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Abstract

KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a
perturbation of integrable ones. The smallness requirements for its applicability are well known to
be extremely stringent. A long standing problem, in this context, is the application of KAM theory
to “physical systems” for “observable” values of the perturbation parameters.

Here, we consider the Restricted, Circular, Planar, Three-Body Problem (RCPTBP), i.e., the prob-
lem of studying the planar motions of a small body subject to the gravitational attraction of two
primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by
the small body). When the mass ratio of the two primary bodies is small the RCPTBP is described
by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space
corresponding to nearly elliptical motions with non small eccentricities, the system is well described
by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the
Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass
ratio is slightly less than 1/1000.

We consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravita-
tional attraction regarding such a system as a prototype of a RCPTBP. For values of mass ratios up
to 1/1000, we prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy
level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the
evolution of phase points “close” to the observed physical data of the Sun-Jupiter-Victoria system.
As a consequence, in the RCPTBP description, the motion of Victoria is proven to be forever close
to an elliptical motion.

The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-
energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-
Jupiter-Victoria system.

The paper is self-contained but does not include the (~ 12000 line) computer programs, which may
be obtained by sending an e-mail to one of the authors.
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1 Introduction

1.1 Quasi-periodic solutions for the n-body problem

The n-body problem consists in studying the dynamics of n point masses in the three-dimensional space
mutually attracted by Newton gravitational law. Such dynamics is governed by the following system of
ordinary differential equations
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where m; are the masses of the bodies, the n functions ¢ € R — u{d(t) € R® describe the position of
the i body in space at time t and |u(9) — ()| is the Euclidean distance between u(? and u(); the
gravitational constant has been set equal to one (which is always possible upon rescaling of time).

In this paper we will be mainly concerned with the construction of quasi-periodic solutions for (1.1)
and with their dynamical relevance with particular emphasis on stability. Roughly speaking, a quasi-
periodic solution of (1.1) is a solution, which, in suitable coordinates, may be expressed in terms of linear
motions filling out a k-dimensional torus with 2 < k < d, d being the number of degrees of freedom of
the problem (we will come back later to a more precise definition of quasi-periodic solutions).

It is well known that for n = 2, equations (1.1) may be “explicitly” solved, while, for n > 2, despite
the effort of mathematicians such as Kepler, Newton, Laplace, Lagrange, Weierstrass, Mittag-Leffler,
Poincaré, Birkhoff, Siegel, Kolmogorov, Moser and Arnold, basic questions about the n-body problem
are still unsolved. For example, there are no proofs of the existence of quasi-periodic solutions for the n
body-problem with!n > 4.

Particularly relevant for Celestial Mechanics is the planetary case, i.e, the case when one of the bodies
(“star”) has mass significantly larger than the other bodies (“planets”):

mo > m; , 1=1,...,n—1.

In such a case the n-body problem may be viewed as a perturbation of (n — 1) decoupled two-body
problems (star-it" planet, i = 1,...,n — 1). The perturbative approach was explored with great success,
especially, by Poincaré, Birkhoff, Kolmogorov, Arnold and Moser. Poincaré, in particular, was awarded,
by Oscar II, King of Sweden and Norway, a prize for a memoir on the 3-body problem?. Among many

1v.1. Arnold in 1963 ([5]) gave the first existence proof of quasi-periodic motions in the case of three co-planar bodies
(mo > m1, m2) revolving on nearly-circular orbits; more than thirty years later, in 1995, Arnold’s result was extended by
Laskar and Robutel ([90], [118]) to the spatial three-body problem (small inclinations, small eccentricities). Other quasi-
periodic solutions for the three-body problem (spanning “lower dimensional tori”) where shown to exist by Jefferys and
Moser [75] in 1966 (linearly unstable case) and recently by Féjoz [54] (linearly stable, planar) and by Biasco, Chierchia and
Valdinoci [15] (linearly stable, spatial). A (long) proof of the existence of quasi-periodic solutions in the general n-body
problem was announced [73] by M. Herman in 1995, but his untimely death (2001) did not allow such - certainly beautiful
- piece of work to be completed.

