constant vector c1. Thus

Dz = −P−1D−1(MT Q) + P−1c1 (108)

and
w = MD−1(−P−1D−1(MT Q) + P−1c1) + Mc2 (109)

for a suitable constant vector c2. Taking averages in (108) and (109) we
obtain the following expressions for c1 and c2:

c1 = 〈P−1〉−1〈P−1D−1(MT Q)〉 (110)

c2 = −〈MD−1(−P−1D−1(MT Q) + P−1c1)〉. (111)
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Let us now define, for every j ∈ N, ξj = 2−jξ. For every j ∈ N, by estimates
similar to the ones already seen in the previous section we get from (110)
and (111) the following inequalities:

|c1| ≤ const λ3η2 2jτ

γξτ
‖Q‖ξj

|c2| ≤ const λ4η4 4(j+1)τ

γ2ξ2τ
‖Q‖ξj

which can be inserted in (109) obtaining

const ‖w‖ξj+1
≤ λ5η4 42jτ

γ2ξ2τ
‖Q‖ξj

. (112)

Letting

k = max
{

1 , const λ5η4 1

γ2ξ2τ
‖Vxxx‖ξ∗}

we obtain from (112) and (105)

‖w‖ξj+1
≤ k42jτ‖w‖ξj

and, iterating as done above (compare (99), (100)), we get

‖w‖0 ≤ ‖w‖ξj+1
≤ (k42τ‖w‖ξ)

2j

,

showing that ‖w‖0 = 0 (and hence by analyticity w ≡ 0) whenever

k42τ‖w‖ξ < 1 .

2 Smooth KAM Theory

The aim of this chapter is to exhibit a result of existence of quasi-periodic
solutions for systems that are no more required to be analytic but just smooth
enough. We will heavily use the previous results, passing through analytic
approximations of smooth functions.
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2.1 Approximation Theory

Here we prove the necessary technical approximation results.

We start by introducing Hölder norms. First of all, for every l0 ∈ N and for
every f ∈ C l0(Rm), we define

|f |
C l0 = sup

|α|≤l0

sup
Rm

|∂αf | .

If l = l0 + µ with l0 ∈ N and µ ∈ (0, 1), we set

|f |
C l := |f |

C l0 + sup
|α|=l0

sup
0<|x−y|<1

|∂αf(x) − ∂αf(y)|
|x − y|µ .

For every l ≥ 0 we define

C l(Rd, Rm) = {f : R
d → R

m : |f |Cl < +∞} .

The space C l(Rd, Rm) endowed with the norm | · |Cl is a Banach space; the
subspace of C l(Rd, Rm) made of functions which are 2π-periodic in each vari-
able will be denoted C l(Td, Rm).

Remark 14 In this section it is convenient to work with Euclidean norms
on vectors and the associated operator norms on matrices and tensors.

Proposition 8 (Jackson, Moser, Zehnder) Let l ≥ 0, d ∈ Z+ and f ∈
C l(Rd). There exists a constant c = c(l, d) > 0 such that for every 0 < r ≤ 1
there exists a real analytic function fr on ∆d

r which satisfies20

∣

∣

∣

∣

∣

∣

∂αfr(x) −
∑

|β|≤l−|α|
∂α+βf(Re x)

(i Im x)β

β!

∣

∣

∣

∣

∣

∣

≤ c |f |Cl r
l−|α| , ∀ x ∈ ∆d

r

(113)
for all α such that |α| ≤ l.

20We will use the following notations:

Re x := (Re x1, . . . , Re xd) and Im x := (Im x1, . . . , Im xd) .
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In fact, the analytic extension fr may be defined as follows. Let φ1 be an
even function in C∞

0 (R) with support [−1, 1], increasing in [−1, 0] and such
that

φ1(0) = 1 , ∂nφ1(0) = 0 (∀ n ≥ 1) ;

for ξ ∈ Rd, let φ(ξ) = φ1(|ξ|2) and let K be the anti-Fourier transform of φ:

K(x) =
1

(2π)d

∫

Rd
φ(ξ)eix·ξdξ ;

then fr can be taken to be

fr(x) := (Srf) (x) := r−d
∫

Rd
K
(

x − y

r

)

f(y)dy (114)

=
∫

Rd
K
(

x

r
− ξ

)

f(rξ)dξ =
∫

Rd
K(η)f(x − rη)dη.

Proof Since φ is a real smooth function with compact support, K is real
analytic on Cd. Some properties of K are collected in the following

Lemma 9 The derivatives of K satisfy

∀p ∈ N , ∃ cp :
∣

∣

∣∂βK(x)
∣

∣

∣ ≤ cp
e|Imx|

(1 + |x|)p
, ∀ |β| ≤ p ; (115)

sup
x∈Rd

sup
β∈Nd

∣

∣

∣∂βK(x)
∣

∣

∣ ≤ 1

(2π)d
‖φ‖L1 . (116)

Furthermore, if α, β ∈ Nd and x = u + iv ∈ Cd, then21

Iα,β :=
∫

Rd
uβ∂αK(u + iv)du =

{

(−1)|β| β!
(β−α)!

(iv)β−α , if α ≤ β ,

0 , otherwise .
(117)

21For vectors α, β ∈ Nd, we denote

α ≤ β ⇐⇒ αi ≤ βi ∀ i = 1, . . . , d .
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Proof First of all, remark that if u ∈ supp φ = B1(0), then

∣

∣

∣eix·u
∣

∣

∣ = e−Imx·u ≤ e|Imx| .

Let us denote φβ(u) = uβφ(u). We have

∂βK(x) := ∂β

(

1

(2π)d

∫

Rd
φ(u)eix·udu

)

=
i|β|

(2π)d

∫

Rd
φβ(u)eix·udu ,

and, for any multi-index α ∈ Nd, |α| integrations by part give

xα∂βK(x) =
i|α|+|β|

(2π)d

∫

Rd
∂αφβ(u)eix·udu .

