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The aim of these lectures is to present, in a self contained way, the fundamentals
of KAM theory, which, as well known, deals with the problem of constructing
quasi-periodic motions in real-analytic or smooth conservative dynamical systems.

KAM theory is based upon quantitative techniques designed to overcome the so-
called small denominator difficulties arising in the construction of quasi-periodic
motions and works under rather stringent smallness and regularity assumptions.

For sake of presentation, we will consider only second order Hamiltonian systems
with a finite number of degrees of freedom (periodic in the “space” variables), i.e.,
systems governed by Hamiltonian functions of of the form

2
H(y.a) =5 + V(). 1

where y and x are standard symplectic variables (y,z) € RYxT? and V : T¢ — R
is a (multi-periodic) smooth or real-analytic function; y? := y-y := Z‘;Zl y? Here,
T< denotes the standard flat d-torus T? := R¢/(2rZ%); the (standard) symplectic
structure is: dy A dx = E?:l dy; N drj and the Hamilton equations are

y=—Hy, T =H,, (2)

*Published in “Dynamical Systems. Part I: Hamiltonian Systems and Celestial Me-
chanics”, Pubblicazioni della Classe di Scienze, Scuola Normale Superiore, Pisa. 1-56.
Centro di Ricerca Matematica “Ennio De Giorgi” : Proceedings. (2003)
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where H, denotes the y-gradient (Hy,,...,Hy,) and H, denotes the x-gradient
(Hyy, ..., Hy,); dot denotes time derivative.

The point of view taken up in these lectures is that of non-linear functional analysis,
as we briefly proceed to explain. The problem of constructing (maximall) quasi-
periodic solutions is essentially equivalent to solve a non-linear partial differential
equation on T? £(u) = 0, with real-analytic or C* coefficients. If one is given
an approximate solution, i.e. a function v for which £(v) is not zero but small
(in suitable norms), then, under suitable conditions, it is possible to find a true
near-by solution. The method we shall follow is based on a Newton (“quadratic”)
scheme, which allow to construct a sequence of better and better approximations
(living in larger and larger Banach spaces) converging to a true solution. The loss
of regularity (related to the inversion of non elliptic differential operators and to
the above mentioned small denominator problems) arising in solving the associated
linearized equation is overcome by the speed of convergence of the scheme.

The approach presented here - sometimes referred to as KAM theory in configu-
ration space - avoids completely the use of symplectic transformations and needs
less preparation than standard KAM theory.

The notes of the lectures are divided in two chapters:

In the first chapter a KAM theorem establishing the existence of quasi-periodic
solutions (with prescribed “diophantine” frequencies), in real-analytic setting, is
presented. The “potential” V in (1) is not assumed to be small; what allows to
start up the perturbative procedure is the existence of a good enough approximate
solution.

While no effort is put in trying to get “optimal estimates”, a certain care is devoted
to perform explicit estimates and also to discuss convenient norms (Fourier and
complex sup-norms).

In the second chapter, we shall consider Hamiltonians H in (1) with V € C!(T¢9),
which shall be assumed to be small in C! norm. Then, assuming [ big enough and
using the approximation technique due to Bernstein, Jackson, Moser and Zehnder?,
we shall construct (using the real-analytic KAM theorem of the first chapter) a
sequence of real-analytic approximate solutions converging to C?® quasi-periodic
solutions; explicit estimates on [ and s will be given.

T.e., quasi periodic-solutions with d independent frequencies; for the definition of quasi-
periodic solutions, see below.

2Such technique gives precise hypotheses in order to approximate C functions with real-
analytic ones and, viceversa, to get C! functions out of limits of real-analytic sequences.
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1.1 Warm up: Newton scheme for the standard IFT

The aim of this section is to discuss a proof of the (standard) Implicit Func-
tion Theorem in R™ based on the “Newton method” with the purpose of
illustrating, in a trivial case, the scheme of proof that we shall use to con-

struct quasi-periodic motions for Hamiltonian systems.

Let (g,7) € R" x R™; denote by D} the closed ball in R™ centered at i with
radius p and by DI the closed ball in R centered at  with radius 7; let
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X, denote the Banach space, C'(D;", D7), of continuous function from D}"
into D} endowed with the sup-norm.

Theorem 1 Let F' € C(D}x D", R") be such thaty — F(y,z) € C*(D7,R")
Jor all x € D" with F, invertible on D)) x D*. Let v and 3 be positive num-
bers such that

2
(6%
,<057 7HFypr,f§ﬁv (3>

pT T

&)

being short for SUP pn x pm |-|. Suppose that, for some 0 < r < 7 and

I1l,.7
0 <o <1, there exists ug € X, such that ||ug — yl|, := suppm [ug —y| < p
and:

L A Lt ) P

Then, there exists a unique function u € X, , such that:
F(u(z),z)=0, VzeD, (5)

and o
Ju = olle < T2 [P uol), )l -
—0

Remark 1 (i) The limiting case 5 = 0 corresponds to the linear case
Fy,z) = a(x) + Az)y

(with A invertible), in which case the solution of F(u,z) = 0 is simply

u=—A"ta.

(i) If F(y,Z) = 0, one can obviously take ug(z) = y (choosing suitably r so
as to meet condition (4)).

(iii) The function wy is called an approximate solution of (5); the function
50($) = F(UO(J:)7$) ) (6>

is the associated error function. The inequality (4) should be interpreted as
a smallness condition on the error function and the IFT can be rephrased
by saying that if the smallness condition is verified by the error function g
associated to the approximate solution ug, than there exists a (unique) true
solution w, which is ||eg||-close to the approximate solution 1.
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Proof We first show how to construct out of vy a new approximate solution
uy for which the associated error function e;(z) := F(ui(x),x) is quadrati-
cally smaller that ¢.

Let €g be as in (6) and define
-1
wo(z) = —(Fy(uo(x),7)) eo(r), w1 :=ug+uwp. (7)
We claim that u; € X, , and that wy and e := F(uy, z) verify:

lwoll, < alleoll ,  llellr < Blleolly - (8)

In fact, the first estimate in (8) is immediate consequence of the definitions
of wy and «a. To show that u, : D" — D;L, we compute:

Jur = gllr = |luo +wo —Yllr < lluo —gllr + llwoll-
l1—0

< lluo = gl + lleollr < lluo = gllr + @ (o= Iluo = 7ll,)

A\

P

where we have used the assumption (4) on €g := F(ug, z). Observe that, by
the definition of €1, wy and Taylor’s formula, one gets:

g1 = F(uy,2) = F(ug+ wo, ) = F(ug, ) + Fy(up, x)wo + Q
= &0+ Fyluo, 2)wo + Q@ = Q (9)
where? .
Q:A@-@@qum@mwwm. (10)

Thus, by the estimates on wq in (8) and the definition of 3, we get

1 o?
ledll- = 1Q|l- < §|YFLy|hxf lwoll2 < — I Fyyllos leoll? < Bllwoll?,  (11)

completing the proof of (8).

The idea is, now, to iterate such construction: Fix £ > 2 and assume that
uy,...,u,_1 are given approximate solutions belonging to the Banach space
X, , and such that, if one defines

Wy = Ujy1 — Uy, 5]'(33) = F(U](Qf),l’) ) (O S] <k- 2) ) (12)

3« denotes, here, the standard inner product.
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then the following inequalities hold for all 0 < j < k — 2:
lwill- < alleille s Nejrlle < Bllesl? - (13)

Note that such inductive assumption has been verified for k = 2 with u; as
in (7).

We claim that, under the inductive assumption (12) and (13), setting
er—1(z) == Flug_1(x),x) , wi—1(x) = —Fy(up_1(x), )ep_1(z) , (14)

then one has
U = Up_1 T+ Wg_1 € an , (15)

and (13) holds also for j = k — 1.

In fact, the estimate on ||wy_1||, follows at once (as above) from the definition
of wg—; and « (and the inductive assumption on uy_1). Let us, now, show
(15). Multiplying by [ the second relation in (13) can be rewritten as

Bllejrlls < (Bllgsllr)? (16)
which iterated leads to
Bleillr < Blleoll)? . VO<j<k-1. (17)

Thus, by (12), (13) (first inequality), (17) and (4), one has

k—1
=gl = uo+ D w; -]
j=0
k—1
< o= glle + 3 llwyll
j=0
k—1
< Juo =gl +a Y sl
j=0
i ail 2i
< o —gll, + = 3 (Bleollr)
8=

< mrwm+%zwwmw
j=1
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) <ol
= |u0—y|r+0z
o =3l + o5

el

< — g, + =0

< g — gl + 0l
 1—op—fuo—gll

< Juo—7ls +a _,

l1—0

This shows (15). At this point, also the estimate on |leg||, follows: just
replace e1, ug and wy in (9)+(11) by, respectively, e, up_1 and wy_.

Thus, thanks to (4), the construction can be iterated indefinitely and {uy}
will converge to a function v € X, , Clearly, since |g;], — 0 (super-
exponentially fast), one has

F(u,z) = lim F(ug, z) = lime, =0 ,
showing (5).

Uniqueness is an obvious consequence of the invertibility of F,. 11

Remark 2 (i) The approximate solutions uy’s belong to the same Banach
space X, ,. This is so because wy_; belongs to the same space of u,_;. In the
more complicate case of quasi-periodic solutions for Hamiltonian systems this
will not be the case any more: the analogous of Fy_1 will be an unbounded
operator (involving small divisors) and (the analogous of) wy_; will lie, in
general, in a smaller Banach space.

(ii) In fact, even formally, it will not be possible to solve the linearized equa-
tion? exactly but only up to quadratically small terms.