2«Qscar IT initiated a mathematical competition in 1887 to celebrate his sixtieth birthday in 1889. Poincaré was awarded
the prize for a memoir he submitted on the 3-body problem in celestial mechanics. In this memoir Poincaré gave the first
description of homoclinic points, gave the first mathematical description of chaotic motion, and was the first to make
major use of the idea of invariant integrals. However, when the memoir was about to be published in Acta Mathematica,
Phragmen, who was editing the memoir for publication, found an error. Poincaré realized that indeed he had made an
error and Mittag-Leffler made strenuous efforts to prevent the publication of the incorrect version of the memoir. Between
March 1887 and July 1890 Poincaré and Mittag-Leffler exchanged fifty letters mainly relating to the Birthday Competition,
the first of these by Poincaré telling Mittag-Leffler that he intended to submit an entry, and of course the later of the 50
letters discuss the problem concerning the error. It is interesting that this error is now regarded as marking the birth of
chaos theory. A revised version of Poincaré’s memoir appeared in 1890.” Extracted from an article by J.J. O’Connor and
E.F. Robertson (http://www-gap.dcs.st-and.ac.uk/ history/Mathematicians/Poincare.html).



other things, in the fundamental work [116], Poincaré, following Newcombe and Lindstedt, tried to
study the existence of quasi-periodic solutions for general Hamiltonian systems, by looking at power-
series expansions in the perturbation parameter (Lindstedt series). Poincaré was not able to decide
whether such series were convergent or not® and it was only nearly seventy years after that J. Moser
([111]) showed how KAM theory could be used in order to give an indirect proof of the convergence of
Lindstedt series.

Kolmogorv-Arnold-Moser theory* represented a major breakthrough in the study of the behavior of gen-
eral conservative dynamical systems, providing technical tools, based upon a quantitative “fast (Newton)
iteration scheme” in suitable decreasing family of Banach function spaces, which allowed to overcome
crucial difficulties related to resonances and small divisors. Moser, in [111], pointed out that the KAM
construction of quasi-periodic solutions was uniform in complex parameters so that, by Weierstrass the-
orem on uniform limits of analytic functions, the parameter analyticity was inherited by the solutions.
As a by-product the KAM quasi-periodic solutions are analytic in the parameter and hence (by the
identity principle for holomorphic functions) Lindstedt series are convergent.

Direct proofs avoiding fast iteration methods are more than twenty years younger than KAM theory.
The first (semi-)direct proof was given by H. Eliasson in a 1984 preprint (see, also, [49]) and it is based
on an extension of the approach used by Siegel in 1942 ([124]) in order to prove the conjugacy of germs
of analytic functions to their linear part®. Explicit compensations for the coefficients of the Lindstedt
series sufficient to yield convergence were proven in the 90’s by Gallavotti, Gentile and Mastropietro
([59], [60], [61], [62], [63]) and by Chierchia and Falcolini ([42], [43]). Compensations in a different setting
were also investigated in [64].

It has to be pointed out that the n-body problem does not fall in the category of “general Hamiltonian
systems” to which KAM theory applies. In fact, typical n-body problems are strongly degenerate from
the point of view of KAM theory® and this is the (technical) reason why - as mentioned above - basic
results are still missing in the mathematical theory of the n-body problem.

However, in some special instances - such as the Restricted Circular Planar Three-Body Problem
(RCPTBP, for short) - the non degeneracy assumptions required by KAM theory are indeed satis-

34[...] Il s’agit maintenant de reconnaitre si ces séries sont convergentes. [ - -] Il semble donc permis de conclure que le
séries (2) ne convergent pas. Toutefois les raisonnement qui précéde ne suffit pas pour établir ce point avec une rigueur
compleéte. [- - -] Ne peut-il pas arriver que le séries (2) convergent quand on donne aux z¢ certaines valeurs convenablement
choisies? [- -] Les raisonnements de ce Chapitre ne me permettent pas d’affirmer que ce fait ne se présentera pas. Tout ce
qu’il m’est permis de dire, c’est qu’il est fort invraisemblable.” [116], Tome II, Chapitre XIII, no. 146, 149.

4Fundamental references are: [80], [4], [5], [109], [110], [111], [71]. For texts discussing KAM theory and celestial
mechanics, see, e.g., [125], [112] and [6].

5See also, [72], [130].

SA typical (classical) result in KAM theory may be formulated as follows. Consider a nealy-integrable Hamiltonian
system governed by a real-analytic Hamiltonian function H(xz,y;e) := Ho(y) + ¢H1(z,y) defined on the phase space
M :=Tdx B (B being a ball in Rd) endowed with the standard symplectic form E;i:1 dz; A dyj. Let yo € B be

such that w := H})(yo) is a Diophantine vector (i.e., there 3 4,7 > 0 s.t. |w-n| > v|n|™7, V n € Z%\{0}) and that
det H{/(yo) # 0. Then, there exists o > 0 such that the unperturbed torus T?¢ x {yo} can be analytically continued
for |e| < €o into an invariant torus on which the H-flow is analytically conjugated to the linear flow § € T?¢ — @ + wt.
The condition on the Hessian matrix H{(yo) is sometimes referred to as non-degeneracy (or KAM non-degeneracy)
condition. The non-degeneracy condition may be replaced by the so-called iso-energetic non-degeneracy condition, namely