Hence

|xα||∂βK(x)| ≤ 1

(2π)d
|∂αφβ|L1(Rd) e|Imx| .

Now remark that for any p ∈ N,

(1 + |x|)p ≤ (1 + |x1| + |x2| + · · ·+ |xd|)p =
∑

|α|≤p

p!

(p − |α|)!α!
|xα| .

Hence for |β| ≤ p, one finds

(1 + |x|)p|∂βK| ≤ 1

(2π)d

∑

|α|≤p

p!

(p − |α|)!α!
|∂αφβ|L1(Rd) e|Imx|

≤ 1

(2π)d





∑

|α|≤p

p!

(p − |α|)!α!
sup
|β|≤p

{

|∂αφβ|L1(Rd)

}



 e|Imx| .

Thus

|∂βK(x)| ≤ cp
e|Imx|

(1 + |x|)p
,
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proving (115). Moreover, if x ∈ Rd and β ∈ Nd, we have:

∣

∣

∣∂βK(x)
∣

∣

∣ ≤ 1

(2π)d

∫

Rd

∣

∣

∣uβφ(u)
∣

∣

∣ du

≤ 1

(2π)d
‖φ‖L1 .

which is (116).

The relation (115) shows that the integral Iα,β is well defined. Moreover,
notice that if αi > βi for some i, αi integrations by part show that Iα,β = 0
since ∂αiuβ = 0. So we can assume that αi ≤ βi for all i (i.e. α ≤ β). By
integration by part, we see that

Iα,β = (−1)|α|
β!

(β − α)!

∫

Rd
uβ−αK(u + iv)du .

Notice also that

K(u + iv) =
1

(2π)d

∫

Rd
φ(ξ)ei ξ·(u+iv) dξ

=
1

(2π)d

∫

Rd
φ(ξ)e−v·ξei ξ·u dξ =: K̃v(u)

that we can think to be the anti-Fourier transform of

φ̃v(ξ) = φ(ξ)e−v·ξ ∈ C∞
0 (Rd)

for each fixed v.

Hence:

∫

Rd
uβ−αK(u + iv) du =

1

(−i)|β−α|
∂|β−α|

∂ ξβ−α

∣

∣

∣

∣

∣

ξ=0

∫

Rd
K(u + iv)e−iuξ du

=
1

(−i)|β−α|
∂|β−α|

∂ ξβ−α

∣

∣

∣

∣

∣

ξ=0

∫

Rd
K̃v(u)e−iuξ du

=
1

(−i)|β−α|
∂|β−α|

∂ ξβ−α

∣

∣

∣

∣

∣

ξ=0

(

φ(ξ)e−vξ
)
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where, in the last equalities, we used the fact that the right hand-side integral
is the Fourier transform of K̃v (i.e. φ̃v). Now, using (8), we obtain:

∫

Rd
uβ−αK(u + iv) du =

1

(−i)|β−α|φ(0)(−v)β−α

= (−iv)β−α .

From the properties above, we can conclude:

Iα,β :=
∫

Rd
uβ∂αK(u + iv) du =

{

(−1)|β| β!
(β−α)!

(iv)β−α , if α ≤ β ,

0 , otherwise .

We proceed with the proof of Proposition 8. Recall the definition of fr = Sr

given in (114) and notice that (117) implies SrP = P for any polynomial P :

(SrP ) (x) =
∫

Rd
K(η)P (x − rη)dη

:=
∫

Rd
K(η)





∑

|k|≤degP

ak(x, r)ηk



 dη

=
∑

|k|≤degP

ak(x, r)
∫

Rd
K(η)ηkdη

= a0(x, r) = P (x) .

We claim also that for every l ∈ R+ and f ∈ C l, then there exists a constant
c0(l, d) such that

|f(x + y) − Pk(x, y)| ≤ c0(l, d) |f |Cl |y|l (118)

where

Pk(x, y) =
∑

|α|≤k

∂αf(x)

α!
yα and k = [ l ] .

In fact, if l is an integer (118) comes immediately from Taylor’s formula
(and, actually, one could get c0(l, d) as small as one wants); if l = k +µ with
µ ∈ (0, 1), we get

|f(x + y) − Pk(x, y)| ≤
∣

∣

∣

∣

∣

∫ 1

0

(1 − t)k−1

(k − 1)!

(

∂kf(x + ty)y(k) − ∂kf(x)y(k)
)

dt

∣

∣

∣

∣

∣

≤
∫ 1

0

(1 − t)k−1

(k − 1)!

|∂kf(x + ty) − ∂kf(x)|
|ty|µ |y|k+µ dt

≤ |f |Cl

k!
|y|l .
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Let x = u + iv, η =
u − y

r
where u, v, y belong to Rd. Then

∂αfr(x) = ∂α
(

1

rd

∫

Rd
K
(

x − y

r

)

f(y)dy
)

=
1

rd

∫

Rd

1

r|α|
∂αK

(

u − y

r
+ i

v

r

)

f(y)dy

=
1

r|α|

∫

Rd

1

rd
∂αK

(

η + i
v

r

)

f(u − rη)d(u − rη)

=
1

r|α|

∫

Rd
∂αK

(

η + i
v

r

)

f(u − rη)dη .

Let us consider now |β| ≤ l − |α|; in view of (117):

∂α+βf(u)

β!
(iv)β =

∂α+βf(u)

β!

(iv)β

(−1)|α| (β+α)!
β!

(

−iv
r

)β

∫

Rd
∂αK(η + i

v

r
)ηα+βdη

=
∫

Rd
∂αK(η + i

v

r
)
∂α+βf(u)

(β + α)!
(−1)|α+β|r|β|ηα+βdη

=
1

r|α|

∫

Rd
∂αK(η + i

v

r
)
∂α+βf(u)

(β + α)!
(−1)|α+β|(rη)α+βdη .