(iii) The argument to prove (local) uniqueness in the quasi-periodic case will
be different (because of the lack of invertibility of F),).
1.2 Quasi-periodic solutions (definitions)

Let, as above, T? := R?/(27Z) be the standard d-dimensional flat torus and
let Q be a bounded domain in R%. Consider a smooth (say C?) Hamiltonian

4I.e., the equation Fy(up, x)wo + o = 0.
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H(y,z) from ©Q x T¢ to R and the associated Hamiltonian equations

y' _ _OH
{ g i=1,...,d. (18)

An interesting example is when the system is nearly-integrable, i.e., when H
is of the form
H(y7 (L’) = HO(y) + ng(yu (L’)

with € a small parameter. The corresponding Hamiltonian equations become

OO 0H,
Yi = —€%, .
. 9H, ' ol Z:]_,...,d. (19)
{ Ti = ay? +€3in

When ¢ = 0 this system is completely integrable and all solutions,

{ y(t) = y(0) ,
z(0) + 2o (y(0)) ¢ , (mod (27, ...,2m)) ,

are quasi-periodic:

Definition 1 A solution (y(t),z(t)) of (18) is said to be quasi-periodic, if
there exist a vector w € R? (frequency vector) and two functions u, v €
C*(T¢,RY) such that

x(t) = wt + u(wt) (mod (27, ...,2m)).

for every t. If the frequency vector is rationally independent (i.e.> w-n # 0
for every n € Z4\ {0}), then the solution (y(t),x(t)) is said to be maximal
quasi-periodic.

Remark 3 (i) Non-maximal quasi-periodic solutions include periodic solu-
tions: this is the case when there exist 7' > 0 and n € Z% such that wT = 27n;
notice that in this case there exist d — 1 linearly independent vectors n; € Z?
such that w-n; = 0 for® j = 1,...,d — 1. More in general, frequencies may be

5For vectors a,b € R¢ we denote a - b := 2?21 a;b;
In fact, if wT = 27n with T > 0 and n € Z% \ {0} then there are exactly (d — 1)

independent vectors n; s.t. w-n; = 0.
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classified in terms of the number of relations w - m = 0 satisfied by w with
independent vectors m € Z¢.

(ii) A maximal quasi-periodic solution is said to be non-degenerate if (w is
rationally independent and) the map 0 € T¢ — 6 + u(f) € T? is a diffeo-
morphism of T? so that the map 0 € T¢ — (v(6),0 + u(f)) € R? x T¢ yields
an embedding of the d-dimensional torus into the phase space 2 x T?. The
relation (20) says that non-degenerate maximal quasi-periodic solutions cor-
respond to d-dimensional invariant tori on which the H-flow is conjugate to
the linear flow 6 — 0 + wt.

(iii) In these lectures we shall consider only non-degenerate maximal quasi-
periodic solutions and, hereafter, “quasi-periodic solution” will be used as
synonymous of “non-degenerate maximal quasi-periodic solutions”. In par-
ticular, the frequency vector w is always assumed to be rationally indepen-
dent.

Consider a quasi-periodic solution (y(t),x(t)) as in (20). Differentiating it
with respect to t we get

{ y(t) = Do(wt)

t(t) = w+ Du(wt),
where

i 9
D:=D,:= — .
=,
Since (y, z) is a solution of (18), we have

{ Duv;(wt) = —g—g(v(wt),thr u(wt)) . ]
Wi‘i‘Dui(wt) = g—i(v(wt),wt_l_u(wt)) RN AR

d

which, by density of the trajectory t — wt on” T%, are equivalent to

Du(f) = —H,(v(0),0 + u(0)) d

) Te. 21
{ w+ Du(6) = Hy(w(0),0+u(®) '€ (21)
7As well known, § € T? — wt € T? is dense if and only if w is rationally independent;

see, e.g., [V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag,
1989].




KAM Lectures 11

Herealfter, (for simplicity) we shall consider only Hamiltonians H of the form

2

H(y,z) = % TV (2) = ij; TV (2) .

In this special case (18) takes the form
T=y

i= V.

Notice that, in such a case, the second equation in (21) becomes simply

or, equivalently,

v(f) = w+ Du(f) , (22)

so that the system (21) becomes the following single (vector) equation for
u:

D*u(f) = =V, (0 +u(0)) . (23)
The lectures are devoted to discuss solutions of (23).

It is clear that an important role in the study of (21) or (23) is played by the
linear equation

Du=f,

with f a given function on T?. Proceeding formally, we expand both sides in
Fourier series getting

ST e =3 i(wen)ue™?.

neZd neZd
Equating Fourier coefficient, we get, for n = 0, the compatibility condition®
fo=(f)=0, (24)
and, for n # 0,

o (nez\{0}). (25)

8We denote () := ][ -df = (QW)—d/ . db.
Td Td
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The denominator (w-n) in (25), even though never vanishes, might become
arbitrarily small making doubtful the convergence of the Fourier series

> upe™? (26)

nezs

Definition 2 We say that w € R? is (v, 7)-diophantine if v, T are positive
constants such that

lw-n| > T for every n € Z%\ {0}. (27)

n|”

Remark 4 For 7 > d — 1 fixed, the set of diophantine vectors is of full
measure (exercise). For 7 < d — 1 (27) is never satisfied (Liouville).

Suppose now that w is (v, 7)-diophantine and f is a smooth enough function
with vanishing mean value, (f) = 0. Then (26)-(25) actually define the
function u, solution of Du = f, up to an additive constant (the average of
u); the unique solution of the system:

Du=f, (u)=0,
will be denoted by D~1f.

Exercise Find a lower bound on & so that if f € C*(T¢) then D~!f has an
absolutely convergent Fourier series expansion.

Remark 5 The analysis described in these lectures could be easily extended
to the non-autonomous case, i.e, the case when the potential V' = V(x,t)
depends also explicitly (and periodically) on time ¢, V : T4 — R. In such
a case D, has to be replaced by

d 0 0

with (w,1) € R4 rationally independent and equation (23) becomes

D*u(6,t) = =V, (0 +u(6,t),t) .
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1.3 Newton scheme for Quasi-periodic solutions

In this section we describe the Newton scheme on which the construction of
solutions of the functional equation (23) will be based.

The strategy that we shall follow mimics the proof of Theorem 1: we shall
start from an approximate solution v of (23), i.e., a (smooth) function v such
that the associated error function

g:=E() =D+ V(0+v), (28)
is “small” and try to construct a “better” approximate solution
vii=v4w, (29)
whose associated error function
e = EW) = D*' + V(0 + ) (30)

is “quadratically smaller” than the error function associated to v.

Remark 6 The discussion in this section will be algebraic in character and
the necessary estimates will be discussed later (§ 1.5). Therefore, words such
as “small” or “quadratically smaller” are used, here, in a somewhat formal
way”. Roughly speaking, the idea is to look for w ~ ¢ (i.e., “of the same
order of €”) so that £(v + w) ~ &2. However, as clarified also in Remark 7
below, the reader can also disregard any reference to “smallness” following
only the algebraic identities involved.

Define ; as
Q= Va0 + v +w) = Vo0 +v) = Viu (0 + v)w. (31)

and note that, by Taylor’s formula, Q, is quadratic in'® w. Expanding V,(6+
v+ w) we find:

e =E(W) = D>+ D*w+ V(0 +v+w)

9At an intuitive level, one should think to substitute the error function e with pue
thinking g as a small real parameter: the terms appearing with a g in front will be
thought of as “small” terms and of the same “order” of the error function, terms with a
u? in front will be thought of as “quadratically smaller terms”, etc.

9Here and in what follows the symbol @;’s stand for terms “quadratic in £”.
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= D+ V(0 +v)+ D?*w + V(6 +v)w + Q
= &)+ D*w+ Vo (6 +v)w + Q1
= e+ D*w+ V(0 +v)w+ Q. (32)

The perfect analogue of the Newton scheme described in the proof of the
standard IFT given in § 1 would consist in finding an “explicit” solution of
the the following PDE on T¢

e+ D*w + V(0 + v)w = 0. (33)

However this is not so easy and, in fact, we shall be able to solve (33) only
up to quadratic terms in €.

To proceed further, we look at the variation equation for (23), i.e., the equa-
tion
g9 = D0y + Voo (0 +v) (I + vp) , (34)

which is gotten by differentiating with respect to 0 the system (23); here, for
a given function u : T? — R?, ug denotes the Jacobian matrix

0ui
e (69]- (‘9)>i,' g

7j=1,...,

and [ := I; denotes the unit (d x d) matrix.
Setting

M =1+ v (35)
we can rewrite (34) in the form

g9 = D*M + V(0 + v) M. (36)
Assume that M () is invertible for all § € T%. From (36) we get
Vw0 +v) = (¢g — D*M)M ™

and plugging this equality in (32), we find

e = e+ D*w+ (e — DPM)M 1w+ Q,
= e+ D*w— (D*M)M 'w + oM 1w+ Qy
= e+ D*w— (D*M)M 'w + Q, (37)
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with
Qs =Q1+egM'w . (38)
Setting
zi=M"'w, (39)
we get:

g = e+ D*(Mz)— (D*M)z + Qs
= e+ D(MDz)+ D(DMz) — (D*M)z + Qs
= ¢+ D(MDz)+ (DM)(Dz) + Q. (40)

Denote by M7 the transpose of the matrix M and let M7 = (M)~}
Then:

¢ = M"(M"e+M"D(MDz)+ M"(DM)(D2)) + Q
= M T (M"s+ D(M"MDz) — (DM")(MDz) + M"(DM)(Dz2)) + Q
= M " (M"e+D(M"MDz2)) + g+ Q> , (41)
with
g:=MT(M"DM — (DMT)M)Dx . (42)

We claim that g is quadratic in . To check this, we, first, remark that

(MTDM — (DMTYM) = (MT Dug — (Dol )M)
= ((I +v})Dvg — (Dv})(I + vg))
= (v} Dvg — Duvlvg), (43)

(since (Du) = 0 for any periodic function u). Integrating by parts,

d Oy, Oy, Ovy, \ Ovg
(v5 Dvg — Dvgvg)yy = ( (D_> - <D ) —>
070 0700 2 f 0, 96, ) 96;

d (‘92vk aQUk
- Z /gr <ae o6; Dve) = (D ”’“>aez-aej>

showing that
(MT"DM — (DMT)M) =0. (44)
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Thus, we can write:
M"DM — (DM")M = D' [D (M"DM — (DM")M)] .
But, by (36),

D(M"DM —(DM")M) = M"D*M — (D*M")M
= —M"VuM + M g+ MTVyuM — el M

= MT€9 - EgM s
showing that
(MTey —ef M)y =0, (45)
and that
M*DM — (DM™"YM = D™ (MTey — f M) .
Thus
g=MT(D Y M"¢y — ) M))Dz (46)
is quadratic in . Furthermore (41) can be rewritten as
=M (M"e+ D(M"MDz)) + Qs , (47)
with
Qs := Qo+ M T (D (M'ey—ef M))Dz. (48)

We can now show that the equation
M%s + D(MTMDz) =0 (49)
can be explicitly solved.