"
the requirement that det (Hou(,yo) ((L)}

continued within the fixed energy level H~1! (Ho(yo)) in such a way that the H-flow is analytically conjugated to the

) # 0. In such a case, the unperturbed torus T¢ x {yo} may be analytically

linear flow § € T — 9+ (14 a)wt, a being a small real number depending (analytically) on ¢. In the general planetary n-
body problem, the Hamiltonian of the integrable limit, Ho, depends on y; with j < d; thus the non-degeneracy conditions
are violated in the whole phase space. See, e.g., [6]. A recent paper where the non-degeneracy conditions are weakened is
[121].



fied (the RCPTBP is iso-energetically non degenerate) and the existence of quasi-periodic solutions
follows at once from standard KAM theory. A natural question is then:

can one establish the existence of quasi-periodic motions for the RCPTBP for observed values of the
astronomical parameters entering into the problem?

Such question, to which in this paper will be given a positive answer, will be discussed in the coming
sections.

1.2 A stability theorem for the Sun-Jupiter-Victoria system viewed as a
restricted, circular, planar three-body problem

We now state our main result. By definition, the restricted three-body problem consists in studying
the differential equation obtained from (1.1) by taking n = 3 and setting one of the masses, say ma,
equal to zero. In such a case, the equations for the “primary bodies” (i = 0,1) decouple from the
equation for the position u(?) of the “minor” (or “small”) body. In other words, the restricted problem
consists in studying the motion of a minor body subject to the gravitational field generated by the
motion of two primary bodies, which are assumed not to be influenced by the gravitational attraction
of the minor body. The RCPTBP consists in assuming further that the relative motion of the primary
bodies is circular and that the motion of the minor body takes place on the plane generated by the
motion of the primaries. As mentioned above, if m; /my is small, the problem becomes perturbative and
can be described, in suitable physical units and using classical Delaunay action-angle variables, by a
nearly-integrable Hamiltonian system with Hamiltonian

1

H(€7g7L7G; E) = _m

~G+eF(l,g,L,Gse), (£,9,L,G) e M:=T*x{0<G <L},
where T? := R? /(27Z?) is the standard 2-torus and the perturbation F is a real-analytic function on
the phase space M endowed with the standard symplectic form df A dL + dg A dG; here the constant
distance between the primaries and their total mass (mg + m1) are normalized to one; € is essentially
my (the mass of the smaller primary body) and the period of the circular motion of the primaries is
normalized to 2w. The Delaunay variables are thoroughly discussed in a self-contained way in § 3.1+3.3
below”.

Next, we select a RCPTBP modeling the motion of an asteroid in our Solar System. As primary bodies,
we consider the major bodies of our Solar system, namely, Sun and Jupiter. As small body we pick an
asteroid from the Asteroidal Belt, namely, the asteroid 12 Victoria (the number refers to the standard

7A brief summary: denote by Py and P; the two primary bodies and by P, the minor body. Then:
(i) The angle £ is the mean-anomaly of the osculating ellipse associated to the two-body problem Pp-P, (the “major-minor
body” or “Star-asteroid” system); g = v—1, where - is the argument of the perihelion of the osculating ellipse Py-P; (with
respect to an inertial, “heliocentric” frame with origin coinciding with the position of Pp), and 9 is the longitude of the
“planet” Py, that, having normalized the period of the motion of the primaries and their total masses to 1, coincides with
the time ¢. The action variables are given by L = /a and G = Lv/1 — €2, where a and e are, respectively, the semi-major
axis and the eccentricity of the osculating Po-Pa ellipse.
(ii) The perturbative parameter ¢ is defined as mj/ mﬁ/ 3, which together with the normalization condition mg +m1 = 1
yields m1 =¢ — §s2 + 13 4+ ..., such series having radius of convergence greater than one.
(iii) Setting (9 = u(® — 4(0), the perturbation F is the function z(?) . z(1) — |£(2) — £(1)|=1 expressed in terms of the
Delaunay variables; (1) being, simply, the relative circular motion of Py: #(1) = (cos(to +t),sin(to + t)).



classification of asteroidal objects; see, e.g., [133]). The observed astronomical data of Victoria are®
ay ~ 0.449 , ev =~ 0.220, (1.2)

where ay and ey denote, respectively, the major semi-axis (divided by the major semi-axis of Jupiter)
and the eccentricity of the osculating Keplerian ellipse on which Victoria is observed to move.