Hence, if we denote k = [l] and apply again (117), we obtain:

∑

|β|≤l−|α|

∂α+βf(u)

β!
(iv)β

=
1

r|α|

∫

Rd
∂αK(η + i

v

r
)

∑

|β|≤l−|α|

(

∂α+βf(u)

(β + α)!
(−1)|α+β|(rη)α+β

)

dη

=
1

r|α|

∫

Rd
∂αK(η + i

v

r
)Pk(u − rη) dη .

In view of the above calculations and of the inequality (118), we have:

∣

∣

∣

∣

∣

∣

∂αfr(x) −
∑

|β|≤l−|α|
∂α+βf(u)

(iv)β

β!

∣

∣

∣

∣

∣

∣

≤ 1

r|α|

∫

Rd

∣

∣

∣

∣

∂αK
(

η + i
v

r

)∣

∣

∣

∣

|f(u − rη) − Pk(u − rη)| dη
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≤ c0|f |Clrl−|α|
∫

Rd

∣

∣

∣

∣

∂αK
(

η + i
v

r

)∣

∣

∣

∣

|η|l dη

≤ c0|f |Clrl−|α|
∫

Rd

∣

∣

∣

∣

∂αK
(

η + i
v

r

)∣

∣

∣

∣

(1 + |η|)l dη .

Applying (117) for p > l big enough (i.e., p > l + d), we get

∣

∣

∣

∣

∣

∣

∂αfr(x) −
∑

|β|≤l−|α|
∂α+βf(u)

(iv)β

β!

∣

∣

∣

∣

∣

∣

≤ c1|f |Clrl−|α|
∫

Rd
(1 + |η|)l−p dη

≤ c(l, d)|f |Clrl−|α|

which completes the proof.

Remark 15 (i) In particular, (113) (with x ∈ R
d) implies, for s ≤ l (s

integer),
|fr − f |Cs ≤ c′|f |Cl rl−s , (s ≤ l) , (119)

for a suitable c′ = c′(l, d).

(ii) Also, (113) with l = 0, yields, for every f ∈ C0 and any r > 0,

sup
∆d

r

|fr| ≤ (c + 1) |f |C0 . (120)

(iii) If x is real, the definition of fr implies immediately that, if f ∈ C l and
|α| ≤ l,

∂αfr(x) = (∂αf)r(x) . (121)

By analyticity, such relation is seen to hold for any x ∈ Cd.

(iv) Using the observation in (iii) and Cauchy estimates, one can give the
following bound on the derivatives of fr with f ∈ C l:

|fr|Cs ≤ c′′ |f |Clrl−s , (s ≥ l integers) , (122)

c′′ = c′′(l, d) being a suitable positive constant.

Proof If s = l, (122) comes from (119). Let s > l. For any multi-index α such that
|α| = s we can find β and α0 such that α = β + α0 with |α0| = l and |β| = s − l. Then,
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by (121), Cauchy estimates and (120), denoting by “ const ” (possibly different) constants
depending on l and d, we find

|∂αfr|C0 = |∂β(∂α0f)r|C0 ≤ const sup
∆d

r

|(∂α0f)r|
1

rs−l

≤ const |∂α0f |C0

1

rs−l
≤ const |f |Clrl−s .

(v) (Convexity estimates) Let l > 0, let f ∈ C l and let k, m be integers such
that 0 ≤ k ≤ m ≤ l. Then, there exist a constant ĉ = ĉ(l, d) > 0 such that

|f |Cm ≤ ĉ |f |
l−m
l−k

Ck |f |
m−k
l−k

Cl . (123)

Proof Define r :=
(

|f |
Ck

|f |
Cl

)
1

l−k

. Then r ≤ 1 and by (119) and (122), we get

|f |Cm ≤ |fr−f |Cm+|fr|Cm ≤ const
(

|f |Clrl−m+|f |Ckrk−m
)

= 2 const |f |
l−m
l−k

Ck |f |
m−k
l−k

Cl .

(vi) If f is periodic, fr is obviously periodic. Moreover, if f belongs to C0(Td),
then

(Srf)n =
∫

Td
Srf(x)e−ix·ndx

=
∫

Td

(∫

Rd
K(η)f(x − rη)dη

)

e−ix·ndx

=
∫

Rd
K(η)e−irn·η

( ∫

Td
f(x − rη)e−i(x−rη)·ndx

)

dη

= fnφ(rn) ,

showing that fr is a trigonometric polynomial.

Proposition 10 (Bernstein, Moser) Let l > 0 and d ∈ Z+. Let f0 = 0
and for each j in Z+, let fj be a real analytic function on ∆d

rj
⊂ Cd where

rj = r0/2j for some 0 < r0 ≤ 1. Assume that

|fj − fj−1|rj
≤ Arl

j (124)

for every j ≥ 1 and some constant A.
Then, fj tends to f uniformly on Rd and f ∈ Cs(Rd) for every non integer
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s ≤ l. Furthermore, there exists a constant C = C(l, d) such that:

|f |Cs(Rd) ≤
CA

µ(1 − µ)
rl−s
0 (125)

where µ = s− [s]. Finally, if the fi’s are periodic in each variable xj then so
is f .

Remark 16 (i) If f0 6= 0 and (124) holds for all j ≥ 1, we can apply the
proposition to f̃j := fj −f0 getting that f̃j tends uniformly to f̃ ∈ Cs so that
fj tends uniformly to f := f0 + f̃ ∈ Cs. Moreover,

|f − f0|Cs(Rd) ≤
CA

µ(1 − µ)
rl−s
0 . (126)

(ii) It is enough to prove Proposition 10 in the particular case where l ∈ (0, 1)
and s = l = µ as we proceed to check.

