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variables. Symplectic reductions. Degenerate Hamiltonian systems. Proper degener-
acy. Resonances. Secular resonances. Normal forms. Birkhoff normal form. Small
divisors. Invariant tori. Kolmogorov’s theorem. KAM theory. Periodic and quasi–
periodic orbits.

Contents

1 The N–body problem: a continuing mathematical challenge 2

2 The classical Hamiltonian structure 3
2.1 Newton equations and their Hamiltonian version . . . . . . . . . . . . 3
2.2 The Linear momentum reduction . . . . . . . . . . . . . . . . . . . . 4
2.3 Delaunay variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Summary

Planetary systems, under suitable general assumptions, admit positive measure sets
of “initial data” whose evolution give rise to the planets revolving on nearly circular
and nearly co–planar orbits around their star. This statement (or more primitive
formulations) challenged astronomers, physicists and mathematicians for centuries.
In this article we shall review the mathematical theory (with particular attention to
recent developments) needed to prove the above statement.

1 The N–body problem: a continuing mathematical challenge

The problem of the motion of N ≥ 2 point–masses (i.e., ideal bodies with no physical
dimension identified with points in the Euclidean three–dimensional space) interact-
ing only through Newton’s law of mutual gravitational attraction, has been a central
issue in astronomy, physics and mathematics since the early developments of mod-
ern calculus. When N = 2 the problem has been completely solved (“integrated”)
by Newton: the motion take place on conics, whose focus is occupied by the center
of mass of the two bodies; but for N ≥ 3 a complete understanding of the problem
is still far away.

While the original impulse, coming from astronomy, has been somehow shaded by
the massive use of machines for computing orbits of celestial bodies or satellites, the
mathematical richness and beauty of the N–body problem has retained most of its
original attraction; for a selection of recent contributions, see, e.g., [Chenciner and
Montgomery, 2000], [Ferrario and Terracini, 2004], [Hampton and Moeckel, 2006],
[Chen, 2007], [Fusco, Gronchi and Negrini, 2011], [Chierchia and Pinzari, 2011 (c)].

Here, we will be concerned with the planetary N–body problem, which, as the
name says, deals with the case of one body (the “Sun” or the “Star”) having mass
much bigger than the remaining bodies (“planets”). The main question is then to
determine “general” conditions under which the planets revolve around the Sun
without collisions and in a “regular way” so that, in particular, no planet crashes
onto another planet or onto the Sun, nor it escapes away from such “solar system”.

Despite the efforts of Newton, Euler, d’Alembert, Lagrange, Laplace and, especially,
Henri Poincaré and G.D. Birkhoff, such question remained essentially unanswered
for centuries. It is only with the astonishing work of a 26–year–old mathematician,
V.I. Arnold (1937–2010), that a real breakthrough was achieved. Arnold, continuing
and extending fundamental analytical discoveries of his advisor A.N. Kolmogorov on
the so called “small divisors” (singularities appearing in the perturbative expansions
of orbital trajectories), stated in 1963 [Arnold, 1963] a result, which may be roughly
formulated as follows (verbatim formulations are given in § 3.1 below).

If the masses of the planets are small enough compared to the mass of the Sun,
there exists, in the phase space of the planetary N–body problem, a bounded set
of positive Lebesgue measure corresponding to planetary motions with bounded
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relative distances; such motions are well approximated by Keplerian ellipses with
small eccentricities and small relative inclinations.

Arnold gave a brilliant proof in a special case, namely, the planar three–body prob-
lem (two planets), giving some suggestions on how to generalize his proof to the
general case (arbitrary number of planets in space). However, a complete general-
ization of his proof turned out to be quite a difficult task, which took nearly another
fifty years to be completed: the first complete proof, based on work by M.R. Her-
man, appeared in [Féjoz, 2004] and a full generalization of Arnold’s approach in
[Chierchia and Pinzari, 2011 (c)].

The main reason beyond the difficulties which arise in the general spatial case, is
related to the presence of certain “secular degeneracies” which do not allow a tout
court application of Arnold’s “fundamental theorem” (see § 3.2 below) to the general
planetary case.

In this article we shall give a brief account (avoiding computations) of these re-
sults trying to explain the main ideas and technical tools needed to overcome the
difficulties involved.

2 The classical Hamiltonian structure

2.1 Newton equations and their Hamiltonian version

The starting point are the Newton’s equations for 1 + n bodies (point masses),
interacting only through gravitational attraction:

ü(i) =
∑

0≤j≤n
j 6=i

mj
u(j) − u(i)

|u(i) − u(j)|3 , i = 0, 1, ..., n , (1)

where u(i) =
(
u

(i)
1 , u

(i)
2 , u

(i)
3

)
∈ R3 are the cartesian coordinates of the ith body of

mass mi > 0, |u| =
√
u · u =

√∑
i u

2
i is the standard Euclidean norm, “dots” over

functions denote time derivatives, and the gravitational constant has been set to one
(which is possible by rescaling time t).

Equations (1) are invariant by change of “inertial frames”, i.e., by change of variables
of the form u(i) → u(i) − (a + ct) with fixed a, c ∈ R3. This allows to restrict the
attention to the manifold of “initial data” given by

n∑
i=0

miu
(i)(0) = 0 ,

n∑
i=0

miu̇
(i)(0) = 0 ; (2)

indeed, just replace the coordinates u(i) by u(i) − (a+ ct) with

a := m−1
tot

n∑
i=0

miu
(i)(0) and c := m−1

tot

n∑
i=0

miu̇
(i)(0) , mtot :=

n∑
i=0

mi .
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The total linear momentum Mtot :=
∑n

i=0 miu̇
(i) does not change along the flow of

(1), i.e., Ṁtot = 0 along trajectories; therefore, by (2), Mtot(t) vanishes for all times.
But, then, also the position of the barycenter B(t) :=

∑n
i=0 miu

(i)(t) is constant
(Ḃ = 0) and, again by (2), B(t) ≡ 0. In other words, the manifold of initial data (2)
is invariant under the flow (1).

Equations (1) may be seen as the Hamiltonian equations associated to the Hamil-
tonian function

Ĥ
N

:=
n∑
i=0

|U (i)|2
2mi

−
∑

0≤i<j≤n

mimj

|u(i) − u(j)| ,

where (U (i), u(i)) are standard symplectic variables (U (i) = miu̇
(i) is the momentum

conjugated to u(i)) and the phase space is the “collisionless” open domain in R6(n+1)

given by
M̂ := {U (i), u(i) ∈ R3 : u(i) 6= u(j) , 0 ≤ i 6= j ≤ n}

endowed with the standard symplectic form

n∑
i=0

dU (i) ∧ du(i) :=
∑

0≤i≤n
1≤k≤3

dU
(i)
k ∧ du

(i)
k . (3)

We recall that the Hamiltonian equations associated to a Hamiltonian function
H(p, q) = H(p1, ..., pn, q1, ..., qn), where (p, q) are standard symplectic variables (i.e.,
the associated symplectic form is dp ∧ dq =

∑n
i=1 dpi ∧ dqi) are given by{

ṗ = −∂qH
q̇ = ∂pH

i.e.