We have already studied the inversion of the differential operator D and
therefore we know that a necessary condition to solve our equation is that
the average (M7T¢e) of MTe over T? is equal to 0. This is indeed the case, as
we proceed to show.

First, by the definitions of M and ¢,

(MTe) = ((I+v])(D*+ V(0 +v)))
= (v} D*) + (MTV, (0 +v)) (50)
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where the latter equality follows since (D?v) = 0. Let us compute the i-th
component of (v] D*v). Integrating by parts

d
(vg D*v); = > ﬁrd ZZ"CDQdeH
k=1 i

d
— a 2
_ 1);:1 ﬁrd”’“aei(D ve)do

d (%k
_ _1)\2
— (-1 ;::1 Ad(ka)Daeid(‘)

d c%k
Y ﬁrd(p%k)aeide

= —(vg D*v); . (51)

Thus (vj D?*v) = 0 and, in view of (50), it remains to check that
(MTV,(0 +v)) =0.

By the chain rule:

490+ v(f d
(0 4 ), = (3 2Oy gy = (Dvio ) =0,
= 00 0
showing that
(MTe) =0 . (52)
Inverting D in (49) we find that
M*"MDz=—-D"'(M%¢) + ¢, (53)

where c is a suitable constant vector that we shall shortly identify.

Let

P=M'M (54)

and notice that P = P(6) is, for § € T?, a strictly positive defined matrix:
P > 0. Thus P is invertible and P! > 0. Rephrasing (53) in terms of P:

Dz=—P'DYMTe) + P e (55)
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By the positiveness of P~! and its integrability over T¢, we have that also
(P~1') is positive and in particular invertible. By taking the average on both
sides of (55), we see that in order for (55) to make sense we have to choose:

c:= (PH~"HPLD Y (MTe)). (56)

We can now solve for z obtaining;:

z = b+ D Y -P'D Y M"e)+ P )
= b+2 (57)

having defined Z as
2=DY-P'D (M) + P le), (58)
and b denotes the arbitrary average of z. We fix this ambiguity by requiring

that
W) = (v) (59)

which is equivalent to
0= (w)y=(Mz) = (Mb) + (Mz) = (M)b+ (Mz) =b+ (M2) ,
ie.,
b=—(M2). (60)
The above analysis may be summarized in the following
Lemma 2 (KAM scheme) Let V : T — R be smooth enough and let

w € RY be a diophantine vector. Assume that a smooth enough function
v:T? — R? is given so that

M =1+ v
is an invertible matriz on T® and define

£(0) := D*v + V(0 +v) , (D = 2%%) :

i=1 i
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Then:
(MTe) =0 and (MTey —ef M) =0. (61)
Furthermore, if we let:
P = MM
c = (P)y"YP D' (MT¢))
2 == D H-P'D M)+ P )
b = —(Mz)
z = b+2Z
w = Mz
Q1 = Vi(0+v+w)—V(0+v)— Ve (0 +0v)w
Q2 = Q1 +ep2
Qs = Qo+ M T (DY M"ey—cjyM))Dz
Vo= v+tw
£(0) = D* +V,(0+),
then:
e =Q; and (") = (v). (62)

Remark 7 (i) The above lemma does not contain any quantitative state-
ment, nor its proof uses in any way the fact that £ should be a “small”
function.

(ii) The proof of Lemma 2 is based upon a series of identities: (50)+(52)
and (43)+(45) [proof of (61)]; (32), (37), (40), (41), (46), (48), (49), (59)
[proof of (62)].

(iii) At this level, the above KAM scheme is purely “algebraic” and it will
be only after having equipped it with quantitative estimates that it will be
possible to iterate the scheme and to actually construct solutions of (23).

1.4 Banach spaces of analytic functions and technical
lemmata

In this section we introduce “monotone families” of Banach spaces of real-
analytic functions on T%; such families will depend upon a parameter & > 0
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and “monotone” means that a space parameterized by £ > £’ is smaller than
the space parameterized by ¢£’.

Usually in KAM theory one works either with complex sup-norms or with
Fourier norms. In connection with smooth theory (chapter two below) sup-
norms are more convenient, while for the extension of KAM theory to infinite
dimensions Fourier norms are more suited. In this section we shall discuss
sup-norms and for completeness we present the analogous technical results
also for Fourier norms in Appendix B.

In these lectures we use the following standard notation: for n € Z%, a € N¢
and z € C?, we let

d d aal-i-...-i-ocdf N
|n| - Z |/n'l| I ‘a| == Zaz 9 aaf = W , xa = x?l . xdd ,
=1 i=1 1 - d

(63)
Fourier coefficients of a periodic function will be denoted f,,; denote, also, by
A? the complex strip

Af={zeC’: |Imz;|<¢ j=1,...,d}. (64)
For £ > 0 we define!!
Re(T4,RY) := { f € C(T4,RY) with bounded analytic extension on Ag}.
Re(T4 RY) endowed with the sup-norm

1fll¢ := sup | /]
Ad
¢
is a Banach space.

Remark 8 In the following, we will consider function f € R¢(T? X) with
values in a matrix or tensor space X; in such cases the definition of the norm
will be adapted in the obvious way!2.

URy denotes simply C(T? RY) endowed with the sup-norm.
2For example, if X = Mat(n x n), then f, € X and, in the definition of the norm || f|¢,
the expression | f,| denotes the standard “operator norm” sup.— [fnc/-
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We proceed to discuss, from a quantitative point of view, the equation Du =
f (for f with (f) = 0) for w diophantine. While it is elementary to get a
bound of the form!?

1
[ulle-s < e(d, T)WHst

(with 0 < 6 < &) for some a > 0, to get the optimal dependence on the
“analyticity loss” § (i.e., the best a) is a subtle matter, which was solved by
H. Riisssmann. We present a version of Riissmann’s result due to J. Moser
(compare also Salamon’s paper [2]).

Lemma 3 (Riissmann, Moser) Let d > 2, v > 0 and 7 > d — 1; let
w € R? be (v, 7)-diophantine and let f € Re be such that (f) = 0. Denote
(as above) by u := D~ f the unique solution of Du = f with zero average.
Then, there ezists a constant ¢ = ¢(,d) > 0 such that for every

0 <6 <min{l, ¢},
one has

lulle-s = 1D~ flle-s <

C
Al (65)

where

_ 3
Il g = suw { ([ 17w+ iodPan)” 1l <éf
Remark 9 Clearly HfHL2,A§ < || flle-

In order to prove the above lemma, we shall make use of the following general
estimates, the proof of which are deferred to the Appendix A.

Lemma 4 Let f € R¢. Then, for every n € Z°,
[ful < 1F Iz, ag €7 (66)
< | flle e

Furthermore, there exists a constant c¢o = co(d) > 0 such that, for every
positive number 6 < min{1,&} and for every x € Ag_a, one has:

[f(@)] < 37 [ fule @I < 5—§||f||Lz,Ag : (67)

nez

I3 Exercise.
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Proof of Lemma 3 As already discussed above, the unique analytic solu-
tions with vanishing mean value of Du = f is given by

u(f) := (D71f)(9) = Z Up e ™0 Uy, 1= -

n€eZ4\{0}

In order to establish the inequality (65) we first single out the subset
Jo = {nEZd\{O} Conw| > %}

and define .
w(z)= > Up e

neJo

By Lemma 4, we get that, for |[Imz| < & — 0:

[W@)] < 3 Inewl T falem

neJo
2
< = Z ‘fn|€—(n~1mx)
v nezd
&1
< WH]C”LZ,Ag (68)

where ¢; := 2¢¢ and we have used that 7 >d —1 >

N

The more delicate part of the estimate concerns the integer vectors in Z¢\ Jp.
First of all, let us assume, without loss of generality, that

wp| < |wal, V1<k<d—1; (69)

let us also introduce the following notation: if y = (y1,...,y4) is a vector
with d components, we denote by  := (y1, ..., ya—1) the vector formed by the
first (d — 1) components of y. Let, now, K > 1 be a fixed number and for
v=1,2... define

J(V7 K) = {TL < Zd7 0 < |n| S K: 21/’}/_1 < |,,,L_w|—]_ S 2[/—}-17_1}
= {nez" o< <K: 27y <in v <279},

Here is a list of properties of w and J(v, K):

(1) [wal > [w| = 7;
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(ii) if n € J(v, K) then n # 0;
(iii) if n,n’ € J(v, K) and n =n' thenn =n’;

(iv) if n € Z¢ is such that fi # 0 then

2
S
-
S
S—

In-w| > — .
(3[al)T

2u—1
3 )
(vi) there exists a constants co = co(d) > 0 such that

(v) ifn,n' € J(v,K) and n # n’ then |n — 7’| >

v(d—1)

Card J(v, K) < co K277+

(vii) J(v, K) = 0 when 27 > K;

(viil) there exists a constant c; = c3(d) > 0 such that the following holds. If
J(K) denotes the set

JK):={neZ':0<|n|<Kand |n-w| <v/2} =] J(v,K),

v>1

then | o
S Cg — . (71)
) n-w v

>

neJ(K

Proof of properties (i)-+(viii)

(i): The first inequality is (69). The second inequality follows from the Diophantine
property (27) by taking n = ej, (the unit versor in Z9).

(ii): If n € J(v, K), then
In-w| <27y <v/2; (72)

thus from 7 = 0 it would follow, by (i), that |n - w| = |nqwa| > |wq| > v, which would
contradict (72).