Proof of point (ii) of Remark 16 Let us consider the three following claims:

(a) “Proposition 10 holds true for 0 < s < l = 1” .

(b) “Proposition 10 holds true for 0 < s < l < 1” .

(c) “Proposition 10 holds true for 0 < s = l < 1” .

We will show that
(c) ⇒ (b) ⇒ (a)

and finally that (a) implies the general case.
(b) ⇒ (a): To prove (a), we assume (124) with l = 1 and fix 0 < s < 1. Then, for every
s < l < 1,

|fj − fj−1|rj
≤ Arj ≤ Arl

j

which shows that fj satisfies the hypothesis (124) of (b). Applying (b), we get

|f |Cs ≤ CA

s(1 − s)
rl−s
0

and taking the infimum in the above expression over l < 1, we get

|f |Cs ≤ CA

s(1 − s)
r1−s
0 .
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(c) ⇒ (b): We have
|fj − fj−1|rj

≤ Arl
j = Arl−s

j rs
j ≤ Arl−s

0 rs
j

which shows that f̃j = fj/rl−s
0 satisfies the hypothesis of (c). Then, by (c), the uniform

limit f̃ of f̃j belongs to Cs and

∣

∣f̃
∣

∣

Cs ≤ CA

s(1 − s)
,

which is equivalent to

|f |Cs ≤ CA

s(1 − s)
rl−s
0 .

which proves (b).

Now, let us show that the claim (c) implies the general case. We prove by induction on k
( k ≥ 1) that

(Pk) “Proposition 10 holds true for 0 < l ≤ k” .

First of all, notice that (P1) holds true since (c) implies (a) and (b). Let s be a non integer
such that 0 < s ≤ l ≤ k + 1. We can assume that k < l ≤ k + 1( if not, then 0 < l ≤ k
and we can apply the inductive hypothesis). By assumption, we have

|fj − fj−1|rj
≤ Arl

j .

Using Cauchy estimates (Lemma 5) we have for every α ∈ Nd such that |α| = 1,

|∂αfj − ∂αfj−1| rj

2
≤ |fj − fj−1|rj

(rj

2

)−1

≤ 2Arl−1
j .

Then by (Pk), fj converges uniformly to f ∈ Cs for any s ≤ l − 1 and

|f |Cs ≤ C(l − 1)A

µ(1 − µ)
rl−1−s
0 .

Proof of Proposition 10 In view of point (ii) of Remark 16, we may
suppose, without loss of generality, that

0 < l = s = µ < 1 . (127)

In this case, we have to prove that fj converges uniformly on Rd to f and
that

|f |Cµ = |f |C0 + sup
0<|x−y|≤1

|f(x) − f(y)|
|x − y|µ ≤ CA

µ(1 − µ)
.
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Set gj = fj − fj−1. First of all, let us prove that fj converges uniformly on
Rd. For any 1 ≤ n ≤ N , one has (recall that rj = r0/2j)

∣

∣

∣

∣

N
∑

j=n

gj

∣

∣

∣

∣

C0
≤

N
∑

j=n

|gj|C0 =
N
∑

j=n

|fj − fj−1|C0 (128)

=
∞
∑

j=n

A
(

r0

2j

)µ

=
Arµ

0

2µn

1

1 − 2−µ

which converges to zero as n goes to +∞; thus fj converges to f =
∑∞

j=1 gj

uniformly on Rd and (setting n = 1 and N = +∞ in the above estimates)
we have

|f |C0 ≤ Arµ
0

2−µ

1 − 2−µ
.

Since 1 − 2−µ ≥ µ/2 for each µ ∈ [0, 1], we get:

|f |C0 ≤
2Arµ

0

µ
<

2A

µ(1 − µ)
rµ
0 ≤ 2A

µ(1 − µ)
. (129)

In order to estimate the second part of |f |Cµ we need to distinguish two cases
according to whether r0 < |x − y| ≤ 1 or |x − y| ≤ r0.

First case: r0 < |x − y| ≤ 1. Then using the second inequality in (129), we
get

|f(x) − f(y)| ≤ 2 |f |C0 ≤
4A

µ(1 − µ)
rµ
0 ≤ 4A

µ(1 − µ)
|x − y|µ . (130)

Second case: 0 < |x − y| ≤ r0. Then there exists a N in N such that:

r0

2N+1
≤ |x − y| ≤ r0

2N
. (131)

The second inequality in (129) is equivalent to
(

2Nr−1
0

)1−µ ≤ |x − y|µ−1 . (132)

Now,

|f(x) − f(y)| ≤
∞
∑

j=1

|gj(x) − gj(y)|

=
N
∑

j=1

|gj(x) − gj(y)| +
∞
∑

j=N+1

|gj(x) − gj(y)| .
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Let us estimate separately the two sums. Using Cauchy estimates, we have
(recall that, by hypothesis, |gj|rj

≤ Arµ
j ):

|∂xgj| rj

2
≤ |gj|rj

(

rj

2

)−1

≤ |gj|C0

(

rj

2

)−1

≤ 2Arµ−1
j .

Hence,

N
∑

j=1

|gj(x) − gj(y)| ≤ 2A |x − y|
N
∑

j=1

(

2j

r0

)1−µ

= 2A |x − y|
(

(r−1
0 )1−µ

) 2(N+1)(1−µ) − 1

21−µ − 1
.