{
ṗi = −∂qiH ,
q̇i = ∂pi

H , (1 ≤ i ≤ n) .
(4)

We shall denote the standard Hamiltonian flow, namely, the solution of (4) with
initial data p0 and q0, by φtH(p0, q0). For general information, see [Arnold, Kozlov
and Neishtadt, 2006].

2.2 The Linear momentum reduction

In view of the invariance properties discussed above, it is enough to consider the
submanifold

M̂0 := {(U, u) ∈ M̂ :
n∑
i=0

miu
(i) = 0 =

n∑
i=0

U (i)} ,

which corresponds to the manifold described in (2).

The submanifold M̂0 is symplectic, i.e., the restriction of the form (3) to M̂0 is
again a symplectic form; indeed:

( n∑
i=0

dU (i) ∧ du(i)
)∣∣cM0

=
n∑
i=1

m0 + mi

m0

dU (i) ∧ du(i) .
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Following Poincaré, one can perform a symplectic reduction (“reduction of the lin-
ear momentum”) allowing to lower the number of degrees of freedom by three units;
recall that the number of degree of freedom of an autonomous Hamiltonian system
is half of the dimension of the phase space (classically, the dimension of the config-
uration space). Indeed, let φhe : (R, r) → (U, u) be the linear transformation given
by

φhe :

{
u(0) = r(0) , u(i) = r(0) + r(i) , (i = 1, ..., n)
U (0) = R(0) −∑n

i=1R
(i) , U (i) = R(i) , (i = 1, ..., n) ;

(5)

such transformation is symplectic, i.e.,

n∑
i=0

dU (i) ∧ du(i) =
n∑
i=0

dR(i) ∧ dr(i) ;

recall that this means, in particular, that in the new variables the Hailtonian flow
is again standard: more precisely, one has that φtbH

N

◦ φhe = φhe ◦ φtbH
N
◦φ.

Letting

mtot :=
n∑
i=0

mi

one sees that, in the new variables, M̂0 reads{
(R, r) ∈ R6(n+1) : R(0) = 0 , r(0) = −m−1

tot

n∑
i=1

mir
(i)

and 0 6= r(i) 6= r(j) ∀ 1 ≤ i 6= j ≤ n
}
.

The restriction of the 2–form (3) to M̂0 is simply
n∑
i=1

dR(i) ∧ dr(i) and

(Ĥ
N
◦ φhe)|M0 =

n∑
i=1

( |R(i)|2
2 m0mi

m0+mi

− m0mi

|r(i)|
)

+
∑

1≤i<j≤n

(R(i) ·R(j)

m0

− mimj

|r(i) − r(j)|
)

=: H
N
.

Thus, the dynamics generated by Ĥ
N

on M̂0 is equivalent to the dynamics generated
by the Hamiltonian (R, r) ∈ R6n → HN(R, r) on

M0 :=
{

(R, r) = (R(1), ..., R(n), r(1), ..., r(n)) ∈ R6n :

0 6= r(i) 6= r(j) ∀ 1 ≤ i 6= j ≤ n
}

with respect to the standard symplectic form
∑n

i=1 dR
(i) ∧ dr(i); to recover the full

dynamics on M̂0 from the dynamics on M0 one will simply set R(0)(t) ≡ 0 and

r(0)(t) := −m−1
tot

n∑
i=1

mir
(i)(t).
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Since we are interested in the planetary case, we perform the trivial rescaling by a
small positive parameter µ:

m0 := m0 , mi = µmi (i ≥ 1) , X(i) :=
R(i)

µ
, x(i) := r(i) ,

Hplt(X, x) :=
1

µ
H

N
(µX, x) ,

which leaves unchanged Hamilton’s equations. Explicitly, if

Mi :=
m0mi

m0 + µmi

, and m̄i := m0 + µmi ,

then

Hplt(X, x) :=
n∑
i=1

( |X(i)|2
2Mi

− Mim̄i

|x(i)|

)
+ µ

∑
1≤i<j≤n

(
X(i) ·X(j)

m0

− mimj

|x(i) − x(j)|

)
=: H(0)

plt(X, x) + µH(1)
plt(X, x) , (6)

the phase space being

M :=
{

(X, x) = (X(1), ..., X(n), x(1), ..., x(n)) ∈ R6n :

0 6= x(i) 6= x(j) ∀ 1 ≤ i 6= j ≤ n
}
,

endowed with the standard symplectic form
∑n

i=1 dX
(i) ∧ dx(i).

Recall that F (X, x) is an integral forH(X, x) if {F,H} = 0 where {F,G} = FX ·Gx−
Fx ·GX denotes the (standard) Poisson bracket. Now, observe that while

∑n
i=1X

(i)

is obviously not an integral for Hplt, the transformation (5) does preserve the total
angular momentum

∑n
i=0 U

(i) × u(i), “× ” denoting the standard vector product in
R3, so that the total angular momentum

C = (C1,C2,C3) :=
n∑
i=1

Ci , Ci := X(i) × x(i) , (7)

is still a (vector–valued) integral forHplt. The integrals Ci, however, do not commute
(i.e., their Poisson brackets do not vanish):

{C1,C2} = C3 , {C2,C3} = C1 , {C3,C1} = C2 ,

but, for example, |C|2 and C3 are two commuting, independent integrals.
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2.3 Delaunay variables

The Hamiltonian H(0)
plt in (6) governes the motion of n decoupled two–body problems

with Hamiltonian

h
(i)
2B =

|X(i)|2
2Mi

− Mim̄i

|x(i)| , (X(i), x(i)) ∈ R3 × R3
∗ := R3 × (R3\{0}) .

Such two–body sytems are, as well known, integrable. The explicit “symplectic in-
tegration” is done by means of the Delaunay variables, whose construction we, now,
briefly, recall (for full details and proofs, see, e.g., [Celletti and Chierchia, 2007]).

Assume that h
(i)
2B(X(i), x(i)) < 0 so that the Hamiltonian flow φt

h
(i)
2B

(X(i), x(i)) evolves

on a Keplerian ellipse Ei and assume that the eccentricity ei ∈ (0, 1).

Let ai, Pi denote, respectively, the semimajor axis and the perihelion of Ei.

Let C(i) denote the ith angular momentum C(i) := x(i) × y(i).
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ν̄i := k3 × C(i)

Figure 1: Spatial Delaunay angle variables.

1

Let us, also, introduce the “Delaunay nodes”

ν̄i := k(3) × C(i) 1 ≤ i ≤ n , (8)

where (k(1), k(2), k(3)) is the standard orthonormal basis in R3. Finally, for u, v ∈ R3

lying in the plane orthogonal to a non–vanishing vector w, let αw(u, v) denote the
positively oriented angle (mod 2π) between u and v (orientation follows the “right
hand rule”).
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The Delaunay action–angle variables (Λi,Γi,Θi, `i, gi, θi) are, then, defined as{
Λi := Mi

√
m̄iai

`i := mean anomaly of x(i) on Ei{
Γi := |C(i)| = Λi

√
1− e2

i

gi := αC(i)(ν̄i, Pi)

(9){
Θi := C(i) · k(3)

θi := αk(3)(k(1), ν̄i)

Notice that the Delaunay variables are defined on an open set of full measure of the
Cartesian phase space R3n×R3n

∗ , namely, on the set where ei ∈ (0, 1) and the nodes
ν̄i in (8) are well defined; on such set the “Delaunay inclinations” ii defined through
the relations

cos ii :=
C(i) · k(3)

|C(i)| =
Θi

Γi
, (10)

are well defined and we choose the branch of cos−1 so that ii ∈ (0, π).