(iii): Assume (by contradiction) that n,n’ € J(v, K) with 7 = 7/ and ng # n),. Then, by
(i) and (72):

3 < ol < g =l ol = w0 =] < ]+l < T4 T =y

which is impossible.
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(iv) Fix 7 # 0 and choose n4 € Z so that nyi, := (7, n4) minimizes |n - w|. Clearly, nmin
minimizes also [+ = 4+ ng| = [n - w|/|wg|. Thus, [A - 2 + ng| < 1. Therefore, by (69),
[ng|l < 1+1n- wid| < 14 |n| < 2Ja|, which implies that |[nmin| = |7 + |na] < 3|7|. In
conclusion, by (27), and the above estimates,
B B
>
[Mmin|™ — (3|7])7

(v): By (iii), 7 # n’. Thus, by (iv) (applied to the difference n —n’) and by the definition
of J(v,K), we find |n— 7|77 < %|(n—n’) ‘w| < %(|nw| +|n’-w|) <3721 proving
the claim.

|Tl'uj| Z |nmin'w| Z

(vi): By (iii), J(v,K) is in a one-to-one correspondence with J(v, K) := {f € Z! :
n € J(v,K)}. By the estimate in (v), the distance between two points in J(v, K) is at
v—1

27 Thus a simple geometrical argument yields the desired upper bound on the
cardinality of J(v, K) and hence on the cardinality of J(v, K).
(vii): If n € J(v, K), by definition |n - w| < ¥27%; on the other hand the Diophantine
property (27) implies that |n - w| > 7|n|~" > yK~7 implying that K > 2“/7, which is
equivalent to the claim.
(viii): In view of (vii), J(K) = .=, J(v,K) where v, denotes the integer part of
7log K/log?2 (i.e., vy is the maximal integer v for which 2¥/7 < K: for v > v,, J(v, K) =
(). Thus, by (vii), the definition of J(v, K), (vi), one finds

S wmf X T on

neJ(K) v=1neJ(v,K)
2u+1 Vs 2l/+1

< Z > Card J (v, K)
v=1neJ(v,K) v=1
< QCngfliZV(TJri—d)
v v=1
< ST
Y

We are now ready to conclude the proof of (65).

lu—ullles < D |falln-w| el
néJo
(%) P
< Nfllpeae D In-wl ™

nQJo

||f|rwz S nw eV

k=1 ngJo, |n|2=k
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oo

= flleagd. X IR

k=1 J(VENJ(VE=T)
S S el (Vi)

k=1 nej(vk)
(+%) e _
< e, (sz )Y new )
1 neJ(Vk)
T
< 27r|f||L2 Adzk S VR
03 T =1 _
< 3 = e, b 3 ZA“k e Vi
I
< ’}/(57— Hf”L A )

where: (%) is by (66); (%) follows from the elementary bounds e™® —e™°7° <
ge™® (any s > 0, ¢ > 0) and vVt +1— vt < (2V1)7! (any t > 0); (1) is
by property (viii) above; (1‘) holds for a suitable constant ¢4y = c4(d, 7) > 0

since SUpgoy<1 2pet AL e VR < o0, The proof is completed if one takes

c=max{c,cs}. |1

Another fundamental tool are the so-called Cauchy estimates, i.e., the esti-
mates of the sup-norm of derivatives of f € R¢ in A{ ;.

Denote by D%(x) the complex polydisc
Diz)={0€C?: |0, — x| <7, Vi},
and let r > 0 be such that'* Df(z) C Af. Then, by Cauchy Integral Formula,

ol f(9)
(27rz) /aDd (91 _ xl)Oél"rl ) (Qd _ xd)adﬂ do

0" f(x) =

In particular, taking r = §, we have for every x € Ag_(;:

14Notice that f is bounded on Ag so f cannot have singularities on the boundary of the
strip.
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al |/ (0)]
il < 2
‘ f(x)| - (27T)d oD4 |91 — I'1|a1+1 R \Qd — Z’d‘ad—i_l
al | flle /
< do
- (27T)d glel+d Jope
= (5‘“' ||f||§
Thus, the following Cauchy estimate holds
1% Flle-s < 6| fle - (73)

Combining the above estimates one gets easily the following

Lemma 5 Let f € R¢(T4 X), let p € N, o € N and assume (f) = 0 when
a=0. Let 0 < § <& Then, there exist C(p,c, 7) > 0 such that

C’(p,a T)

[D7P0% flle—s < ~ngeial [palrs

Exercise Give an explicit estimate of C(p, a, 7).

Remark 10 We shall use also the following trivial facts:

(i) Let f € Re(T% X), g € Re(T4Y), with X and Y tensor spaces (RY,
matrices or higher dimensional tensors) and assume that the product fg is
well defined. Then

1F glle < 1 Fllellglle -
(H) Let V € Rf*(Td>R)’ g€ Rf(TdaRd)a with & > &. If ” Imgj”f <& —¢
forall j =1,...,d, then |V (z + g(z))|¢ <

Remark 11 The same estimates could be done also for the non-autonomous
case. In this case we consider a function f(z,t) defined on the (d + 1)-
dimensional torus and we require w to be (v, 7)-diophantine in the sense
that

for some 7 > d, v > 0 and every (n,m) € Z% x Z with n # 0.
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1.5 An analytic KAM theorem

In this section we prove a KAM theorem in the real-analytic setting.

Theorem 6 Fiz 0 < £ < £ < & < 1. Let V € Re.(T4R), let v €
Re(T4 RY) be such that
[Tmolle <& —¢, (74)

and let w be (v, T)-diophantine'®.

or equal than one such that

Let, also, \, n and a be numbers greater

- szz «
A2 +vlle, 02 11+ 0) e, O‘ZHTS'
There exists a constant C = C(1,d) > 1, such that if*°
¢ 10 £\ —(4742)
Bim S IE@e o () (€~ <1, 75)

then there exists u € Rg(T4 RY) with (u) = (v), which solves the Euler
equation

D*u+ V(0 +u) = E(u) =0. (76)

Furthermore, there exists a constant K = K(1,d) > 0 such that
max {|lu — vll¢ , |9pu— dpvlle} < K E. (77)
Proof As a first step, we equip the KAM scheme described in Lemma 2

with analytical estimates. The second step will be to iterate the procedure
controlling the convergence.

Remark 12 Here and below for simplicity we will use the notation “const”
to denote finite (different) constants, which depend only on 7 and d.

15Recall Definition 2.
16Recall that £ is the differential operator defined as (v) := D?v + V(0 + v) where

D= 2?21 w;0p,; notice, also, that, since || Imv;|le < & — ¢, then 4+ v € Ag* whenever
0 € Af.
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Define
£(0) := D*v + V(0 +v) .

and let © > 0 be such that
lelle < g
Recalling the definition of M = I + vy, we have, by hypothesis,

IMlle <A, Mg <.

Fix!7 £ < ¢ < ¢ andlet § = (€ —¢')/2:

et
ETIRE N e (78)
and let us denote, as above,
P=M"M.
Then
IPlle <X, IP7Hle <7’ (79)

We start by estimating ¢ in (56). To estimate it, we will use the fact'® that
for each positive symmetric matrix 7" : T? — Mat(d x d),

KT) =] < sup [T (80)

fcTd

Therefore, by (80) and (79),
P < 1Pl < A%

By Lemma 5 we get

1 e _ _ const
{(P~'D~ (M e))]lo < 1P Hlo[ D~ (M e)]lo < o= | M e,
which leads to
A3U2
|c| < const ——p. (81)
7€

1"Later we shall make a specific (somewhat arbitrary) choice.
18For the proof see Lemma 12 in Appendix A.
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We proceed to estimate 2 (see (58)). Applying Lemma 5 twice, we have

1
|2]le < const TH —P'D Y M e)+ P le||es
ry T

2 3,,2
n 1T A°n u]
< const — |||D (M _s+
o7 lH (M7E)][e—s e

2 )\3 2 )\
< const n l 77M+ M}
S e TS [
)\3 4
< const 27352” .
ry T
Thus,
3
||2”§/ S const Wﬂ (82)
Now, since z = b+ 2 and b = —(M2), we have
0] = [(M2)] < All2]]e -
Therefore,
)4 5
Ielle < const Gz, e < const Zyn. (83)

Let us estimate now the remainder @);. Using again the standard formula
for the remainder of the Taylor expansion and applying Remark 10 and the
definition of «, we have

AL0p8 2 a8

— < t———pu®, (84
& FAGAT = cous ~2547 P, (84)

w||§, < const || Vyza

1
HQ1||§' < §vacz Ex

provided (compare Remark 10)
ITm (v + sw)le <& =&
for every s € [0,1]. But, by (74) and (83),

[m (v +sw)lle < [ Imvlle + [[wlle < & =&+ |lwlle
)\5 4

IA

&« — & + const
6* - 6/ )

,72627"“

IN
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which is implied if we assume that

(An)°

72527’-&—1

const w<l. (85)

Since Qo = Q1 + €9z, by Lemma 5 and Remark 10, we find

lealle—s < %, (86)

and

1
1Q:lle < [1@uller + lleozlle < [1Quller + lleollerll=lle < Quller + S5 ll=lle -

Thus, by (83) and (84),

10,,8

ai’’n
|Q2]¢ < const W,ﬁ : (87)

Here we implicitly used the fact that 7 > 1/2 and § < 1.

We turn to the estimate of the norm of @3 (defined in (48)): we will use
again Lemma 5. First, observe that Dz = D2z and that

D:=—P'D Y (M%) + P 'c.

Thus
3,4

A
ID3|le = || — P'D~(M"e) + P~'¢||¢ < const v—;“'

Recalling (86), we find

_ 1 A
D (MTey — ef M)l < const WHMTé“gHg_(; < const W,u.

As for the second term in the formula for ()3, we find

B B )\nlu >‘3774N \pd
IM~T(D"(M"eg — e M))Dz||e < const e < const W,ﬁ.
Finally, recalling (87), we get the following bound
)\10 8 A 10
|@s]|er < const ar p? < const )" (88)

,y2647' ,y2647' K
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Our next step will be to estimate v', M’ := M + wy and ¢’ in terms of v, M
and €.