Since 2t − 1 ≥ t/2 for any t ≥ 0 (and since 21−µ ≤ 2), by (132) we get

N
∑

j=1

|gj(x) − gj(y)| ≤ 2A |x − y|
(

(r−1
0 )1−µ

)

(

4
2(N+1)(1−µ)

1 − µ

)

≤ 16A
|x − y|µ
1 − µ

. (133)

Next (using again 1 − 2−µ ≥ µ/2 for µ ∈ [0, 1] and (129))

∞
∑

j=N+1

|gj(x) − gj(y)| ≤ 2
∞
∑

j=N+1

|gj|C0 ≤ 2A
∞
∑

j=N+1

(

r0

2j

)µ

≤ 2A
(

r0

2N+1

)µ 1

1 − 2−µ
≤ 4A

|x − y|µ
µ

. (134)

Putting (133) and (134) together, we get:

|f(x) − f(y)| ≤ 16A

1 − µ
|x − y|µ +

4A

µ
|x − y|µ

≤ 16A

µ(1 − µ)
|x − y|µ . (135)

Thus, by (129) and (135), we get

|f |Cµ ≤ CA

µ(1 − µ)
,

with C = 18.
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2.2 A KAM theorem in Ck category

In this section we extend KAM theory to the finitely differentiable case.

For simplicity, we shall discuss only the nearly integrable case: in particular
we prove the following generalization of Corollary 1.

Theorem 11 Let ω ∈ R
d be (γ, τ)-diophantine, let l > l0 := 4τ + 3, let

V ∈ C l(Td) and let M > 0 be such that |V |Cl ≤ M . There exists a constant
κ = κ(l, d, τ, γ, M) > 1 such that if

κ (|Vx|C0)
l−l0
l−1 ≤ 1, (136)

then there exists a function u : Td → Rd, which belongs to Cs for all s ≤ l−l0
not integer, satisfying

D2u + Vx(θ + u) = 0 , (137)

and
|u|Cs ≤ κ

µ(1 − µ)
(|Vx|C0)

l−l0−s

l−1 , µ := s − [s] . (138)

If s < 2, from the proof given below it follows easily (as relation (137)
suggests) that the double directional derivative D2u exists and is a Cs(Td)
function (exercise).

Proof Let

ε := (|Vx|C0)
1

l−1 , ξj :=
ε

2j
, ξ̂j :=

ξj+1

2
=

ξj

4
. (139)

Notice that (136) implies that ε < 1.

By Proposition 8, the real-analytic functions Vj := Sξj
V ∈ Rξj

satisfy

∣

∣

∣

∣

∣

∣

∂αVj(x) −
∑

|β|≤l−|α|

∂β+αV ( Rex)

β!
(i Im x)β

∣

∣

∣

∣

∣

∣

≤ c |V |Clξ
l−|α|
j , (140)

for every x ∈ ∆d
ξj

and |α| ≤ l. Denote by Ej the differential operator

Ej : v → Ej(v) := D2v + ∂xVj(θ + v) .
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The strategy is to construct a sequence of real-analytic functions uj ∈ Rξ̂j
,

satisfying Ej(uj) = 0 and to obtain, by Proposition 10, the solution u as
uniform limit of the u′

js.

For the purpose of this proof, we denote by “ const ” (possibly different)
constants depending on l, d and τ and by κi suitable constants depending on
l, d, τ, γ, M . The constant κ in (136) is assumed to be such that

κ ≥ κi , ∀ i . (141)

As a preliminary remark, we observe that, for any |α| ≤ 3 and for any j ≥ 0,

sup
∆d

ξj

|∂αVj| ≤ const M , (142)

as it follows from (140) and the fact that ε < 1:

|∂αVj(x)| ≤
∣

∣

∣∂αVj(x) −
∑

|β|≤l−3

∂β+αV ( Rex)

β!
(i Im x)β

∣

∣

∣

+
∣

∣

∣

∑

|β|≤l−3

∂β+αV ( Rex)

β!
(i Im x)β

∣

∣

∣

≤ const
(

Mξl−3
j + |V |C3 + Mξj

)

≤ const M .

We proceed in three steps: construction of u0; inductive construction of uj

(j ≥ 1); construction of u as lim uj.

Step 1: construction of u0. We want to apply the KAM Theorem 6 with
v ≡ 0, ξ∗ = ξ0, ξ = ξ0/2 := ε/2, ξ̄ = ξ̂0 = ε/4. We start by estimating
E0(v) = E0(0). Let θ ∈ ∆d

ξ , i.e., | Im θk| ≤ ε/2. Then

|E0(0)(θ)| := |∂xV0(θ)|

≤
∣

∣

∣∂xV0(θ) −
∑

|β|≤l−1

∂β∂xV ( Re θ)

β!
(i Im θ)β

∣

∣

∣

+
∣

∣

∣

∑

|β|≤l−1

∂β∂xV ( Re θ)

β!
(i Im θ)β

∣

∣

∣
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(∗)
≤ const

(

|V |Clεl−1 +
∑

j≤l−1

|Vx|Cjεj
)

(∗∗)
≤ const

(

|V |Clεl−1 +
∑

j≤l−1

|Vx|
l−1−j

l−1

C0 |V |
j

l−1

Cl εj
)

(†)
= const

(

|V |Cl +
∑

j≤l−1

|V |
j

l−1

Cl

)

εl−1

≤ const max{1, M} εl−1

=: κ1 εl−1 , (143)

where: (∗) is implied by (140); (∗∗) is the convexity estimate (123) with
k = 0, m = j and l replaced by l−1; (†) is the definition of ε. Thus, recalling
the notations in Theorem 6, and observing that α ≤ max{1, const M/γ2}
by (142), that λ = η = 1 and recalling the definition of ξ̂j, we see that (75)
is implied, in our case, by

κ2 εl−l0 ≤ 1 , (144)

for a suitable κ2 > 1. Such condition, in view of (141) and of the definition
of ε, is implied by (136). Therefore, by Theorem 6, there exists a function
u0 ∈ Rξ̂0

such that
E0(u0) = 0

and such that
‖u0‖ξ̂0

, ‖∂θu0‖ξ̂0
≤ κ3 εl−l0 ≤ 1 , (145)

where κ3 = Kκ2, K being the constant in (77); the second inequality holds
because of (141) and (136). The first step is completed.