The Delaunay variables become singular when C(i) is vertical (the Delaunay node
is no more defined) and in the circular limit (the perihelion is not unique). In these
cases different variables have to been used (see below).

On the set where the Delaunay variables are well posed, they define a symplectic
set of action–angle variables, meaning that

n∑
i=1

dX(i) ∧ dx(i) =
n∑
i=1

dΛi ∧ d`i + dΓi ∧ dgi + dΘi ∧ dθi ;

for a proof, see §3.2 of [Celletti and Chierchia, 2007].

In Delaunay action–angle variables ((Λ,Γ,Θ), (`, g, θ)) the Hamiltonian H(0)
plt takes

the form

−
n∑
i=1

M3
i m̄

2
i

2Λ2
i

=: hk(Λ) . (11)

We shall restrict our attention to the collisionless phase space

Mplt :=
{

(Λ,Γ,Θ) ∈ R3n :

Λi > Γi > Θi > 0 ,
Λi

Mi

√
m̄i

6= Λj

Mj
√
m̄j

, ∀ i 6= j
}
× T3n ,

endowed with the standard symplectic form

n∑
i=1

dΛi ∧ d`i + dΓi ∧ dgi + dΘi ∧ dθi .

8



Notice that the 6n–dimensional phase space Mplt is foliated by 3n–dimensional

H(0)
plt–invariant tori {Λ,Γ,Θ}×T3, which, in turn, are foliated by n–dimensional tori
{Λ}×Tn, expressing geometrically the degeneracy of the integrable Keplerian limit
of the (1 + n)–body problem.

2.4 Poincaré variables and the truncated secular dynamics

A regularization of the Delaunay variables in their singular limit was introduced
by Poincaré, in such a way that the set of action–angle variables ((Γ,Θ), (g, θ)) is
mapped onto cartesian variables regular near the origin, which corresponds to co–
circular and co–planar motions, while the angles conjugated to Λi, which remains
invariant, are suitably shifted.

More precisely, the Poincaré variables are given by

(Λ, λ, z) := (Λ, λ,η, ξ, p, q) ∈ Rn
+ × Tn × R4n ,

with the Λ’s as in (9) and

λi = `i + gi + θi{
ηi =

√
2(Λi − Γi) cos (θi + gi)

ξi = −
√

2(Λi − Γi) sin (θi + gi){
pi =

√
2(Γi −Θi) cos θi

qi = −
√

2(Γi −Θi) sin θi

Notice that ei = 0 corresponds to ηi = 0 = ξi, while ii = 0 corresponds to pi = 0 =
qi; compare (9) and (10).

On the domain of definition, the Poincaré variables are symplectic

n∑
i=1

dΛi ∧ d`i + dΓi ∧ dgi + dΘi ∧ dθi =
n∑
i=1

dΛi ∧ dλi + dηi ∧ dξi + dpi ∧ dqi ;

for a proof, see Appendix C of [Biasco, Chierchia and Valdinoci, 2003]. As phase
space, we shall consider a collisionless domain around the “secular origin” z = 0
(which correspond to co–planar, co–circular motions) of the form

(Λ, λ, z) ∈M6n
p := A× Tn ×B4n (12)

where A is a set of well separated semimajor axes

A :=
{

Λ : aj < aj < aj for 1 ≤ j ≤ n
}

(13)

where a1, · · · , an, a1, · · · , an, are positive numbers verifying aj < aj < aj+1 for any
1 ≤ j ≤ n, an+1 := ∞, and B4n is a small 4n–dimensional ball around the secular
origin z = 0.
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In Poincaré coordinates, the Hamiltonian Hplt (6) takes the form

Hp(Λ, λ, z) = hk(Λ) + µfp(Λ, λ, z) , z := (η, p, ξ, q) ∈ R4n (14)

where the “Kepler” unperturbed term hk is as above; compare (11).

Because of rotation (with respect the k(3)–axis) and reflection invariance of the
Hamiltonian (6) (with respect to the coordinate planes), the perturbation fp in (14)
satisfies well known symmetry relations called d’Alembert rules i.e., fp is invariant
under the following transformations:

(η, ξ, p, q)→ (−ξ,−η, q, p)
(η, ξ, p, q)→ (η, ξ,−p,−q)
(η, ξ, p, q)→ (−η, ξ, p,−q)
(η, ξ, p, q)→ (η,−ξ,−p, q)
(Λ, λ, z)→ (Λ, λ + g,Sg(z))

(15)

where, for any g ∈ T, Sg acts as synchronous clock–wise rotation by the angle g in
the symplectic zi–planes:

Sg : z→ Sg(z) =
(
Sg(z1), ...,Sg(z2n)

)
, Sg :=

(
cos g sin g
− sin g cos g

)
. (16)

compare (3.26)–(3.31) in [Chierchia and Pinzari, 2011 (b)]. By such symmetries, in
particular, the averaged perturbation

f av
p (Λ, z) :=

1

(2π)n

∫
Tn

fp(Λ, λ, z)dλ , (17)

which is called the secular Hamiltonian, is even around the origin z = 0 and its
expansion in powers of z has the form

f av
p = C0(Λ) +Qh(Λ) · η

2 + ξ2

2
+Qv(Λ) · p2 + q2

2
+ O(|z|4) , (18)

where Qh, Qv are suitable quadratic forms and Q·u2 denotes the 2–indices contrac-
tion

∑
i,j Qijuiuj (Qij, ui denoting the entries of Q, u). This shows that z = 0 is an

elliptic equilibrium for the secular dynamics (i.e, the dynamics generated by f av
p ).

The explicit expression of such quadratic forms can be found, e.g. , in (36), (37) of
[Féjoz, 2004] (revised version).

The truncated averaged Hamiltonian

hk + µ
(
C0(Λ) +Qh(Λ) · η

2 + ξ2

2
+Qv(Λ) · p2 + q2

2

)
is integrable, with 3n commuting integrals given by

Λi , ρi =
ηi

2 + ξi
2

2
, ri =

pi
2 + qi

2

2
, (1 ≤ i ≤ n) ;
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the general trajectory fills a 3n–dimensional torus with n fast frequencies ∂Λi
hk(Λi)

and 2n slow frequencies given by

µΩ = µ(σ, ς) = µ(σ1, · · · , σn, ς1, · · · , ςn) , (19)

σi and ςi being the real eigenvalues of Qh(Λ) and Qv(Λ), respectively; such tori
surround the n–dimensional elliptic tori given by {Λ}×{z = 0}, corresponding to n–
coplanar and co–circular planets rotating around the Sun with Keplerian frequencies
∂Λi

hk(Λi).