Let us start with wy. Here again, as we have already done for z, we will
apply Lemma 5 twice. In fact,

1
lwoller < [lwlle—s-
)

Then, since ' =¢§ -5 =& —0/2 — /2, using twice Lemma 5, we get:

1
IZlle-s < ConsthH —P‘ID‘I(MT6)+P‘ICI|5—5/2
< const 77_{ (M) 5/2]
- YOT
2
n
< const —
Yo7 [ 7&7 5/2) }
413
< const 725%#'

Since z = b+ Z and w = Mz, we get the estimate

5,4
H’UJ@H&/ S const W}L . (89)
Next, using (89), we easily get
o't
[M'||¢ < ||M +wplle < A+ const 2521
)ty
= )\(1 + ConSt,y2(52r+1) =\ (90)

As for the inverse matrix
(M) e < (M +we) Mg = 11+ M wg) MY

(n)Pu\ ™
< 7 (1 — const 22521 ,
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provided
const ;;’Iﬁ <1
In fact, assuming that
const 7(2)\5;721/1 < % : (91)
one finds"
) e < n(1 -+ const ) = (92)

Note that (91) is the same condition (up to the constant) as (85). Since, by
definition, &’ = @3, we have obtained

a(An)"

It will be useful to introduce also a “dimensionless” parameter

i=py 2, (94)

in terms of which (93) may be rewritten as

%?)5'&)2 < (const %)2 =i . (95)

From now on we will replace (91) by the stronger condition

Vol (96)

g2r+l =

€'y 2 < (const

const

Let us now turn to the second step, i.e., to the control of the convergence of
the iteration process. For ¢ > 0, let the input data v, €, £ correspond to the
i-th step of iteration, and let the output v’, ¢’ and & correspond to (i + 1)-th
step: in particular the function v and the parameter £ in the statement of
Theorem 6 will be denoted, respectively, vy, . Thus,

i—1
V; = Uy + Z wj ,
Jj=0

9This follows from the following inequality: (1 —2)~! < 1+ 2z valid for 0 < 2 < 1/2.



KAM Lectures 33
and our aim is to show that this sequence converges to some real-analytic
function u, which solves the Euler equation

D*u+ V(0 +u(t)) =0.

We fix a sequence {;} as follows

¢

G=E+ 5

So, {&) is a decreasing sequence, which tends to £&. In view of the above
definition of §, we fix also

& — & §—¢&
0; i = 9 == 9i+2

If (96) holds at each each step of the iteration, i.e., if

Va(Am)° <1

const §2rH j=0,1,...,1, (97)
J

then, in particular, we see that (compare (90) and (92) attaching the indices
i and 7 + 1 in the obvious way)

)\j§2j)\0a 77j§2j770a ]:07177Z (98)

In terms of A\ and 7y condition (97) can be rewritten in the form

5(9217+11V\i .
CY \/aO\o??o) EQ ) Hi <1,

(é‘ _ 6)27’-%1 -

where Cyp = Cy(d, 7) denotes the largest constant “const” occurred until
now. Denoting,

Valo) 2 i
A= (00(5—523“) , B := 22 +11,

we see that (95) yields '
fiin < AB'f < 1. (99)
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Such relation may be rewritten as

fliy1 < fi7 fli = AB™[i;
which, iterated, leads to A
__ (ABpo)*
pi < ARt (100)

In particular, one can conclude that the iteration process converges if

. o Nleolle
ABMO < ]-7 Ho > 77

showing, in particular, that v+ 272, w; converges uniformly on the complex
strip of width & to the real—analytlc function

u:i=v+ i wj,
=0
which (since €; — 0 uniformly) will satisfy the Euler equation (76).
Finally, we prove (77). First of all note that in fact £ is nothing else but
E = ABji .
Now, (compare (98)),

227(j+2) )\5,03 i
(-6
< (const()\ono) )210”2”# = CIHig,

|w;lle < const = const (47 Xonfi;)
where C':= const (Agno)®. Since by (100)

< (ABP“O)T )
we have

Z 210]+27]M < Z 22 (547)7 ABHO i 02 EQJ
7=0

j=0 j=0
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where we have denoted C; = 2577, Continuing the last inequality, we get

SN CVEY < Y CYEY =3 (1B
=0 =0 =0
> . CiE
< CiE)y = ———
- ;( B =1T0E

< C,E(1+42C,E) < 2C4E,

provided 0 < C1E < 1/2. This last assumption can be always satisfied by
the right choice of the constant. |

We conclude this section with an immediate application of Theorem 6 to the
“nearly-integrable” case.

Corollary 1 If

R () I

Vz < ~ 9
IVelle < & st [Vedlle 33

(101)

then there exists a function u € Re(T? R?) such that (u) = 0 which solves
the Euler equation D*u+ V(0 +u) = 0 with

C max{L, [|Vezlle,7*}
ullg < = ||Va 3 )
lull¢ 72|| e €— oo

Proof Take as initial approximate solution the function v = 0. Then £(v) =
£(0) = V,(#) and one can take A = 1 = 1 so that (101) is recognized to be
(75). 1

Remark 13 Let ||V|le, ||Vazzlle < €. From the properties of diophantine
numbers it follows that, if we denote

Q={weB!: |wnl> = vnez\{0}},

7|

then
meas(B? \ ) < const meas(B%)y .
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Now, condition (101) can be met by taking v = /2C' with C big enough,
showing that the set of w’s for which we can find simultaneously a solution
for the Euler equation fills (as e — 0) a ball of radius 7 up to a set of measure
at most consty/z.

1.6 Local uniqueness

In this section we formulate a sufficient condition which provides “local”
uniqueness for the solution of Euler equation. First we remark that if «
verifies

D*u+ V(0 +u) =0 (102)

then also
u:(0)—c+ul®+c)

is a solution of the same equation, for every constant ¢ € R%. Since (@) =
(u)+c, it is natural to investigate local uniqueness of solutions with prescribed
average.

Proposition 7 Let w € R? be (v, 7)-diophantine. Let V € Re, (T% R) and
u, U € Re(T? RY). Assume that u and @ are two solutions of (102) such that
(u) = (u). Assume moreover that I + ug is invertible everywhere on T¢ and
that

[ulle, lulle < & —¢
I(I +up) e < < o0
1T+ uglle < A< +oo.
Define
2621
c= e (103)

C VAT AT
"X [Viaalle.

where ¢ = co(d, 7) > 1 is a suitable constant. Then, if ||u—tl|¢ < ¢ one has
that uw = u.

Proof Let
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and notice that (w) = 0. Since u and u are solutions of (102), we have

0 = D*ui+ V,(0+u)
= D*w+ D*u+ V(0 +w +u)
= D*w+ V(0 +w+u) — Vi(0 +u)
= D*w+ V(0 +u)w+Q (104)

where

1
Q= / (1 — $) Vi (0 + u + sw)ww ds.
0

From the expression of @) and Lemma 15 [Remark 10] we easily get

w|Z (105)

1
Qe < QHsz €

for every & € [0,¢].

Let M = I + uy. Differentiating with respect to 6 equation (102) we get the
equality
Vea(0 + u) = —(D2M)M ™ (106)

that we can plug in (104) obtaining

0= D*w — (D*M)M 'w + Q.

Letting
2= M1w

we have

0 = D*(Mz)— (D*M)z+Q
D(MDz)+ D(DMz) — (D*M)z + Q
D(MDz)+ (DM)(Dz)+Q,

which can be rewritten as

0=MT"(M"D(MDz) + M"(DM)(Dz)) + Q. (107)
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Moreover from (106), we have that the matrix (D?M)M ! is symmetric and
S0

0 = MT(D*M) — (D*M)TM
D(MT™DM — (DM™*)YM);
in particular, since D710 = 0 we have

M*DM — (DM"YM = (M*DM — (DM™)M).

By equation (44) we already know, however, that
(MT"DM — (DMT)M) =0
for every matrix M of the form I + ug. Thus
M"DM — DM"M =0,

i.e.
MTDM = DMT M.

From (107) it follows:

0 = M T(M"D(MDz) + (DM"YMDz) +Q
= M TDM"MDz)+Q

which means, setting P = MTM, that PDz = —D Y (M*Q) + ¢, for a
suitable constant vector ¢;. Thus

Dz=—P 'DYMTQ) + P 'e; (108)
and
w=MD Y (~P'D ' (MTQ)+ P 'c;) + Mcy (109)

for a suitable constant vector c¢y. Taking averages in (108) and (109) we
obtain the following expressions for ¢; and cs:

a = (P H{PTIDTH(MTQ)) (110)
o = —(MD Y =P 'D'(M'Q)+ P 'c))). (111)
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Let us now define, for every j € N, {; = 279¢. For every j € N, by estimates
similar to the ones already seen in the previous section we get from (110)
and (111) the following inequalities:

27
ler] < const )\37]2

4 4 ]+1 T
‘C2| < const )\ 2627— HQny
which can be inserted in (109) obtaining
const [[wlle;,, <A 2€QT||Q||5J : (112)

Letting

k = max {1 , const )\5 4 Hvxxx

2527 &t
we obtain from (112) and (105)

||w||§j+1 < k42jTHw||5j

and, iterating as done above (compare (99), (100)), we get
lwllo < llwlle,,, < (k477 [Jw]|e)*
showing that ||w|lo = 0 (and hence by analyticity w = 0) whenever

K4 |wlle < 1. 1

2 Smooth KAM Theory

The aim of this chapter is to exhibit a result of existence of quasi-periodic
solutions for systems that are no more required to be analytic but just smooth
enough. We will heavily use the previous results, passing through analytic
approximations of smooth functions.
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2.1 Approximation Theory

Here we prove the necessary technical approximation results.

We start by introducing Holder norms. First of all, for every [y € N and for
every f € C(R™), we define

fl gt = sup sup o f|

|a|<lp R™

If I =1ly+ p with [y € Nand p € (0,1), we set

0°f(x) — 0°f(y)l
= 0 —|— .
‘f|0l ‘f|0l ISUP sup

al=lp 0<|z—y|<1 |.CE - y‘#

For every [ > 0 we define
C'RUR™ ={f:R* - R™: |f|lex < +o0}.