Step 2: construction of {uj}. We proceed inductively constructing uj+1, for
j ≥ 0, via Theorem 6 by taking v = uj as approximate solution. We also

take ξ∗ = ξj+1, ξ = ξ̂j and ξ̄ = ξ̂j+1. The parameter α, in view of (142), is
uniformly bounded by max{1, const M/γ2}.
We, now, assume that, for 0 ≤ k ≤ j, there exist functions uk ∈ Rξ̂k

such
that

Ek(uk) = 0

and such that22

‖uk − uk−1‖ξ̂k
, ‖∂θ(uk − uk−1)‖ξ̂k

≤ κ4

( ε

2k

)l−l0
, (1 ≤ k ≤ j) (146)

22For j = 0 (146) is obviously replaced by the already proven (145).
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for a suitable κ4 ≥ κ3 specified below; finally we assume that 0 ≤ k ≤ j:

‖∂θuk‖ξ̂k
≤ 1 , ‖(I + ∂θuk)

−1‖ξ̂k
≤ 2 . (147)

Notice that ‖∂θuk‖ξ̂k
≤ 1 implies23 ‖I + ∂θuk‖ξ̂k

≤ 2 so that, if (147) holds,
then in Theorem 6 one can take λ = η = 2. The inductive assumption (147)
and the definitions in (139) imply that (74) is satisfied: in fact, if θ ∈ ∆d

ξ̂j
,

then

| Imuj(θ)| = | Im (uj(θ) − uj( Re θ))|
≤ |uj(θ) − uj( Re θ)|
≤ ‖∂θuj‖ξ̂j

ξ̂j

≤ ξ̂j := ξj+1 − ξ̂j .

We need, now, to estimate Ej+1(uj). Since, by the inductive assumption,
Ej(uj) = 0, we find, for θ ∈ ∆d

ξ̂j
and because of (140),

|Ej+1(uj)(θ)| := |D2uj(θ) + ∂xVj+1(θ + uj)|
= |∂xVj+1(θ + uj) − ∂xVj(θ + uj)|

≤
∣

∣

∣∂xVj+1(θ + uj) −
∑

|β|≤l−1

∂β
x∂xV ( Re (θ + uj))

β!
(i Im (θ + uj))

β
∣

∣

∣

+
∣

∣

∣

∑

|β|≤l−1

∂β
x∂xV ( Re (θ + uj))

β!
(i Im (θ + uj))

β − ∂xVj(θ + uj)
∣

∣

∣

≤ const |V |Cl

(

ξl−1
j+1 + ξl−1

j

)

|
≤ const Mξl−1

j . (148)

Thus, (75) becomes, in the present case,

κ5

( ε

2j+1

)l−l0 ≤ 1 , (149)

for a suitable κ5 > 1. We now define24 κ4 as

κ4 := max{κ3 , Kκ5} . (150)

23We are choosing norms for which ‖I‖ = 1.
24This is well defined since in the computations leading to the definition of κ5 the

inductive hypotheses (146) have not been used.
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Notice that condition (149) is again implied by (136). Thus, by Theorem 6,
there exists a function uj+1 ∈ Rξ̂j+1

such that

Ej+1(uj+1) = 0

and such that

‖uj+1 − uj‖ξ̂j+1
, ‖∂θ(uj+1 − uj)‖ξ̂j+1

≤ κ4

( ε

2j+1

)l−l0
, (151)

which is exactly (146) with k = j + 1. The bounds (151) together with
the condition (136) easily implies that the inductive assumptions (147) are
satisfied also for25 k = j + 1, allowing to iterate the inductive procedure
indefinitely. The second step is completed.

Step 3: construction of u. At this point we can apply Proposition 10 (see
also Remark 16) with: l replaced by l − l0; fj = uj − u0; rj = ξ̂j := ε/2j+2

(so that r0 = ε/4); A = κ44
l−2 (compare (124), (151) and the choice of rj).

The thesis of the theorem now follows at once from Proposition 10.

Exercise Discuss the C∞ case.

Exercise∗ Extend Theorem 6 to the differentiable case.

25Exercise Fill in the details.
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3 Appendix A

Lemma 12 If T = T (θ) is a strictly positive and symmetric real matrix for
each θ ∈ Td, then

‖〈T 〉‖−1 ≤ sup
θ∈Td

∥

∥

∥T−1
∥

∥

∥ .

Proof By hypotheses there exists an orthogonal matrix P such that P TTP
is diagonal. Let {λi : i = 1, . . . , d} be the spectrum of T and y a vector
whose coordinates are yi for i = 1, . . . , d in the basis where T is diagonal.
Then, we have:

(Ty) · y =
d
∑

i=1

λiy
2
i

≥ min
i∈{1,...,d}

{λi} ‖y‖2 .

But, mini∈{1,...,d}{λi} = ‖T−1‖−1
, thus,

(Ty) · y ≥ ‖y‖2

‖T−1‖

≥ ‖y‖2

supθ∈Td ‖T−1‖ .

Set y = 〈T 〉−1x. Taking the average of the last expression, we get

〈(

T 〈T 〉−1x
)

· y
〉

≥
〈

‖y‖2

supθ∈Td ‖T−1‖

〉

,

i.e.,
(

〈T 〉〈T 〉−1x
)

· y ≥ ‖y‖2

supθ∈Td ‖T−1‖ .

Finally, using Schwarz’s inequality in the left-hand side, and dividing by ‖y‖,
we get

‖x‖ ≥ ‖y‖
supθ∈Td ‖T−1‖ ,
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i.e.,

sup
θ∈Td

∥

∥

∥T−1
∥

∥

∥ ≥ ‖y‖
‖x‖ =

‖〈T 〉−1x‖
‖x‖ .