Figure 2: The truncated averaged planetary dynamics

3 Arnold’s planetary Theorem

In the following section, we report some of Arnold’s statements concerning the ex-
istence of regular quasi–periodic motions for the planetary (1 + n)–body problem.
We recall that, in general, a “quasi–periodic” (or “conditionally periodic”) orbit ζ(t)
with (rationally independent) frequencies (ω1, ..., ωd) = ω ∈ Rd is a solution of the
Hamilton equations of the form ζ(t) = Z(ω1t, ..., ωdt) for a suitable smooth function
Z(θ1, ..., θd) 2π–periodic in each variable θi.

3.1 Arnold’s Statements (1963)

At p. 87 of [Arnold, 1963] Arnold says:

Conditionally periodic motions in the many–body problem have been found. If the
masses of n “planets” are sufficiently small in comparison with the mass of the central
body, the motion is conditionally periodic for the majority of initial conditions for
which the eccentricities and inclinations of the Kepler ellipses are small. Further, the
major semiaxis perpetually remain close to their original values and the eccentricities
and inclinations remain small.

Later, p. 125 of [Arnold, 1963]:

With the help of the fundamental theorem of Chapter IV , we investigate in this chap-
ter the class of “planetary” motions in the three–body and many–body problems.
We show that, for the majority of initial conditions under which the instantaneous
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orbits of the planets are close to circles lying in a single plane, perturbation of the
planets on one another produces, in the course of an infinite interval of time, little
change on these orbits provided the masses of the planets are sufficiently small.
In particular, it follows from our results that in the n-body problem there exists a
set of initial conditions having a positive Lebesgue measure and such that, if the
initial positions and velocities of the bodies belong to this set, the distances of the
bodies from each other will remain perpetually bounded.

The “fundamental theorem” to which Arnold refers is a KAM (Kolmogorov–Arnold–
Moser) theorem for properly–degenerate nearly–integrable Hamiltonian systems: it
will be discussed in § 3.2 below. For generalities on KAM theory, see, e.g., [Arnold,
Kozlov and Neishtadt, 2006] or [Chierchia, 2009].

Finally, [p. 127 of [Arnold, 1963]:

Our basic result is that if the masses, eccentricities and inclinations of the planets
are sufficiently small, then for the majority of initial conditions the true motion is
conditionally periodic and differs little from Lagrangian motion with suitable initial
conditions throughout an infinite interval of time −∞ < t < +∞.

Arnold defines the “Lagrangian motions”, at p. 127 as follows: the Lagrangian mo-
tion is conditionally periodic and to the n “rapid” frequencies of the Kepler motion
are added n (in the planar problem) or 2n − 1 (in the space problem) “slow” fre-
quencies of the secular motions. This dynamics corrosponds, essentially, to the above
“truncated integrable planetary dynamics”; the missing frequency in the space prob-
lem is related to the fact that one of the spatial secular frequency, say, ςn vanishes
identically; compare § 3.5 below.

As mentioned in the introduction, Arnold provides a full detailed proof, checking
the applicability (non–degeneracy conditions) of his fundamental theorem, only for
the two–planet model (n = 2) in the planar regime. As for generalizations, he states
(p. 139 of [Arnold, 1963]):

The plane problem of n > 2 planets. The arguments of §2 and 3 easily carry
over to the case of more than two planets. [· · · ] We shall not dwell on the details of
the calculations which lead to the results of §1, 4.

As for the spatial general case (p. 142 of [Arnold, 1963]):

The rather lengthy calculations involved in the solution of (3.5.9), the construc-
tion of variables satisfying conditions 1)–4), and the verification of non–degeneracy
conditions analogous to the arguments of § 4 will not be discussed here.

In the next section we shall discuss Arnold’s strategy.

3.2 Proper degeneracies and the “Fundamental Theorem”

The main technical tool is a KAM theorem for properly degenerate systems.
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A nearly–integrable system with Hamiltonian

Hµ(I, ϕ) := h(I) + µf(I, ϕ) , (I, ϕ) ∈ Rd × Td,

for which h does not depend upon all the actions I1,...,Id is called properly degen-
erate. This is the case of the many–body problem since hk(Λ) in (11) depends only
on n actions Λ1,...,Λn, while the number of degrees of freedom is d = 3n.

In general, maximal quasi–periodic solutions (i.e., quasi–periodic solutions with d
rationally–independent frequencies) for properly degenerate systems do not exist:
trivially, any unperturbed properly–degenerate system on a 2d dimensional phase
space with d ≥ 2 will have motions with frequencies not rationally independent over
Zd. But they may exist under further conditions on the perturbation f .

In Chapter IV of [Arnold, 1963] Arnold overcome for the first time this problem
proving the following result which he called “the fundamental theorem”.

Let M denote the phase space

M :=
{

(I, ϕ, p, q) : (I, ϕ) ∈ V × Tn and (p, q) ∈ B
}
,

where V is an open bounded region in Rn and B is a ball around the origin in R2m;
M is equipped with the standard symplectic form

dI ∧ dϕ+ dp ∧ dq =
n∑
i=1

dIi ∧ dϕi +
m∑
i=1

dpi ∧ dqi .

Let, also, Hµ be a real analytic Hamiltonian on M of the form

Hµ(I, ϕ, p, q) := h(I) + µf(I, ϕ, p, q) ,

and denote by f av the average of f over the “fast angles” ϕ:

f av(I, p, q) :=

∫
Tn

f(I, ϕ, p, q)
dϕ

(2π)n
.

Theorem 3.1 (Arnold 1963) Assume that f av is of the form

f av = f0(I) +
m∑
j=1

Ωj(I)rj +
1

2
τ(I)r · r + o4 , rj :=

p2
j + q2

j

2
, (20)

where τ is a symmetric (m × m)–matrix and lim(p,q)→0 |o4|/|(p, q)|4 = 0. Assume,
also, that I0 ∈ V is such that

deth′′(I0) 6= 0 , (21)

det τ(I0) 6= 0 . (22)

Then, in any neighborhood of {I0} × Td × {(0, 0)} ⊆ M there exists a positive
measure set of phase points belonging to analytic “KAM tori” spanned by maximal
quasi–periodic solutions with n + m rationally–independent (Diophantine) frequen-
cies, provided µ is small enough.

13



Recall that ω ∈ Rd is Diophantine if there exist positive constants γ and c such that

|ω · k| ≥ γ

|k|c , ∀ k ∈ Zd\{0} .

Let us make some remarks.

(i) Actually, Arnold requires that f av is in Birkhoff normal form up to order 6,
which means that

f av = f0(I) +
m∑
j=1

Ωj(I)rj +
1

2
τ(I)r · r + P3(r; I) + o6

where P3 is a homogeneous polynomial of degree 3 in the variables ri (with I–
dependent coefficients); but such condition can be relaxed and (20) is sufficient:
compare [Chierchia and Pinzari, 2010], where Arnold’s properly degenerate
KAM theory is revisited and various improvements obtained.