Considering the system Sun-Jupiter-Victoria as a RCPTBP involves, clearly, a lot of physical approx-
imations: the Sun-Jupiter orbit is assumed to be circular (while the observed osculating orbit is a
Keplerian ellipse of eccentricity 4.82-10~2); the gravitational attraction of all other Solar System bodies
are neglected (most notably, the attraction of Mars and Saturn); the orbit of Victoria is assumed to
be co-planar with the Sun-Jupiter plane (while the observed relative inclination is about 1.961 - 10~2);
the shape and extension of the bodies are not taken into account (in particular, asteroids are typically
far from being spherical and, therefore, far from being well approximated by point masses); dissipative
phenomena are neglected (tides, solar winds, Yarkovsky effect,...).

In considering Sun-Jupiter-Victoria as a three-body problem we make a further approximation, phys-
ically consistent with the already made approximations: we replace the perturbation F with an e-
independent trigonometric polynomial H; of degree ten obtained by expanding in power of

G2

a:=1L" and e:=14/1- Iz (1.3)
the perturbation F' and retaining those terms which are “quantitatively compatible” with the above
approximations; the trigonometric polynomial thus obtained is:

@ 9 , 3 5, 19 .\ 3., 15,
H = _(1+Z+6_4a +§ae)+(§+ﬁa)aecos€—<ga +6—4a)cos(é+g)
9 9 9\ o 32,9 4 3 5
+(Z+Za)aecos(€+2g) (Za +1—6a)cos(2€+2g) Zaecos(3€+29)
5 35 35 63
—(gag—}-ﬁ(f) cos(3€+3g)—aa4cos(4€+4g)—§8a5 cos(5+59), (1.4)

where a and e are the action variable functions defined in (1.3).

Thus, the motion of the asteroid Victoria, in the framework of the RCPTBP, is governed by the Hamil-
tonian

_ 1
Hsyv(¢,9,L,G) == —573 G+e,H (g, LG, £, = 0.954-107% , (1.5)

where the value g, is the observed value of the ratio of the masses of Jupiter and the Sun (in our system
of units).

In view of (1.2) and (1.3) we define the osculating values of the actions L and G for the observed Victoria
motion as

Ly :=0670~ ay, Gy:=0.654~Lyy/1—¢e%. (1.6)

Finally, we also define the energy value associated to the observed Victoria motion as

EV = —1.769 H

8The data are taken, also, from the NASA site [133]. The choice of Victoria is, obviously, rather arbitrary; we only
remark that we did not want to consider the eccentricity as a further smallness parameter (comparable to the disregarded
physical quantities; see below).




such value is obtained by adding to the Keplerian limiting energy — %2— — Gy the “secular” contribution
v
given by ¢, times the average over the angles of H; evaluated on the osculating actions Ly and Gy.

Denote by ¢! the flow governed by the Sun-Jupiter-Victoria Hamiltonian Hsyv in (1.5)-(1.4), i.e.,
(20,t) € M x R = ¢*(29) € M is the unique function satisfying the ODE

%¢t(zo) = JVHsyy o ¢'(20) , ¢°(20) = 20 ,

where J is the standard (4 x 4) symplectic matrix I) and zg := (Yo, go, Lo, Go) is a point in the

0
-1 0
phase space M. The main result of this paper may be shortly described as follows.

Theorem 1.1 One can construct, on the three-dimensional energy level
SFV = {(E,g,L,G) e M: HSJv(f,g,L,G) = Ev} R
a ¢t-invariant region J, whose boundary is given by two KAM tori and whose interior contains the set

{(e,g,L,G) €Sp, : IL—Ly|<00015, |G—Gv|< 0.0059} .

A similar statement holds if &, is replaced by any complex perturbative parameter ¢ with |e| < 1073.

In other words, the evolution of astronomical data close to the astronomical observed data of Victoria,
lie forever on nearly Keplerian orbits having major semi-axis and eccentricity close to the observed
osculating data ay and ey of the asteroid Victoria.

The unabridged version of this statement is Theorem 4.1 at page 109.

1.3 About the proof of the Sun-Jupiter-Victoria stability theorem

The proof of Theorem 1.1 is based on a new computer implemented iso-energetic KAM theory, which
allows to construct, on the fixed energy level SEw the two KAM tori forming the boundary of the
invariant region J.