The space C'(R? R™) endowed with the norm |- | is a Banach space; the
subspace of C'(R¢, R™) made of functions which are 27-periodic in each vari-
able will be denoted C*(T? R™).

Remark 14 In this section it is convenient to work with Euclidean norms
on vectors and the associated operator norms on matrices and tensors.

Proposition 8 (Jackson, Moser, Zehnder) Letl > 0, d € Z, and f €
CYR?). There exists a constant c = c(l,d) > 0 such that for every 0 <r <1
there exists a real analytic function f, on A% which satisfies®

0 fr(r) — Y 00‘*%(%@“2—,“ <clflar™, Vel
1BI<i—|e] ’
(113)

for all a such that o] < 1.

20We will use the following notations:

Rez := (Rexy,...,Rexq) and Imz:= (Imzq,...,Imz,).
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In fact, the analytic extension f, may be defined as follows. Let ¢1 be an
even function in C3°(R) with support [—1, 1], increasing in [—1,0] and such
that

$1(0) =1, ¢1(0)=0 (Vn=1);
for € e RY, let ¢(€) = ¢ (|€]°) and let K be the anti-Fourier transform of ¢:
K() = gz, 0@
then f, can be taken to be
o) = SH @ = [ K (T fdy (114)

= [ 5 (E-¢)s09ds= [ Knf—r)an

Proof Since ¢ is a real smooth function with compact support, K is real
analytic on C?. Some properties of K are collected in the following

Lemma 9 The derivatives of K satisfy

[Imz|
3 67 :
WpeN, ¢ |0°K(2)| <q T VBl <p; (115)
sup sup |0° K (x ] < ol - (116)
z€RE BeNd )

Furthermore, if o, 3 € N and x = u + iv € Cd, then*!

. 1) (iv)P—e if a<p
Lojsi= / Boe K _ [ GO ’ ’
s R WK (u A iv)du { 0, otherwise .

(117)

2LFor vectors «, 8 € N?, we denote

a<pB <= aigﬂi Vi=1,...,d.
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Proof First of all, remark that if u € supp ¢ = B;(0), then

iz —Imz-u - e|Im:c|

€ (&

Let us denote ¢g(u) = uP¢(u). We have

K(zr) = 0° <(271r)d /IR{d ¢(u)e”'“du>

- dp(u)e u,

(2r)°

and, for any multi-index o € N%, |a| integrations by part give

jlel+18l

1?0 K (x) = g /IR{d O%pp(u)e™ du .

Hence

‘xaHaﬁK( )| = ( )d ‘a ¢ﬁ|L1(Rd Im:c| .

Now remark that for any p € N,
p!
(14 |z])? < (1 + |z1] + |22| + - -+ |24])? = —z*| .
| ol ot oy = 2 e

la|<p

Hence for |3| < p, one finds

A+ alV0°K] < Gy ¥ o 0760 ™
|Oé\<p
b 3 pil {‘a 5] } eltme|
@n? \ 42, (o — [a]lal g2, V0 “E@ |
a|sp
Thus
6|Im:z:|
07K ()] < ¢ ,
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proving (115). Moreover, if z € R? and 3 € N%, we have:

0°K ()| < (Qi)d /R e du
< g ol

which is (116).

The relation (115) shows that the integral I, s is well defined. Moreover,
notice that if oy; > (3; for some ¢, o; integrations by part show that 1,3 =0
since 0%uf = 0. So we can assume that o; < 3; for all i (ie. o < ). By
integration by part, we see that

Ijg = (—1)6”%2)' /R P TOK (u + iv)du .
Notice also that
1 : -
= o [ MO e = R

that we can think to be the anti-Fourier transform of

6u(8) = ¢(§)e™¢ € CF(RY)

for each fixed v.

Hence:

f-a ; 1 95! N —iug
/Rdu K(u+iv)du = Ol 9era /R K(u+iv)e ™ du

1 ols—el
(—q)lB—el g &h—a| _
1 Hls—el
(—i)lB=al §gh—o (




KAM Lectures 44

where, in the last equalities, we used the fact that the right hand-side integral

is the Fourier transform of K, (i.e. ¢,). Now, using (8), we obtain:
1
B—a ; — _ B«
/Rdu K(u+iv)du = (_i)w—a@@)( v)

= (—iv)i™>.

From the properties above, we can conclude:

0, otherwise .

lop = /Rduﬁ@aK(u—l—iv)du:{ i

We proceed with the proof of Proposition 8. Recall the definition of f, = S,
given in (114) and notice that (117) implies S, P = P for any polynomial P:

(S:P)(@) = [ K@)P(—rmdy

= /RdK(n)( > ak(x,r)n’“) dn

|k|<degP

=Y wlen) [ Kty
|k|<degP R
= ag(z,r)=P(x) .

We claim also that for every [ € R, and f € C', then there exists a constant
co(l,d) such that

[f(z+y) = Pulw,y)l < coll,d)|fle |yl (118)
where oo
Pi(z,y) = > &yo‘ and k=][[].
jal<k &

In fact, if [ is an integer (118) comes immediately from Taylor’s formula
(and, actually, one could get cq(l, d) as small as one wants); if [ = k + p with
e (0,1), we get

_ 4\k—1
Fa+y) - Pulay)| < /017%_”1)! (6”“f(x+ty)y("”’—ka(@y("”’)dt‘
L= R0 () — )]
< | an P bl dt
< Moy,
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u —
Let x =u+iv,n= vy where u, v, y belong to R?. Then
r

o h) = o (5 [ K (5) )
= 5 [ merw () )y

rd Jra rlol

r
1 1., U
= Tl Jpa ﬁﬁ K <7]+2;> flu—rn)d(u—rn)
1 v
= o L, K (77+Z—) f(u—rn)dn .
rlol Jrd r

Let us consider now |G| <[ — |al; in view of (117):

), ) ()] p
o g “NatB
ﬁ' (ZU) ﬁ' (_1)|o¢\ (ﬁ—gla)' (—'ly)ﬁ Rda (77+ZT)77 d77
o v, 0V f(u) la+B1..18].-a+B
= /Rda K(n+2;)m(—1) o dn
1 e U aa_'_ﬁf(u) la+0| a+g
= i PR O ) S D ) Py
Hence, if we denote k = [I] and apply again (117), we obtain:
a+3
O (50
18<l—|al s
_ 1 fe) U aa—i—ﬁf(u) |a+0| a+f
= frioiD) 3 (G ) a

1 . v
:m/Rdﬁ K(n—kz;)Pk(u—m)dn.

In view of the above calculations and of the inequality (118), we have:

fe% . o+ (iv)ﬁ
P L) = 9w
|B|<l—]e] '
1

|f(u—rn) — Pe(uw—rn)|dn

0K (77 + ig)

r

— rlal Rd
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< colfler'*! [
Rd

< Co\f|cﬂ‘l_|a‘/
]Rd

K (nﬂgﬂ Inl' dn

K (n - 2%)} (1+ [n]) dn .

Applying (117) for p > [ big enough (i.e., p > [ + d), we get

fe% . o+ (’M))ﬁ
L) = 3 )
1Bl<i—|a '

IN

alflor'™ [ (1 Inl) " dn
Rd

IN

c(l, d)| flewr'™*

which completes the proof. |

Remark 15 (i) In particular, (113) (with z € R?) implies, for s < [ (s
integer),
\fr = Flos < fler 7', (s<1), (119)

for a suitable ¢ = (I, d).

(i) Also, (113) with [ = 0, yields, for every f € C° and any r > 0,

S§§|fr| < (c+1) [fleo - (120)

(iii) If x is real, the definition of f, implies immediately that, if f € C! and
o] <1,

0 fr(x) = (97 f)r(2) - (121)

By analyticity, such relation is seen to hold for any x € C%.

(iv) Using the observation in (iii) and Cauchy estimates, one can give the
following bound on the derivatives of f, with f € C%:

| fr

" = "(l,d) being a suitable positive constant.

os < | f|eart™* (s > 1 integers) , (122)

Proof If s = [, (122) comes from (119). Let s > . For any multi-index « such that
|a| = s we can find 8 and ag such that o = 5 + ag with |ag| =1 and || = s — . Then,
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by (121), Cauchy estimates and (120), denoting by “ const ” (possibly different) constants
depending on [ and d, we find

1
|0 frlco = |85(8a0f)r|co < const SX§|(3a°f)T|TS_l
. g 1 l—s I
< conmst [0% flgo — < const [flcir " .
T

(v) (Convexity estimates) Let [ > 0, let f € C' and let k, m be integers such
that 0 < k < m <. Then, there exist a constant ¢ = ¢(I,d) > 0 such that

l=m m—k
|flem < e |fle 1flea" - (123)

1
Proof Define r := (%Q;) "% Then r < 1 and by (119) and (122), we get
C

l=m m=k
flom < |fo=flontfrlon < const (| flor' ™"+ floer ™) = 2 const |fI5" |74 - B

(vi) If f is periodic, f, is obviously periodic. Moreover, if f belongs to C°(T?),
then

(S = [, S S @e " da

N ﬁrd </]Rd Kn)f(z—r U)dn) ey
- /Rd K(U)e_im‘n < ﬁrd flx — T'n)e_i(x—rn)'ndx> dn
= fug(rn)

showing that f, is a trigonometric polynomial.
Proposition 10 (Bernstein, Moser) Let | > 0 and d € Z,. Let fo =0

and for each j in Zy, let f; be a real analytic function on Afj C C? where
r; =10/27 for some 0 < 1o < 1. Assume that

\fj = fiml,, < Arj (124)

for every j > 1 and some constant A.
Then, f; tends to f uniformly on R® and f € C*(R?) for every non integer
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s < 1. Furthermore, there ezists a constant C' = C(l,d) such that:

cCA
os(RY) = 7#(1 — ro (125)

I/ 1t)

where jp = s — [s]. Finally, if the f;’s are periodic in each variable x; then so

s f.