(ii) Condition (21) is immediately seen to be satisfied in the general planetary
problem; the correspondence with the planetary Hamiltonian in Poincaré vari-
ables (14) being the following: m = 2n, I = Λ, ϕ = λ, z = (p, q), h = hk,
f = fp.

(iii) Condition (22) is a “twist” or “torsion” condition. It is actually possible to
develop a weaker KAM theory where no torsion is required. This theory is
due to Rüssmann [Rüßmann, 2001], Herman and Féjoz [Féjoz, 2004], where
f av is assumed to be in Birkhoff normal form up to order 2, f av = f0(I) +∑m

j=1 Ωj(I)rj + o2, and the secular frequency map I → Ω(I) is assumed to be
non–planar, meaning that no neighborhood of I0 is mapped into an hyperplane.

(iv) Indeed, the torsion assumption (22) implies stronger results. First, it is pos-
sible to give explicit bounds on the measure of the “Kolmogorov set”, i.e.,
the set covered by the closure of quasi–periodic motions; see [Chierchia and
Pinzari, 2010].
Furthermore, the quasi–periodic motions found belong to a smooth family of
non–degenerate Kolmogorov tori, which means, essentially, that the dynamics
can be linearized in a neighborhood of each torus; see § 6.1 for more informa-
tion.

On the base of Theorem 3.1, Arnold’s strategy is to compute the Birkhoff normal
form (20) of the secular Hamiltonian f av

p in (17) and to check the non–vanishing of
the torsion (22).
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3.3 Birkhoff normal forms

Before proceeding, let us recall a few known and less known facts about the general
theory of Birkhoff normal forms.

Consider as phase space a 2m ball B2m
δ around the origin in R2m and a real–analytic

Hamiltonian of the form

H(w) = c0 + Ω · r + o(|w|2) ,

where {
w = (u1, . . . , um, v1, . . . , vm) ∈ R2m ,

r = (r1, . . . , rm) , rj =
u2

j +v2j
2

.

The components Ωj of Ω are called the first order Birkhoff invariants. The following
is a classical by G.D. Birkhoff.

Proposition 3.1 Assume that the first order Birkhoff invariants Ωj verify, for some
a > 0 and integer s,

|Ω · k| ≥ a > 0, ∀ k ∈ Zm : 0 < |k|1 :=
m∑
j=1

|kj| ≤ 2s . (23)

Then, there exists 0 < δ′ ≤ δ and a symplectic transformation φ̆ : w̆ ∈ B2m
δ′ → w ∈

B2m
δ which puts H into Birkhoff normal form up to the order 2s, i.e.,

H ◦ φ̆ = c0 + Ω · r̆ +
∑

2≤h≤s
Ph(r̆) + o(|w̆|2s)] , (24)

where Ph are homogeneous polynomials in r̆j = |w̆j|2/2 := (ŭ2
j + v̆2

j )/2 of degree h.

Less known is that the hypotheses of this theorem may be loosened in the case of
rotation invariant Hamiltonians: this fact, for example, has not been used neither in
[Arnold, 1963] nor in [Féjoz, 2004].

First, let us generalize the class of Hamiltonian function so as to include the secular
Hamiltonian (18): let us consider an open, bounded, connected set U ⊆ Rn and
consider the phase space D := U×Tn×B2m

δ , endowed with the standard symplectic
form dI ∧ dϕ+ du ∧ dv.
We say that a Hamiltonian H(I, ϕ, w) on D is rotation invariant if H ◦ Rg = H
for any g ∈ T, where Rg is a symplectic rotation by an angle g ∈ T on D, i.e., a
symplectic map of the form

Rg : (I, ϕ, w)→ (I ′, ϕ′, w′) with I ′i = Ii, ϕ
′
i = ϕi + g, w′ = Sg(w) ,

with Sg definined in (16).
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Now, consider a ϕ–independent real–analytic Hamiltonian H : (I, ϕ, w) ∈ D →
H(I, w) ∈ R of the form

H(I, w) = c0(I) + Ω(I) · r + o(|w|2; I) ;

by f = o(|w|2; I) we mean that f = f(I, w) and |f |/|w|2 → 0 as w → 0.

Then, it can be proven the following

Proposition 3.2 Assume that H is rotation–invariant and that the first order Birk-
hoff invariants Ωj verify, for all I ∈ U , for some a > 0 and integer s

|Ω · k| ≥ a > 0, ∀ 0 6= k ∈ Zm :
n∑
i=1

ki = 0 and |k|1 ≤ 2s . (25)

Then, there exists 0 < δ′ ≤ δ and a symplectic transformation φ̆ : (I, ϕ̆, w̆) ∈ D̆ :=
U × Tn × B2m

δ′ → (I, ϕ, w) ∈ D which puts H into Birkhoff normal form up to the
order 2s as in (24) with the coefficients of Ph and the reminder depending also on
I. Furthermore, φ̆ leaves the I–variables fixed, acts as a ϕ̆–independent shift on ϕ̆,
is ϕ̆–independent on the remaining variables and is such that

φ̆ ◦ Rg = Rg ◦ φ̆ . (26)

We shall call (23) the Birkhoff non–resonance condition (up to order s) and (25) the
“reduced” Birkhoff non–resonance condition. The proof of Proposition 3.2 may be
found in §7.2 in [Chierchia and Pinzari, 2011 (c)].

3.4 The planar three–body case (1963)

In the planar case the Poincaré variables become simply

(Λ, λ, z) := (Λ, λ,η, ξ) ∈ Rn
+ × Tn × R2n ,

with the Λ’s as in (9) and

λi = `i + gi ,

{
ηi =

√
2(Λi − Γi) cos gi

ξi = −
√

2(Λi − Γi) sin gi
.

The planetary, planar Hamiltonian, is then given by

Hp,pln(Λ, λ, z) = hk(Λ) + µfp,pln(Λ, λ, z) , z := (η, p, ξ) ∈ R2n

and
1

(2π)n

∫
Tn

fp,pln =: f av
p,pln = C0(Λ) +Qh(Λ) · η

2 + ξ2

2
+ O(|z|4) .
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In Eq. (3.4.31), p.138 of [Arnold, 1963], Arnold computed the first and second order
Birkhoff invariants finding, in the asymptotics a1 � a2:

Ω1 = −3

4
m1m2

(a1

a2

)2 1

a2Λ1

(
1 + O

(a1

a2

))
Ω2 = −3

4
m2

2

1

a2Λ2

(
1 + O

(a1

a2

)2)
τ = m1m2

a2
1

a3
2

(
3

4Λ2
1

− 9
4Λ1Λ2

− 9
4Λ1Λ2

− 3
Λ2

2

)
(1 + O(a

−5/4
2 )) ,

which shows that the Ωj’s are non resonant up to any finite order (in a suitable Λ–
domain), so that the planetary, planar Hamiltonian can be put in Birkhoff normal
form up to order 4 and that the second order Birkhoff invariants are non–degenerate
in the sense that

det τ = −(m1m2)2 117

16

a4
1

a6
2(Λ1Λ2)2

(1 + o(1))

= −117

16

1

m2
0

a3
1

a7
2

(1 + o(1)) 6= 0 ;

actually, in [Arnold, 1963] the τij are defined as 1/2 of the ones defined here; more-
over, a4

2 in Eq. (3.4.31) of [Arnold, 1963] should be replaced a7
2.