The KAM method is designed so as to solve the parametric differential equations (quasi-linear PDE’s
on T?) in the symplectic phase space for the embedding functions of a KAM torus. No use of symplectic
transformations is made, nor the system is required to be nearly-integrable: the method consists in
providing a quantitative algorithm apt to detect solutions for the KAM tori equations in the vicinity
of approximate solutions (on fixed energy levels). The method we present extends easily to general
symplectic manifolds endowed with general symplectic forms. However, we refrain to present the theory
in such generality having in mind the concrete application to the three body problem. The KAM method
presented here is an evolution of the KAM theory worked out in § 4 of® [25].

Roughly speaking, the basic idea is, essentially, the one beyond any constructive implicit function theo-
rem: one starts with an approximate “non degenerate” solution and applies a theorem which guarantees
that if the approximate solution is “good enough”, then near-by there exists a (unique) true solution.
In order to get effective quantitative estimates, it is important that the approximate solution is not

9 Analogous KAM techniques providing similar features in Lagrangian framework are older and go back to the “KAM
theory in configuration space” of Salamon and Zehnder [122], which, in turn, may be viewed as an evolution of the
implicit-function method of E. Zehnder [131], [132]. For an approach similar to that in [25] but more general and with a
more geometrical insight see [93].



the trivial one (while in standard KAM statements one constructs invariant tori as continuations of the
unperturbed ones; see, for instance, the classical formulation in footnote 6).

Once the KAM machinery is worked out (this is done in § 2), the problem becomes to find “good”
approximate solutions, to which the KAM theory of § 2 is applicable. In view of the appearance of
resonances and small divisors, the problem of constructing approximate invariant tori, even from a
numerical point of view, is well known to be a difficult one (see, e.g., [67], [66], [17], [41], [74], [126],
[129]).

To describe the strategy followed in this paper, let us denote by § € T? — Z* () € M the embedding
functions of the two KAM tori 7+ and 7~ forming the (“upper and lower”) boundary of the invariant
region J. In order to find approximate solutions Z;';pr to which apply the KAM Theorem 2.1 of § 2 so as
to establish the existence of the KAM tori Z*, we start by considering the iso-energetic Lindstedt series
for two Diophantine tori close to the unperturbed tori corresponding to the Victoria osculating actions
Ly and Gy in (1.6). We then construct explicitly the 12%P-order e-truncation of such iso-energetic
Lindstedt series and evaluate such truncations at the parameter value € = ¢,; corresponding to the
Jupiter-Sun mass ratio. The thus obtained functions, which we shall denote here foind, are trigonometric

polynomials.

Even though in formulating the iso-energetic KAM Theorem 2.1 we take quite a lot of care in comput-
ing explicitly and carefully the various constants appearing in the statement!®, a direct application of
the theorem to ZLiind would not work: the KAM smallness requirements necessary in order to apply the
KAM Theorem 2.1 are not met if one chooses as approximate solutions the functions Zﬁ:in q- To overcome
this difficulty, using the Newton iteration scheme, which is at the basis of Theorem 2.1, we construct
better approximate solutions, denoted here Z£ .. The functions ZZ . are no more trigonometric poly-
nomials (and, therefore, their construction is somewhat more implicit) but one has, nevertheless, an
excellent control on their norms. The new approximations Z;%pr do meet the smallness requirements
of Theorem 2.1 and allow to construct the two invariant tori with embedding functions Z* forming
the boundary of 7. The distance (in suitable analytic norms) of Z£  from the final solutions Z* will
be [|Z* — ZZ || < 107'3 (compare with estimates (4.302), (4.303) below), while the distance of the
solutions from the approximate Lindstedt polynomials ZZ , satisfy ||Z+ — ZE || < 1078.

The proof is computer assisted. As it is well known, it is possible to perform computations using a
machine in such a way as to control the numerical errors introduced by the rounding-off performed by
the machine; see, e.g., [82], [48], [108], [83], [79]. The idea is simple. Computers work with special classes
of rational numbers, called “representable numbers”. In general, an elementary operation (addition,
subtraction, multiplication or division) between two representable numbers is no more a representable
number. Therefore, computers perform a round-off of the result choosing “the closest” representable
number. It is however, possible to give lower and upper bounds using representable numbers of the
result of an elementary operation. In such a way the result of an elementary operation is no more a
number but rather an interval (whose endpoints are representable numbers). One is then naturally led
to substitute numbers with intervals and to perform elementary operations between such intervals of
representable numbers. For example if a and b are real numbers, the operation a + b will be replaced
by the operation [a_,ay] + [b_,bs] = [c_,c4] where ay, by and ci are representable numbers such
that a € [a_,a4], b € [b_,by] and c¢_ is a representable number smaller than a_ + b_, while ¢ is
a representable number greater than a4 + by. For more information, see Appendix C or the above
mentioned references.