Remark 16 (i) If fo # 0 and (124) holds for all j > 1, we can apply the
proposition to f; := f; — fo getting that f; tends uniformly to f € C® so that
f;j tends uniformly to f := fo + f € C°. Moreover,

CA

o) S T )

0 ro - (126)

|f = Jo

(i) It is enough to prove Proposition 10 in the particular case where [ € (0, 1)
and s = [ = u as we proceed to check.

Proof of point (ii) of Remark 16 Let us consider the three following claims:

(a) “Proposition 10 holds true for 0 < s <1 =17 .
(b) “Proposition 10 holds true for 0 < s <1< 1" .
(¢) “Proposition 10 holds true for 0 < s =1< 1" .

We will show that
(¢) = (b) = (a)

and finally that (a) implies the general case.
(b) = (a): To prove (a), we assume (124) with [ =1 and fix 0 < s < 1. Then, for every
s<l<l,

fj = fi=il,, < Arj < Ar]

which shows that f; satisfies the hypothesis (124) of (b). Applying (b), we get

CA
s(1—s)
and taking the infimum in the above expression over [ < 1, we get

CA 1-s

s(1— s)ro

l—s

|f|cs < To

Ifles <
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(¢) = (b): We have

fj = fimal,, < Arh = Ari7ors < Arg™or;

which shows that f; = f;/ri™® satisfies the hypothesis of (¢). Then, by (c), the uniform
limit f of f; belongs to C* and

. cA
¢~ s(1—s)’

|f

which is equivalent to

< CA
0= 51 —s)

l—s
To

f

which proves (b).

Now, let us show that the claim (¢) implies the general case. We prove by induction on k
(k>1) that

(Pr) “Proposition 10 holds true for 0 <1 < k” .

First of all, notice that (1) holds true since (¢) implies (a) and (b). Let s be a non integer
such that 0 < s <1 < k+ 1. We can assume that k < < k+ 1( if not, then 0 < I < k
and we can apply the inductive hypothesis). By assumption, we have

!
|f5 = fi-al,, < Arj .

Using Cauchy estimates (Lemma 5) we have for every o € N such that |a| = 1,
leY o Tj -1 -1
0% f; = 0% fi—alms < 1f5 = fi-al,, (—) <247
2 i\2

Then by (Py), f; converges uniformly to f € C® for any s <1 — 1 and

C(l — l)Arlflfs' I

|f|cs§m 0

Proof of Proposition 10 In view of point (ii) of Remark 16, we may
suppose, without loss of generality, that

O<l=s=pu<1. (127)

In this case, we have to prove that f; converges uniformly on R? to f and
that

_ [f(x) — f(y)| CA
|f‘Cu - ‘f‘C’O + 0<€£5|§1 |x o y‘u < M(l _ ,U) :
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Set g; = f; — fj—1. First of all, let us prove that f; converges uniformly on
RY. For any 1 <n < N, one has (recall that r; = ry/27)

N N N
Y0l < D gileo = D015 = ficileo (128)
j=n co j=n j=n
— fjA(T_Q)” _ A 1
Z\%i) Tami—z

which converges to zero as n goes to +00; thus f; converges to f = 3272, g;
uniformly on R? and (setting n = 1 and N = +o0 in the above estimates)
we have

—n
Since 1 — 27# > 11/2 for each u € [0, 1], we get:
2ATY 2A 2A
[floo < =20 < — 28 (129)

< n < .
w1 —p) p(l — p)
In order to estimate the second part of | f| . we need to distinguish two cases
according to whether ro < |z —y| < 1or |z —y| < ro.

First case: rg < |z —y| < 1. Then using the second inequality in (129), we
get

1A, 44
p(1—p) = p(l —p)

Second case: 0 < |z — y| < rg. Then there exists a N in N such that:

To To
e <le -yl < o3 (131)

[f (@) = f(y)] <2]flco < jz —y|". (130)

The second inequality in (129) is equivalent to
1—
(%) " <oyl (132)

Now,

@) — f)| < iy%u»—%@n

= Sl gl + X o)~ i)l

j=N+1



KAM Lectures 51

Let us estimate separately the two sums. Using Cauchy estimates, we have
(recall that, by hypothesis, |g;., < Ar}):

ri\ 7! AN p—1
10951z < 19il,, (5) < 19ileo (§> < 24ry .

Hence,

N 2] 1—p
Zlg] —g;i(y)] < 2AI$—Q|Z<;O>
j=1

o 2D
= 24—yl ((5)' ) o

Since 28 — 1 > t/2 for any ¢t > 0 (and since 2!7# < 2), by (132) we get

(N+1)(1-p)
I—p

N
Slae)—p ] < 24k ((5")) 3
v —yl*
IL—p
Next (using again 1 — 27 > p/2 for p € [0, 1] and (129))

< 16A—————

(133)

S @) —g)] < 23 lgle<24 S ( )
j=N+1 j=N+1 j=N+1

v 1 |z —yl"
< 24 () 1y < AT (10

Putting (133) and (134) together, we get:
16A 4A

@) =fy)l < 7= |$—y\”+—\$—y|”
164 }
i R 135
w7 .
Thus, by (129) and (135), we get
CA
flow € ——
flo (1 = p)

with C =18. |
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2.2 A KAM theorem in C* category

In this section we extend KAM theory to the finitely differentiable case.

For simplicity, we shall discuss only the nearly integrable case: in particular
we prove the following generalization of Corollary 1.

Theorem 11 Let w € R? be (v, 7)-diophantine, let | > ly == 47 + 3, let
V € CYT?) and let M > 0 be such that |V|c < M. There exists a constant
k= k(l,d, 7,7, M) >1 such that if

K (Valoo) ™t < 1, (136)

then there exists a function u : T¢ — R, which belongs to C* for all s < 1—1,
not integer, satisfying
D*u+ V(0 +u)=0, (137)

and
K l*lofs

(IValgo) ™ pi=s—[s]. (138)

Cs<

Tl = p)

lu

If s < 2, from the proof given below it follows easily (as relation (137)
suggests) that the double directional derivative D?u exists and is a C*(T¢)
function (exercise).

Proof Let
= (Valeo) ™1 , &= &=t = ? . (139)
Notice that (136) implies that ¢ < 1.

By Proposition 8, the real-analytic functions V; := S¢ V' € Ry, satisfy

Bta ex
v -y R

3 (ilmz)?| < c|V|ane (140)
1BI<I—[o] '

for every x € Agj and |a| <. Denote by &; the differential operator

Ei v — &i(v) = D*+09,V;(0+v) .
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The strategy is to construct a sequence of real-analytic functions u; € Réj,
satisfying &;(u;) = 0 and to obtain, by Proposition 10, the solution u as
uniform limit of the ujs.

For the purpose of this proof, we denote by “ const” (possibly different)
constants depending on [, d and 7 and by k; suitable constants depending on
l,d,T,v, M. The constant  in (136) is assumed to be such that

K> K, Vi. (141)

As a preliminary remark, we observe that, for any |o| < 3 and for any j > 0,

sup [0°V;| < const M , (142)
Ad
&

as it follows from (140) and the fact that ¢ < 1:

otV (Rex) .
vl < e - ¥ S ]
1BI<1-3 ’
B+a
—i—‘ > 07" V(Rew) V('Rex>(i1mx)ﬁ‘
18|1<i-3 p!
1-3
const (Mﬁj +\V\03+M§j)

<
<  const M .

We proceed in three steps: construction of ug; inductive construction of u;
(7 > 1); construction of u as lim u;.

Step 1: construction of ug. We want to apply the KAM Theorem 6 with
v=0,&=¢&,§&=E6/2:=¢/2, &=¢& = /4. We start by estimating
Eo(v) = &(0). Let 0 € A ie., |Im6;| < e/2. Then

1£(0)(0)] == [0:Vo(0)]
& (§
< 10,V(0) — Y %@(Hm@)ﬁ’
18]<i—-1 :
8 (§
o]y POV(RD) gy

1Bl<i-1 Al
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() ,
< const (\V\ngl_l + ) |Vz|cj€J)
J<i—1

l—1—j J

< const (‘V‘Czél_l—l- > Valeo b IVIG! 6’)

j<i—1
_J_
D const (\V\Cz—i- > |V|lc’ll)e€l_1
j<i—1
< const max{l, M} !
= ket (143)

where: (%) is implied by (140); (#x) is the convexity estimate (123) with
k =0, m = j and [ replaced by [ —1; (}) is the definition of e. Thus, recalling
the notations in Theorem 6, and observing that a < max{1, const M/}
by (142), that A = n = 1 and recalling the definition of ¢;, we see that (75)
is implied, in our case, by

kg €70 <1, (144)

for a suitable ko > 1. Such condition, in view of (141) and of the definition
of e, is implied by (136). Therefore, by Theorem 6, there exists a function
Uug € Réo such that

(90 (Uo) =0

and such that
luollg, » [10puolle, < ks e~ <1, (145)

where k3 = Kkg, K being the constant in (77); the second inequality holds
because of (141) and (136). The first step is completed.

Step 2: construction of {u;}. We proceed inductively constructing u;;, for
J = 0, via Theorem 6 by taking v = u; as approximate solution. We also
take &, = &, § = éj and £ = éjﬂ. The parameter «, in view of (142), is
uniformly bounded by max{1, const M/y?}.

We, now, assume that, for 0 < k < j, there exist functions u € R, such
that

and such that®?

€\l=lo .
luw = unallg,  [106(ur — ur—1)llg, < ka (Q_k) , (I=k<j) (146)
22For j = 0 (146) is obviously replaced by the already proven (145).
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for a suitable k4 > K3 specified below; finally we assume that 0 < k < j:
Ooualle, <1, T+ 00ue) g, <2 (147)

Notice that ||Opuslle, < 1 implies™ [|I + dpugll¢, < 2 so that, if (147) holds,
then in Theorem 6 one can take A = = 2. The inductive assumption (147)
and the definitions in (139) imply that (74) is satisfied: in fact, if 6 € Ag,
then

[Tmu;(0)] = |Im (u;(0) — u;(Red))]
< Juy(0) —?j(Re6)|
< [|9pu;ll¢ &
< Gi=Gu—§ .