This allow to apply Theorem 3.1 and to prove Arnold’s planetary theorem in the
planar three–body (n = 2) case.

An extension of this method to the spatial three–body problem, exploiting Jacobi’s
reduction of the nodes and its symplectic realization, is due to P. Robutel [Robutel,
1995].

3.5 Secular Degeneracies

In the general spatial case it is custumary to call σi the eigenvalues of Qh(Λ) and ςi
the eigenvalues of and Qv(Λ), so that Ω = (σ, ς); compare (19).

It turns out that such invariants satisfy identically the following two secular reso-
nances

ςn = 0 ,
n∑
i=1

(σi + ςi) = 0 (27)

and, actually, it can be shown that these are the only resonances identically satisfied
by the first order Birkhoff invariants; compare Proposition 78, p. 1575 of [Féjoz,
2004].

The first resonance was well known to Arnold, while the second one was apparently
discovered by M. Herman in the 90’s and is now known as Herman resonance.
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Notice that both resonances violate the usual Birkhoff non–resonance condition (23)
but do not violate the reduced Birkhoff condition (25).

What is a more serious problem for Arnold’s approach is that the matrix τ indeed
is degenerate, as clarified in [Chierchia and Pinzari, 2011 (b)], since

τ =

(
τ̄ 0
0 0

)
(28)

τ̄ being a matrix of order (2n− 1).

3.6 Herman–Fejóz proof (2004)

In 2004 J. Fejóz published the first complete proof of a general version of Arnold’s
planetary theorem [Féjoz, 2004]. As mentioned above (remark (ii), §3.2), in order to
avoid fourth order computations (and also because M. Herman seemed to suspect
the degeneracy of the matrix of the second order Birkhoff invariant; compare the
Remark towards the end of p. 24 of [Herman, 2009]), Herman’s approach was to
use a first order KAM condition based on the non–planarity of the frequency map.
But, the resonances (27) show that the frequency map lies in the intersection of
two planes, violating the non–planarity condition. To overcome this problem Her-
man and Féjoz use a trick by Poincarè, consisting in modifying the Hamiltonian by
adding a commuting Hamiltonian, so as to remove the degeneracy. By a Lagrangian
intersection theory argument, if two Hamiltonian commute and T is a Lagrangian
invariant transitive torus for one of them, then T is invariant (but not necessarly
transitive) also for the other Hamiltonian; compare Lemma 82, p. 1578] of [Féjoz,
2004]. Thus, the KAM tori constructed for the modified Hamiltonian are indeed
invariant tori also for the original system. Now, the expression of the vertical com-
ponent of the total angular momentum C3 has a particular simple expression in
Poincaré variables, since

C3 :=
n∑
j=1

(
Λj −

1

2
(η2

j + ξ2
j + p2

j + q2
j)
)
,

so that the modified Hamiltonian

Hδ := Hp(Λ, λ, z) + δC3

is easily seen to have a non–planar frequency map (first order Birlhoff invariants),
and the above abstract remark applies.

3.7 Chierchia–Pinzari proof (2011)

In [Chierchia and Pinzari, 2011 (c)] Arnold’s original strategy is reconsidered and full
torsion of the planetary problem is shown by introducing new symplectic variables
(called rps–variables standing for Regularized Planetary Symplectic variables; see

18



§ 4.1 below), which allow for a symplectic reduction of rotations eliminating one
degree of freedom (i.e., lowering by two units the dimension of the phase space). In
such reduced setting the first resonance in (27) disappears and the question about
the torsion is reduced to study the determinant of τ̄ in (28), which, in fact, is shown
to be non–singular; compare §8 of [Chierchia and Pinzari, 2011 (c)] and [Chierchia
and Pinzari, 2011 (b)] (where a precise connection is made between the Poincaré
and the rps–variables).

The rest of this article is devoted to explain the main ideas beyond this approach.

4 Symplectic reduction of rotations

We start by describing the new set of symplectic variables, which allow to have a
new insight on the symplectic structure of the phase space of the planetary model,
or, more in general, of any rotation invariant model.

The idea is to start with action–angle variables having, among the actions, two
independent commuting integrals related to rotations, for example, the Euclidean
length of the total angular momentum C and its vertical component C3, and then
(imitating Poincaré) to regularize around co–circular and co–planar configurations.

The variables that do the job are an action–angle version of certain variables in-
troduced by A. Deprit in 1983 [Deprit, 1983] (see also [Chierchia and Pinzari, 2011
(a)]), which generalize to an arbitrary number of bodies Jacobi’s reduction of the
nodes; the regularization has been done in [Chierchia and Pinzari, 2011 (c)].

4.1 The Regularized Planetary Symplectic (RPS) variables

Let n ≥ 2 and consider the “partial angular momenta”

S(i) :=
i∑

j=1

C(j) , S(n) =
n∑
j=1

C(j) =: C ;

and define the “Deprit nodes”
νi := S(i) × C(i) , 2 ≤ i ≤ n
ν1 := ν2

νn+1 := k(3) × C =: ν̄ ;
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(recall the definition of the “individual” and total angular momenta in (7)).
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Pi

νi
ν̄i

C(i)

S(i)

k(3)

gi γi

Pi := perihelion

νi := S(i) × C(i)

ν̄i := k(3) × C(i)

Figure 1: The angle γi

1

The Deprit action–angle variables (Λ,Γ,Ψ, `, γ, ψ) are defined as follows. The vari-
ables Λ, Γ and ` are in common with the Delaunay variables (9), while

γi := αC(i)(νi, Pi) Ψi :=

{
|S(i+1)| , 1 ≤ i ≤ n− 1
C3 := C · k(3) i = n

ψi :=

{
αS(i+1)(νi+2, νi+1) 1 ≤ i ≤ n− 1
ζ := αk(3)(k(1), ν̄) i = n.
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Define also G := |C| = |S(n)|.
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νi+1

C(i+1)

C(i+2)

νi+2

S(i+1)

ψi

πS(i+1)

νi := S(i) × C(i)

Figure 1: The angle ψi for 1 ≤ i ≤ n− 2

1

The “Deprit inclinations” ιi are defined through the relations

cos ιi :=


C(i+1) · S(i+1)

|C(i+1)||S(i+1)| , 1 ≤ i ≤ n− 1 ,

C · k(3)

|C| , i = n .

Similarly to the case of the Delaunay variables, the Deprit action–angle variables
are not defined when the Deprit nodes νi vanish or ei /∈ (0, 1); on the domain where
they are well defined they define a real–analytic set of symplectic variables, i.e.,

n∑
i=1

dX(i) ∧ dx(i) =
n∑
i=1

dΛi ∧ d`i + dΓi ∧ dγi + dΨi ∧ dψi ;
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for a proof, see [Chierchia and Pinzari, 2011 (a)] or §3 of [Chierchia and Pinzari,
2011 (c)].
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ν̄ := k(3) × C

νn := C× C(n)

Figure 1: The angles ψn−1 =: g and ψn =: ζ

1

The rps variables are given by (Λ, λ, z) := (Λ, λ, η, ξ, p, q) with (again) the Λ’s as
in (9) and

λi = `i + γi + ψni−1

{
ηi =

√
2(Λi − Γi) cos

(
γi + ψni−1

)
ξi = −

√
2(Λi − Γi) sin

(
γi + ψni−1

)
{
pi =

√
2(Γi+1 + Ψi−1 −Ψi) cosψni

qi = −
√

2(Γi+1 + Ψi−1 −Ψi) sinψni

where
Ψ0 := Γ1 , Γn+1 := 0 , ψ0 := 0 , ψni :=

∑
i≤j≤n

ψj .