The computer programs, which are used in the proofs are four: the first program deals with the choice
of the “initial data” in phase space and their numerical properties; the second program (the main

10T get an idea of what we mean by that, take a look at Proposition 2.2, Lemma 2.7 and Lemma 2.8 below.



one) deals with the construction of the Lindstedt polynomials Zﬁnd; the third program evaluates the
principal norms associated to Zfind, while the fourth program estimates the norms of Z;';pr and checks

the applicability of the KAM Theorem 2.1 (for more details, see Appendix D).

The programs - available upon request to one of the authors - are not reproduced in the paper; however,
all the algorithms and formulas used in the programs are thoroughly discussed in the text.

1.4 A short history of KAM stability estimates

As soon as KAM theory was formulated, astronomers tried to apply it to celestial mechanics. In 1966,
the French astronomer M. Hénon [69] (see also [70]) pointed out that a tout court application of Arnold’s
theorem to the restricted three-body problem yields existence of invariant tori if the mass ratio of the
primaries is less than'! 107333; Hénon also noted that Moser’s version gave better results since it applies
for mass ratios up to 1072°. These kind of results are so far from physical values'? that astronomers and
mathematicians begun to think that KAM was a beautiful “abstract” mathematical theory not really
applicable to physics.

In the late 70’s G. Gallavotti - also making KAM theory available at an undergraduate level (see, e.g.,
[58]) - gave a new impulse to this question and most improvements on KAM stability estimates came
out under his direct or indirect influence.

The first improved KAM stability estimates concerned simple Hamiltonian models such as a forced
pendulum or the so-called Chirikov-Greene ([44], [65]) standard map: see, in particular, [29], [21] (where
computer-assisted techniques were introduced, for the first time, in the context of KAM estimates'?),
[24], [117], [34], [22], [94]. For more recent related results, see also [35].

In [18], [19] computer-assisted KAM estimates were established for the spin-orbit problem of celestial
mechanics; see also [27] and [20] (where libration tori are constructed).

However, it is only in 1997 ([25]) that the problem raised by M. Hénon (i.e., to give KAM estimates
for the restricted, three-body problem) was reconsidered. In [25] - with a strategy similar to the one
used in this paper!'? - the existence of KAM tori for the RCPTBP for mass ratios of the primaries up
to 10~¢ was proved. KAM (computer-aided) estimates for the “secular part” of the Hamiltonian of the
three-body problem are discussed in [98] and [100].

Much more abundant is the literature concerning non-rigorous methods for determining “optimal”
existence estimates, i.e., parameter values above which a torus with a given frequency vector is expected
to disappear'S. The parameter value at which a KAM torus is supposed to disappear is usually called
the “break-down threshold”. Since KAM tori form (in a suitable sense) barriers for the motion, the
disappearance of KAM tori is related to the “onset” of chaotic trajectories in Hamiltonian systems. A
selection of articles - mostly related to the so-called “renormalization group” - on this subject is: [44],

111t appears as an accident that such number, 107333, is exactly the number of derivatives required by Moser in his
first paper on KAM theory on the existence of invariant curves for smooth perturbations of integrable exact symplectic
mappings of the annulus [109].

12The value 10~5° is about the proton-Sun mass ratio: the mass of the Sun is about 1.991 - 1030 Kg, while the mass of
a proton is about 1.672 - 10~2! Kg, so that (mass of a proton)/(mass of the Sun) ~ 8.4 - 10752,

13Computers were also used in estimating the Siegel radius in [91] and [92].

4 There are a lot of technical differences and a few conceptual ones between the approach used in [25] and the approach
used here. As an example, we mention that in [25] we use standard non-degeneracy hypotheses (rather than iso-energetical
non-degeneracy), since the point of that paper was just to show the possibility of constructing KAM tori in models not
too far from “realistic ones”. By the way, this point was overlooked in the first AMS Mathematical Review (MR1462771):
the reviewer was, apparently, misled by the word “stability” used in the title (the Review was revised in March 2001).

15For twist maps of the annulus there are theorems showing that above certain parameter values invariant curves do
not exist any more; see [106].



[66], [51], [77], [123], [101], [9], [107], [50], [102], [114], [115], [7], [8], [53], [89], [105], [16], [86], [104], [30],
[32], [56], [45], [81], [1], [31], [36], [57], [2], [38], [39], [78], [99], [40], [55], [26], [28], [37].