We need, now, to estimate &;;1(u;). Since, by the inductive assumption,
Ei(uj) =0, we find, for 6 € A‘g_ and because of (140),
J

|E541(u))(0)] := | D?uj(0) + 0:Visa (0 + uy)]
= [0:Vjs1(0 + uy) — 0uV5(0 + uy)]

920,V (Re (0 i),
< (o0 vy~ ZOVROT D 1y gy
1B|<i-1 p!
020,V (Re (0 +uj)) .
—l—‘ > 5'( ]))(zlm(ﬁ—kuj))ﬂ—chVj(Q—l—uj)’
i<t '

< const |V]x ( eI 1)\
< const Mﬁ;‘l. (148)

Thus, (75) becomes, in the present case,

s (5m) <1 (149)

for a suitable k5 > 1. We now define** x, as

Ky := max{rs, Krs} . (150)

ZWe are choosing norms for which |1 = 1.
24This is well defined since in the computations leading to the definition of x5 the
inductive hypotheses (146) have not been used.
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Notice that condition (149) is again implied by (136). Thus, by Theorem 6,
there exists a function u;, € Rg | such that

5j+1(“j+1) =0

and such that
g \Il-lo
lugr = wille,,, - 100(user =g, < s (m) - (151)

which is exactly (146) with & = j + 1. The bounds (151) together with
the condition (136) easily implies that the inductive assumptions (147) are
satisfied also for?® k = j + 1, allowing to iterate the inductive procedure
indefinitely. The second step is completed.

Step 3: construction of u. At this point we can apply Proposition 10 (see
also Remark 16) with: [ replaced by | — lo; f; = u; — ug; r; = & = /2912
(so that 7y = £/4); A = k4472 (compare (124), (151) and the choice of r;).
The thesis of the theorem now follows at once from Proposition 10.  §

Exercise Discuss the C case.

Exercise* Extend Theorem 6 to the differentiable case.

2Exercise Fill in the details.
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3 Appendix A

Lemma 12 [fT = T(0) is a strictly positive and symmetric real matriz for
each 0 € T?, then

-1
(D) < sup
fcTd

T—1H.

Proof By hypotheses there exists an orthogonal matrix P such that PTTP
is diagonal. Let {\; : i = 1,...,d} be the spectrum of 7" and y a vector
whose coordinates are y; for ¢ = 1,...,d in the basis where T is diagonal.
Then, we have:

d
Ty)-y = S \y?

i=1

in {\} vl
emin {A vl

v

.....

2
[yl
|71

2
Iyl
supgera || 7]

(Ty)-y >

Set y = (T)~'x. Taking the average of the last expression, we get
(T(T) 1) -y) 2 <—”y”2 1)
supgera || 7]

2
lyl®
Supgers 17

((Ty(1) ') -y >

Finally, using Schwarz’s inequality in the left-hand side, and dividing by |[|y||,
we get
[yl

oy > bl
|2 e [T
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ie.,

Y (T) 'z
sup 1] 2 Ll 18Dl
6eTa =l ]

Since this is true for all z, the result follows. |}

Proof of Lemma 4 To prove (66), we observe that by Parseval identity, if
v € C4 is such that | Imv| < &, then

> fal2e ) = [ f i) du < [ flfang - (152)

nezs

Thus, for any n € Z¢ and any v as above,
Ul < 1l
and choosing v = —(signny, ...,signng) (& — €) we get
ME [ful < Wl €
letting € — 0, (66) follows.

Let us turn to (67). For the purpose of the following argument we let |n|
denote the Euclidean norm also for integer vectors.

The first inequality in (67) is obvious; in order to establish the second one
for a fixed vector € A¢_; we define the set

)
={nez': (n- Imx)< —%},
and let
p= ot
=i
Observe that (n- Imz) < —W is equivalent to
)
—n-ImxS—n-uImx—M. (153)

2

26Here, we let signa be 1if a > 0 and (—1) otherwise.
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Thus, by (153), Schwarz inequality and (152) (since pz € Af), we get

Z ‘fn|€_(n Imx) < Z |fn‘6—(n-ulmz)€—|n\5

nelp nelp
1 1
2 2
< ( Z |fn‘26—2(n~u1mm)) ( Z 6—|n6>
neZd nezZd

IN

1
C2
ST

where?”
cr=ci(d)= sup > Me " < o0,
0<A<1 neZd

It is easy to see that there exist an integer s = s(d) and a collection of s unit

vectors ey, ..., e, in R? such that for ever y € R? there exists o € {1,...,s}
with?® ]
Y
(y-e5) > 5

Now, every nonzero integer vector outside [, lies in one the sets I, defined
as

IU::{nEZd: (n-Imx)>—M, (n-eg)>@}.

But, (using again Schwarz inequality and (152)),

—(n-Imz n|&=9)
Z|fn|€(I ) < Z‘fnw' 2

TLGL:J- TLGIO’
1 1
2 2
< Z |fn\2€‘"|§ Z e~ Inlé
TLGL:J- TLGIO’

27

1 1
~Inls _ _(5d 7|n\5) < = ()\d 7\n|)\)
e e < sup e .
> 52 (0722 5 s (M
BGiven v € §97 1 :={y e R?: |y| =1}, let C,, :={w € S¥ ' : w-v > 1}. Then C,
is an open (in the relative topology) neighborhood of v and {C, : v € S?~1} is an open
cover of the compact set S9! Thus there exist unit vectors v; =: eq,...,vs =: e, such that
S4=1 c Us_, Ce;: this is equivalent to the claim.
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1 1
2 2
(s ) (o)
nezd nezZd

1

C§
Gl g

IN

<

Inequality (67) now follows and one can take ¢g = (s + 1) /1. |

4 Appendix B (Fourier Norms)

For £ > 0 let us define the space

Re(T4RY) = {f € C(TLRY) s. t. || flle := D | fule€ < 00}

neczd

The space R¢(T% RY) is a Banach space with respect to the norm ||f||.
Moreover, since

[fal < NI Flle™™

(when ¢ > 0) the function f has a holomorphic extension to the complex
strip A¢. Notice that

nezd neczd

sup f] = sup | 3= fue™| < 3 |fuled = |l . (154)
AE A&

and if 0 < & < &, then R < Re (exercise). In particular, (154) shows
that f € 7@5 admits a holomorphic and bounded extension to Ag.

Lemma 13 Let f € Re(T% X), p € Z, o € N be such that |p| + |a| > 0. If
p > 0, assume either |a| >0 or (f) =0. Let 0 < 6 <&. Then

ID70% flle—s < Cpal@)lIflle

where o] Sin)
,,,LO[ e— n
C, o(w) :=su
PvOl( ) n;é% ‘w‘n‘p
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If w is (v, T)-diophantine, then

(p7 + |af)!
W ; forp >0,
Cpalw) <

(sup |w;|)P! % , forp<0.

Proof
P Qo n fn mx |an7’L | |n\§ d) "
1D fll¢_s = | Z Z T ) < Coal@) falle -
If p> 0 and w is (v, 7)-diophantine, then
|oe|+7p
Cpa(w) < sup Le"”“s :

n#0 'Yp

The function on the right is of the form g(¢) = t®e ™ t > 0, a > 0, and has
a maximum at the point ¢,, = § such that g(,,) = a(ed)™* < alé~?, where
if @ is not an integer, we define®® a! = ([a] + 1)!

If now p < 0, one can repeat the previous arguments using the fact that in
this case |w - n|l < (sup |w;)P!n|?. 1§

In particular, if (f) = 0, then

1 en -l
1D flle—s < HfllgW : (155)

Lemma 14 Let f € Re(T% X), g € Re(T%Y), with X and Y tensor spaces
(RN matrices or higher dimensional tensors) and assume that the product

fg is well defined. Then
£ glle < I fllellglle -

a a a
21f a € N, then (%) = 24— < 25 =gl. If a is non-integer, then we can
Ltat+ Gy .. +%r+
repeat the same argument eliminating all terms in the Taylor expansion for the exponent
except 1+ al®t1/([a] + 1)1

%J%
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Proof Indeed,

1Fgle = D2I(fgale™ =37
O | fmllgmlel™ ™™ = | fllellglle. W

(lnle

IN

Lemma 15 Let V € Re (T4 R), g € Re(T4,RY), with & > & If ||gille <
& —E& foralli=1,...,d, then ||V($+9(:E))H§_ .

Proof Using Lemma 14, the fact that | - || is a norm, one finds
IV (z+g@)lle = Z\ (¢ + g(2))nle
S o

= ‘ SV, (69 n_m]e'"‘f
Z |Vm‘‘(emb.g(m))n—m‘eln‘5

gv [ [

IN

eln=mlé glmlé

IN

n—m

IN

{zm g(x ]L_m e
m,j

Vin
3 ue‘m‘f
]'

m,j
‘Vm| m d “\Jj
5 S ml P

3 j’“' " sup g |l

m,j

Vial 1 L
Z‘j—,'e (& = &) Im’
m,j '

m

IN

(Ilm-gllé)j

IN

IN

IA




KAM Lectures 63

The Fourier norm || - || and the sup-norm || - ||¢ are not equivalent (exercise);
however they are strictly related. We have already seen (compare (154)) that

11l < A1 (156)

which implies immediately>’
Re(T9) C Re(TY) . (157)

We now prove that a weaker version of the converse of (156) is true. Let
¢ > ¢ >0 and assume that f € Re. Since, for every n € Z¢,

[fal < N llge™™",

we have

1Flle = S | fulee < | flle S eInlE€=0).
But (for suitable positive constants ¢(d), C(d))

T -0 < C(d>/ el g, — _cd) /Rd el gy — (Ci

R @ —&) g
so that
- /e
<Cd) ————. 158
Iflle < C(d) @ — o) (158)
This relation shows, in particular, that
Re(T) C Re(TY), V& >¢. (159)

Exercise Give explicit upper bounds on ¢(d) and C(d).

30 Actually Re(T?) C Re (T9) (exercise).