On the domain of definition, the rps variables are symplectic

n∑
i=1

dΛi ∧ d`i + dΓi ∧ dγi + dΨi ∧ dψi =
n∑
i=1

dΛi ∧ dλi + dηi ∧ dξi + dpi ∧ dqi ;

for a proof, see §4 of [Chierchia and Pinzari, 2011 (c)]. As phase space, we shall
consider a collisionless domain around the “secular origin” z = 0 (which correspond
to co–planar, co–circular motions) of the form
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For the planetary problem, we shall resctrict the phase space in the rps variables to
a set of the same form as in (12), (13), namely

(Λ, λ, z) ∈M6n
rps := A× Tn ×B4n (29)

with B a 4n–dimensional ball around the origin.

The relation between Poincaré variables and the rps variables is rather simple. In-
deed, if we denote by

φrps
p : (Λ, λ, z)→ (Λ, λ, z) (30)

the symplectic trasformation between the rps and the Poincaré variables, one has
the following

Theorem 4.1 (Chierchia and Pinzari, 2011 (b)) The symplectic map φrps
p in

(30) has the form

λ = λ+ ϕ(Λ, z) z = Z(Λ, z)

where ϕ(Λ, 0) = 0 and, for any fixed Λ, the map Z(Λ, ·) is 1:1, symplectic (i.e., it
preserves the two form dη ∧ dξ + dp ∧ dq) and its projections verify, for a suitable
V = V(Λ) ∈ SO(n), with O3 = O(|z|3),

ΠηZ = η +O3 , ΠξZ = ξ +O3 , ΠpZ = Vp+O3 , ΠqZ = Vq +O3 .

4.2 Partial reduction of rotations

Recalling that

Γn+1 = 0 , Ψn−1 = |S(n)| = |C| , Ψn = C3 , ψn = αk(3)(k(1), k3 × C)

one sees that {
pn =

√
2(|C| − C3) cosψn

qn = −
√

2(|C| − C3) sinψn ,

showing that the conjugated variables pn and qn are both integrals and hence both
cyclic for the planetary Hamiltonian, which, therefore, in such variables, will have
the form

Hrps(Λ, λ, z̄) = hk(Λ) + µfrps(Λ, λ, z̄) , (31)

where z̄ denotes the set of variables

z̄ := (η, ξ, p̄, q̄) :=
(
(η1, . . . , ηn), (ξ1, . . . , ξn), (p1, . . . , pn−1), (q1, . . . , qn−1)

)
.

In other words, the phase space M6n
rps in (29) is foliated by (6n − 2)–dimensional

invariant manifolds
M6n−2

pn,qn :=M6n
rps |pn,qn=const , (32)

23



and since the restriction of the standard symplectic form on such manifolds is simply

dΛ ∧ dλ+ dη ∧ dξ + dp̄ ∧ dq̄ ,

such manifolds are symplectic and the planetary flow is the standard Hamiltonian
flow generated by Hrps in (31). We shall call the symplectic, invariant submanifolds
M6n−2

pn,qn “symplectic leaves”. They depend upon a particular orientation of the total

angular momentum: in particular, the leaf M6n−2
0 correspond to the total angular

momentum parallel to the vertical k3–axis. Notice, also, that the analytic expression
of the planetary Hamltonian Hrps is independent of the leaves.

In view of thiese observations, it is enough to study the planetary flow of Hrps on,
say, the vertical leaf M6n−2

0 .

5 Planetary Birkhoff normal forms and torsion

The rps variables share with Poincaré variables classical D’Alembert symmetries,
i.e., Hrps is invariant under the transformations (15) S being as in (16); compare
Remark 3.3 of [Chierchia and Pinzari, 2011 (b)].

This implies that the averaged perturbation

f av
rps :=

1

(2π)n

∫
Tn

frps dλ

also enjoys D’Alembert rules and thus has an expansion analogue to (18), but inde-
pendent of (pn, qn):

f av
rps(Λ, z̄) = C0(Λ) +Qh(Λ) · η

2 + ξ2

2
+ Q̄v(Λ) · p̄

2 + q̄2

2
+ O(|z̄|4) (33)

with Qh of order n and Q̄v of order (n − 1). Notice that the matrix Qh in (33) is
the same as in (18), since, when p = (p̄, pn) = 0 and q = (q̄, qn) = 0, Poincaré and
rps variables coincide.

Using Theorem 4.1, one can also show that

Qv :=

(
Q̄v 0
0 0

)
is conjugated (by a unitary matrix) to Qv in (18), so that the eigenvalues ς̄i of Q̄v

coincide con (ς1, ..., ςn−1), as one naively would expect.

In view of the remark after (27), and of the rotation–invariant Birkhoff theory
(Proposition 3.2), one sees that one can construct, in an open neighborhood of
co–planar and co–circular motions, the Birkhoff normal form of f av

rps at any finite
order.

More precisely, for ε > 0 small enough, denoting

Pε := A× Tn ×B4n−2
ε , B4n−2

ε := {z̄ ∈ R4n−2 : |z̄| < ε} ,
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an ε–neighborhood of the co–circular, co–planar region, one can find an real–analytic
symplectic transformation

φµ : (Λ, λ̆, z̆) ∈ Pε → (Λ, λ, z̄) ∈ Pε
such that

H̆ := Hrps ◦ φµ = hk(Λ) + µf(Λ, λ̆, z̆)

with

f̆av(Λ, z̆) :=
1

(2π)n

∫
Tn

f dλ̆ = C0(Λ) + Ω · R̆ +
1

2
τ̄ R̆ · R̆ + P̆(Λ, z̆)

where 
Ω = (σ, ς̄)

z̆ := (η̆, ξ̆, p̆, q̆) , R̆ = (ρ̆, r̆) , P̆(Λ, z̆) = O(|z̆|6) ,
ρ̆ = (ρ̆1, · · · , ρ̆n) , r̆ = (r̆1, · · · , r̆n−1) ,

ρ̆i :=
η̆2

i +ξ̆2i
2

, r̆i =
p̆2i +q̆2i

2

With straightforward (but not trivial!) computations, one can then show full torsion
for the planetary problem. More precisely, one finds (Proposition 8.1 of [Chierchia
and Pinzari, 2011 (c)])

Proposition 5.1 For n ≥ 2 and 0 < δ? < 1 there exist µ̄ > 0,

0 < a1 < a1 < · · · < an < an

such that, on the set A defined in (13) and for 0 < µ < µ̄, the matrix τ̄ = (τij) is
non–singular:

det τ̄ = dn(1 + δn) ,

where |δn| < δ? with

dn = (−1)n−1 3

5

(45

16

1

m2
0

)n−1 m2

m1m0

a1

(a1

an

)3 ∏
2≤k≤n

( 1

ak

)4

. (34)

Incidentally, we remark that µ̄ is taken small only to simplify (34), but a similar
evaluation hold with µ̄ = 1.