While it goes beyond the scope of this introduction to review this literature, we want to make a couple
of comments. One of the most reliable methods for determining the break-down threshold of KAM
tori (at list in low dimension) is the so-called Greene’s residue criterion [66], which relates the break-
down of tori with the change in stability of nearby periodic orbits. For partial rigorous justifications
of Greene’s criterion, see, e.g., [52], [103], [47]. Also quite effective seems to be Laskar’s frequency
analysis method [86], used in the numerical investigations of the behavior of the solar system ([87],
[88]). Another intriguing direction discovered numerically in [10] are the e-complex properties of the
conjugating function and the possible appearance of natural boundaries of singularities in e-space;
compare, e.g., with [11], [14], [95], [96], [97], [13], [12].

A final side remark. The appearance of computers have changed quite radically science and life. In
particular, astronomers that want to investigate the behavior of the Solar System use (more and more
reliable) numerical simulations (see, e.g., [3], [84], [113], [127], [85], [87], [88]). We hope that this fact,
based on the development of technology, does not subtract motivations for continuing the difficult
mathematical investigations about the n-body problem, which still remains, in our opinion, one of the
most rich and intriguing problems in mathematics.

1.5 A section-by-section summary

The paper is divided in four chapters, four appendices (and four above mentioned, not included computer
programs). You are now reading the end of § 1 (the introduction). In § 2 the iso-energetic KAM theory
is presented. In § 3, the classical Hamiltonian Delaunay theory for the restricted three-body problem
is presented with full details. In § 4 the main stability theorem of the paper, concerning the perpetual
stability of the asteroid Victoria in the framework of the RCPTBP Sun-Jupiter-Victoria, is stated
(Theorem 4.1) and proved: the proof is divided into four main steps summarized at page 91.

More specifically:
§2.1: Notations and a few conventions are introduced.

§2.2: The definition of KAM torus is given and the partial differential equation satisfied by the embedding of a
KAM torus on a fixed energy level is derived.

§2.3: The notion of “approximate KAM torus” is introduced. The KAM algorithm is introduced and described
at an “algebraic level”. In particular the formulae which, given an approximate KAM torus, yield a new
approximate torus, on the same energy level, are presented. The main result of this section is Propo-
sition 2.1. The new approximate torus is constructed in such a way that the error term associated to
it is (ignoring the effect of small divisors) quadratically smaller than the error associated to the initial
approximation. The iso-energetical non degeneracy assumption is introduced; see Remark 2.3, where, in
particular, the relations with the classical KAM non-degeneracy and iso-energetic non-degeneracy condi-
tions are discussed.

§2.4: The KAM map (i.e., the functional map which to an approximate torus associates the new approximate
torus via the KAM algorithm described in § 2.3) is defined.

§2.5: A few standard analytical technical tools, necessary to equip with estimates the KAM map, (including
majorant theory and optimal small divisor estimates) are reviewed (and complete proofs are presented).

§2.6: The KAM map is equipped with detailed and careful estimates. The results are summarized in Propo-
sition 2.2. A suitable set of non negative numbers, say A, controlling the relevant norms associated to
an approximate torus is introduced; the algorithm, which to A associates N’ (the set of non negative
numbers controlling the corresponding norms associated to the new approximate torus) is defined and is
called the KAM norm map.
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§2.7:

§2.8:

§3.1:

§3.2:

§3.3:

§3.4:

84.1:

§4.2:
§4.3:

84.4:

A:

B:

C:
D:

The main theorem in this KAM theory is presented: it is Theorem 2.1. Such theorem guarantees the
existence, on a fixed energy level, of a KAM torus nearby an approximate (iso-energetically non degenerate)
KAM torus, provided the error term associated to the approximate torus is small enough, i.e., provided
the “KAM smallness condition” (2.132) is satisfied. The numerical constants c. and c.. appearing in the
smallness condition (2.132) (together with a related constant é) are explicitly evaluated in Lemma 2.8.
The most technical part of this section is Lemma 2.7, on which the proof of Theorem 2.1 is based. The
statement of Lemma 2.7 is a (lengthy!) list of simplified estimates, which allow to iterate infinitely many
times the KAM map so as to construct the final KAM torus.

The (analytic) dependence of KAM tori upon parameters is discussed. In particular the theory of Lindstedt
series is briefly reviewed and the main recursive formulae, which allow to compute iso-energetic Lindstedt
series are presented; see, in particular, Proposition 2.3.

The Newton equations for the restricted three-body problem are introduced.

The Delaunay theory for the Kepler two-body problem is presented. In particular, using Arnold-Liouville
theorem, action-angle variables for the two-body problem are derived and physically interpreted.

The full Hamiltonian for the restricted, circular, planar three-body problem is derived and expressed in
terms of the Delaunay action-angle variables.