Since this is true for all x, the result follows.

Proof of Lemma 4 To prove (66), we observe that by Parseval identity, if
v ∈ Cd is such that | Im v| < ξ, then

∑

n∈Zd

|fn|2e−2(n·v) =
∫

Td
|f(u + iv)|2 du ≤ ‖f‖2

L2,∆d
ξ

. (152)

Thus, for any n ∈ Zd and any v as above,

e−n·v|fn| ≤ ‖f‖L2,∆d
ξ

;

and choosing26 v = −(sign n1, ..., sign nd)(ξ − ε) we get

e|n|ξ |fn| ≤ ‖f‖L2,∆d
ξ

eε|n| ;

letting ε → 0, (66) follows.

Let us turn to (67). For the purpose of the following argument we let |n|
denote the Euclidean norm also for integer vectors.

The first inequality in (67) is obvious; in order to establish the second one
for a fixed vector x ∈ ∆d

ξ−δ we define the set

I0 = {n ∈ Z
d : (n · Im x) ≤ −|n|(ξ − δ)

2
} ,

and let

µ :=
ξ

ξ − δ
.

Observe that (n · Im x) ≤ − |n|(ξ−δ)
2

is equivalent to

−n · Im x ≤ −n · µ Imx − |n|δ
2

. (153)

26Here, we let signa be 1 if a ≥ 0 and (−1) otherwise.
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Thus, by (153), Schwarz inequality and (152) (since µx ∈ ∆d
ξ), we get

∑

n∈I0

|fn|e−(n· Im x) ≤
∑

n∈I0

|fn|e−(n·µ Im x)e−|n|δ

≤




∑

n∈Zd

|fn|2e−2(n·µ Im x)





1
2




∑

n∈Zd

e−|n|δ





1
2

≤ c
1
2
1

δ
d
2

‖f‖L2,∆d
ξ
,

where27

c1 = c1(d) = sup
0<λ≤1

∑

n∈Zd

λde−|n|λ < ∞ .

It is easy to see that there exist an integer s = s(d) and a collection of s unit
vectors e1, . . . , es in Rd, such that for ever y ∈ Rd there exists σ ∈ {1, . . . , s}
with28

(y · eσ) >
|y|
2

.

Now, every nonzero integer vector outside I0, lies in one the sets Iσ defined
as

Iσ :=

{

n ∈ Z
d : (n · Im x) > −|n|(ξ − δ)

2
, (n · eσ) >

|n|
2

}

.

But, (using again Schwarz inequality and (152)),

∑

n∈Iσ

|fn|e−(n· Im x) ≤
∑

n∈Iσ

|fn|e|n|
(ξ−δ)

2

≤




∑

n∈Iσ

|fn|2e|n|ξ




1
2




∑

n∈Iσ

e−|n|δ





1
2

27
∑

e−|n|δ =
1

δd

(

δd
∑

e−|n|δ
)

≤ 1

δd
sup

0<λ<1

(

λd
∑

e−|n|λ
)

.

28Given v ∈ Sd−1 := {y ∈ Rd : |y| = 1}, let Cv := {w ∈ Sd−1 : w · v > 1
2}. Then Cv

is an open (in the relative topology) neighborhood of v and {Cv : v ∈ Sd−1} is an open
cover of the compact set Sd−1. Thus there exist unit vectors v1 =: e1,...,vs =: es such that
Sd−1 ⊂ ∪s

j=1Cej : this is equivalent to the claim.
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≤




∑

n∈Zd

|fn|2e−2(n·ξeσ)





1
2




∑

n∈Zd

e−|n|δ





1
2

≤ c
1
2
1

δ
d
2

‖f‖L2,∆d
ξ

.

Inequality (67) now follows and one can take c0 = (s + 1)
√

c1.

4 Appendix B (Fourier Norms)

For ξ ≥ 0 let us define the space

R̂ξ(T
d, RN) := {f ∈ C(Td, RN) s. t. ‖f‖ˆ

ξ :=
∑

n∈Zd

|fn|e|n|ξ < ∞} .

The space R̂ξ(T
d, RN) is a Banach space with respect to the norm ‖f‖ˆ

ξ.
Moreover, since

|fn| ≤ ‖f‖ˆ
ξe

−|n|ξ ,

(when ξ > 0) the function f has a holomorphic extension to the complex
strip ∆d

ξ . Notice that

sup
∆d

ξ

|f | = sup
∆d

ξ

∣

∣

∣

∑

n∈Zd

fneinx
∣

∣

∣ ≤
∑

n∈Zd

|fn|e|n|ξ = ‖f‖ˆ
ξ , (154)

and if 0 ≤ ξ′ < ξ, then R̂ξ ⊂
/

R̂ξ′ (exercise). In particular, (154) shows

that f ∈ R̂ξ admits a holomorphic and bounded extension to ∆d
ξ .

Lemma 13 Let f ∈ R̂ξ(T
d, X), p ∈ Z, α ∈ Nd be such that |p|+ |α| > 0. If

p > 0, assume either |α| > 0 or 〈f〉 = 0. Let 0 < δ ≤ ξ. Then

‖D−p∂αf‖ˆ
ξ−δ ≤ Cp,α(ω)‖f‖ˆ

ξ ,

where

Cp,α(ω) := sup
n6=0

|nα|e−δ|n|

|ω ·n|p .
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If ω is (γ, τ)-diophantine, then

Cp,α(ω) ≤



























(pτ + |α|)!
γpδpτ+|α| , for p ≥ 0 ,

(sup |ωi|)|p| (|p| + |α|)!
δ|p|+|α| , for p < 0 .