6 Dynamical consequences

6.1 Kolmogorov tori for the planetary problem

At this point one can apply to the planetary Hamiltonian in normalized variables
H̆(Λ, λ̆, z̆) Arnold’s Theorem 3.1 above completing Arnold’s project on the planetary
N–body problem.

Indeed, by using the refinements of Theorem 3.1 as given in [Chierchia and Pinzari,
2010], from Proposition 5.1 there follows
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Theorem 6.1 There exists positive constants ε∗, c∗ and C∗ such that the following
holds. If

0 < ε < ε∗ , 0 < µ <
ε6

(log ε−1)c∗
,

then each symplectic leaf M6n−2
pn,qn (32) contains a positive measure Hrps –invariant

Kolmogorov set Kpn,qn, which is actually the suspension of the same Kolmogorov set

K ⊆ Pε, which is H̆–invariant.
Furthermore, K is formed by the union of (3n − 1)–dimensional Lagrangian, real–
analytic tori on which the H̆–motion is analytically conjugated to linear Diophantine
quasi–periodic motions with frequencies (ω1, ω2) ∈ Rn × R2n−1 with ω1 = O(1) and
ω2 = O(µ).
Finally, K satisfies the bound

measPε ≥ measK ≥
(

1− C∗
√
ε
)

measPε .

In particular, measK ' ε4n−2 ' measPε.

6.2 Conley–Zehnder stable periodic orbits

Indeed, the tori T ∈ K form a (Whitney) smooth family of non–degenerate Kol-
mogorov tori, which means the following. The tori in K can be parameterized by
their frequency ω ∈ R3n−1 (i.e., T = Tω) and there exist a real–analytic symplectic
diffeomorphism

ν : (y, x) ∈ Bm × Tm → ν(y, x;ω) ∈ Pε , m := 3n− 1 ,

uniformly Lipschitz in ω (actually C∞ in the sense of Whitney) such that, for each ω

a) H̆ ◦ ν = E + ω · y +Q; (Kolmogorov’s normal form)

b) E ∈ R (the energy of the torus); ω ∈ Rm is a Diophantine vector;

c) Q = O(|y|2)

d) det

∫
Tm

∂yyQ(0, x) dx 6= 0 , (nondegeneracy)

e) Tω = ν(0,Tm).

Now, in the first paragraph of [Conley and Zehnder, 1983] Conley and Zehnder,
putting together KAM theory (and in particular exploiting Kolmogorv’s normal form
for KAM tori) together with Birkhoff–Lewis fixed–point theorem show that long–
period periodic orbits cumulate densely on Kolmogorov tori so that, in particular,
the Lebesgue measure of the closure of the periodic orbits can be bounded below
by the measure of the Kolmogorov set. Notwithstanding the proper degeneracy, this
remark applies also in the present situation and as a consequence of Theorem 6.1
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and of the fact that the tori in K are non–degenerate Kolmogorov tori it follows
that

in the planetary model the measure of the closure of the periodic orbits in Pε can
be bounded below by a constant times ε4n−2.
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Glossary

Averaging: In a nearly–integrable Hamiltonian system (i.e., a small Hamiltonian
perturbation of a completely integrable Hamiltonian system) the procedure of aver-
aging over fast angle variables.
Action–angle variables: A particular set of symplectic variables: half of them
have the physical dimension of an action (energy times time).
Birkhoff normal forms Normal form in which, under suitable assumptions, a
Hamiltonian having an elliptic equilibrium can be transformed, through a symplectic
map, into a Hamiltonian depending only on polar action variables.
Degenerate Hamiltonian systems: Integrable Hamiltonian systems that, when
expressed in action variables, do not depend in a “general” way on the actions.
Diophantine numbers: Irrational numbers or set of numbers badly (in a specific
quantitative way) approximated by rational numbers.
Elliptic equilibrium: An equilibrium point for a Hamiltonian (i.e., a point where
the gradient of the Hamiltonian vanishes)
Hamiltonian equations: First order evolution equations ruling the dynamics of a
conservative system.
Integrable Hamiltonian system: A Hamiltonian systems whose evolutions can
be solved in terms of integrals (“quadratures”) and when all solutions are bounded
can be put, through a symplectic transformation of action–angle variables, into a
system with Hamiltonian depending only upon action variables.
Invariant tori: Tori embedded in a phase space which are invariant under the
Hamiltonian evolution.
KAM Theory: The bulk of techniques and theorems, beginning with the contri-
bution of Kolmogorov, Arnold and Moser, dealing with the problem of the stability
of quasi–periodic motion in perturbation of integrable Hamiltonian systems.
Keplerian ellipses: Ellipses described by a two–body system with negative energy.
Kolmogorov tori: Invariant tori on which the Hamiltonian flow is symplectically
conjugated to a Diophantine linear flow and which are non–degenerate in a suitable
sense.
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Linear and angular momentum: Physical characteristics of a system of many
bodies.
N–body problem: The mathematical problem of studying the motion of an N
body system.
N–body system: N point–masses (“bodies”) mutually interacting only through
gravitational attraction.
Newton’s equations: The fundamental evolution equations of classical mechanics
expressing the proportionality between forces and accelerations of a given body (the
proportionality constant being the mass of the body).
Node lines (or simply “nodes”): Intersections of relevant planes (e.g., the inter-
section of the plane orthogonal to the total angular momentum and a fixed reference
plane).
Phase space: Classically, the space of positions and corresponding velocities (times
masses); in modern and more general terms, the “symplectic manifold” (see below)
of a Hamiltonian system.
Planetary systems: A system of N–bodies where one body has mass much larger
than the other bodies studied in nearly–coplanar and nearly co–circular regime.
Quasi–periodic motions: Motions that can be described by a linear flow on a
torus with incommensurate frequencies.
Resonances: Commensurate relations.
Secular Hamiltonian and secular degeneracies: In the planetary Hamiltonian
problem, the Hamiltonian obtained by averaging over the mean anomalies.
Small divisors: linear combination (with rational coefficients) of frequencies ap-
pearing in the denominator of expansions arising in averaging theory.
Symplectic coordinates: Coordinates on a symplectic manifold allowing to ex-
press in a standard way the associated symplectic form.
Symplectic manifold: An even dimensional manifold endowed with a symplectic
form, i.e., a non–degenerate, closed differential 2–form.
Symplectic reduction: A mathematical process allowing to lower the dimension of
the phase space, which amount to simplify significantly the original set of differential
equations.
Symplectic transformation: a diffeomorfism on a symplectic manifold preserving
the symplectic form.
Twist or torsion : A non–degeneracy condition of integrable Hamiltonian sys-
tems expressing the fact that the map between actions and frequencies is a local
diffeomorfism.
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