Proof

‖D−p∂αf‖ˆ
ξ−δ =

∥

∥

∥

∑

n6=0

nαfn

(ω ·n)p
einx

∥

∥

∥

ˆ

ξ−δ
=
∑

n6=0

|fn||nα|
|ω ·n|p e|n|(ξ−δ) ≤ Cp,α(ω)‖fn‖ˆ

ξ .

If p ≥ 0 and ω is (γ, τ)-diophantine, then

Cp,α(ω) ≤ sup
n6=0

|n||α|+τp

γp
e−|n|δ .

The function on the right is of the form g(t) = tae−δ|t|, t > 0, a ≥ 0, and has
a maximum at the point tm = a

δ
such that g(tm) = aa(eδ)−a ≤ a!δ−a, where

if a is not an integer, we define29 a! = ([a] + 1)!

If now p < 0, one can repeat the previous arguments using the fact that in
this case |ω · n||p| ≤ (sup |ωi|)|p||n||p|.

In particular, if 〈f〉 = 0, then

‖D−1f‖ˆ
ξ−δ ≤ ‖f‖ˆ

ξ

τ !

γδτ
. (155)

Lemma 14 Let f ∈ R̂ξ(T
d, X), g ∈ R̂ξ(T

d, Y ), with X and Y tensor spaces
(RN , matrices or higher dimensional tensors) and assume that the product
fg is well defined. Then

‖f g‖ˆ
ξ ≤ ‖f‖ˆ

ξ‖g‖ˆ
ξ .

29If a ∈ N, then
(

a
e

)a

= aa

1+a+a2

2
+...+aa

a!
+...

≤ aa

aa

a!

= a!. If a is non-integer, then we can

repeat the same argument eliminating all terms in the Taylor expansion for the exponent
except 1 + a[a]+1/([a] + 1)!.
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Proof Indeed,

‖f g‖ˆ
ξ =

∑

n

|(fg)n|e|n|ξ =
∑

n

∣

∣

∣

∣

∣

∑

m

fn−mgm

∣

∣

∣

∣

∣

e|n|ξ

≤
∑

n,m

|fn−m||gm|e|n−m|ξe|m|ξ = ‖f‖ˆ
ξ‖g‖ˆ

ξ .

Lemma 15 Let V ∈ R̂ξ∗(T
d, R), g ∈ R̂ξ(T

d, Rd), with ξ∗ > ξ. If ‖gi‖ˆ
ξ ≤

ξ∗ − ξ for all i = 1, . . . , d, then ‖V (x + g(x))‖ˆ
ξ ≤ ‖V ‖ˆ

ξ∗.

Proof Using Lemma 14, the fact that ‖ · ‖ˆ
ξ is a norm, one finds

‖V (x + g(x))‖ˆ
ξ =

∑

n

|(V (x + g(x))n|e|n|ξ

=
∑

n

∣

∣

∣

(

∑

m

Vmeim·(x+g(x))
)

n

∣

∣

∣e|n|ξ

=
∑

n

∣

∣

∣

∑

m

Vm(eim·g(x))n−m

∣

∣

∣e|n|ξ

≤
∑

n,m

|Vm||(eim·g(x))n−m|e|n|ξ

≤
∑

n,m

|Vm|
∣

∣

∣

∣

∣

∣

∑

j≥0

[

(im · g(x))j

j!

]

n−m

∣

∣

∣

∣

∣

∣

e|n−m|ξe|m|ξ

≤
∑

m,j

|Vm|
j!

e|m|ξ ∑

n

∣

∣

∣

∣

[

(im · g(x))j
]

n−m

∣

∣

∣

∣

e|n−m|ξ

≤
∑

m,j

|Vm|
j!

e|m|ξ(‖m · g‖ˆ
ξ)

j

≤
∑

m,j

|Vm|
j!

e|m|ξ(
d
∑

i=1

mi‖gi‖ˆ
ξ)

j

≤
∑

m,j

|Vm|
j!

e|m|ξ(sup
i

‖gi‖ˆ
ξ

j
)|m|j

≤
∑

m,j

|Vm|
j!

e|m|ξ(ξ∗ − ξ)j|m|j

=
∑

m

|Vm|e|m|ξe(ξ∗−ξ)|m| = ‖V ‖ˆ
ξ∗ .
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The Fourier norm ‖·‖ˆ
ξ and the sup-norm ‖·‖ξ are not equivalent (exercise);

however they are strictly related. We have already seen (compare (154)) that

‖f‖ξ ≤ ‖f‖ˆ
ξ , (156)

which implies immediately30

R̂ξ(T
d) ⊂ Rξ(T

d) . (157)

We now prove that a weaker version of the converse of (156) is true. Let
ξ′ > ξ > 0 and assume that f ∈ Rξ′ . Since, for every n ∈ Zd,

|fn| ≤ ‖f‖ξ′e
−|n|ξ′ ,

we have
‖f‖ˆ

ξ =
∑

n

|fn|e|n|ξ ≤ ‖f‖ξ′
∑

n

e−|n|(ξ′−ξ) .

But (for suitable positive constants c(d), C(d))

∑

n∈Zd

e−|n|(ξ′−ξ) ≤ c(d)
∫

Rd
e−|x|(ξ′−ξ)dx =

c(d)

(ξ′ − ξ)d

∫

Rd
e−|y|dy =

C(d)

(ξ′ − ξ)d
,

so that

‖f‖ˆ
ξ ≤ C(d)

‖f‖ξ′

(ξ′ − ξ)d
. (158)

This relation shows, in particular, that

Rξ′(T
d) ⊂ R̂ξ(T

d) , ∀ ξ′ > ξ . (159)

Exercise Give explicit upper bounds on c(d) and C(d).

30Actually R̂ξ(T
d) ⊂

/
Rξ(T

d) (exercise).