The astronomical parameters associated to the Sun-Jupiter-Victoria system are introduced and a model,
obtained truncating the perturbation function, is given. The physical criterion leading to this model is
discussed in detail. The astronomically relevant phase space region associated to the model is also discussed.

The iso-energetic Lindstedt series for the Sun-Jupiter-Asteroid problem are considered. The choice of the
initial approximate tori, Zfind, as the 12*"-order truncation of such series is discussed.

The relevant norms associated to Zﬁnd are computed.
The KAM map is applied a few times (two times for Z;; , and four times for Z;,, ,). The norms associated

to the thus obtained new approximate tori Z;tppr are evaluated.

The KAM smallness condition of Theorem 2.1 is shown to be satisfied by Zﬁ,pr. The main result on the
perpetual stability of the motion of the asteroid Victoria in the framework of the Sun-Jupiter-Victoria
problem, i.e., Theorem 4.1, is stated and proven.

The geometry of the ellipse is reviewed and a few classical formulae are derived.

Sharp small divisor estimates are explicitly performed. Diophantine constants for noble numbers are
evaluated.

A short review of “interval arithmetic” and its use in computer-assisted proofs is reviewed.
A short guide to the computer programs used in the proof of Theorem 4.1 is presented.

The paper contains 7 figures and a bibliography of 133 items.
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2 Iso-energetic KAM Theory

2.1 Notations

Let d > 2 be an integer and consider a real-analytic Hamiltonian function

H=H(z,y) ,
where R \d
d._ (&

z€T:= (27TZ)

and y € R? are standard symplectic coordinates'®. The Hamiltonian equations, with respect to the
standard symplectic form

d
dx ANdy = Zdasj Ady; ,
j=1
read
'j:. = Hy(may) )
y = —Hz(a:,y) ) (27)

where dot, as usual, denotes time derivative, and the subscripts denote, respectively, gradients with
respect to the y or x variables. The flow generated by (2.7) will be denoted by

5 (z,y)

which represents the solution z(t),y(t) of (2.7) at time ¢ with initial data at ¢t = 0 given by z(0) = z
and y(0) = y.
The inner product between d-vectors a and b is denoted by

d
a-b:= Za]‘b]‘ .
j=1

Given two vectors a and b, a ® b denotes the matrix
(a ® b)” = a,-bj .

If € T¢ — u(f) € R? is a smooth function, uy denotes the Jacobian matrix with entries

(ua)ij = g%; _

A superscript 7 denotes matrix transposition; A~T denotes the transposed of the inverse of the square
matrix A; the unit (d X d)-matrix will be denoted by I or I; if necessary.
In agreement with the above positions, H,, or H,, (and, analogously H,, and Hy,) denote the (d x d)-

matrices
0’H 0’H
Hyp) = ) Hyy) = )
iJ 6513,'81’1' ij 35[],63]1
16Eyven though the theory that we are going to discuss is valid for more general situations, for sake of concreteness and

having in mind the application to the three-body problem, we shall confine ourselves to the case of R¢ x T4 endowed with
the standard simplectic form.
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in particular
Hy,, = H}, .

Tensors of third derivatives are denoted as Hyye, Hyza, etc.; they may be seen as linear maps from
d-vectors into (d x d)-matrices: for example, for any a € C¢

d 63H
(Hevea) ;= 3 Gty

in particular, Hyzza = (Hypyza)T.

If0 € T — A(9) := (Aj;) is a (d x d)-matrix valued function, 4y denotes the 3-tensor defined as follows:
for a € C,

(Agd)ij = y 6(;;’: ay .

k=1

Average over T is denoted by (- ):

(u) = /Tdu(Q)% .

Given a vector w € R?, D, will denote the directional derivative on T¢ given by

d
0
D,:=w-0p ::ij% . (2.8)
Jj=1
A vector w € R? will be called Diophantine if there exist v > 0, 7 > d — 1 such that

d

w-n| = ‘Zw,-nj‘ > |n”|T . Vnez\{o}, (2.9)
j=1

where | - | denotes the usual Euclidean 2-norm

d
jal:= > y/las* -
j=1

Given a Diophantine vector and a (vector or matrix valued) real-analytic function § € T¢ — u(#) with
vanishing average, D 'u denotes the real-analytic function!”

D 'u(f) = Un exp(in - 0) ,
v ;d w-n
n#0

where u,, denotes Fourier coefficients,

1 .
= 2—7i_d/wu(0) exp(—in - 6)do

17The analyticity of D, 'u is consequence of the exponential decay of Fourier coefficients of analytic functions and of
the Diophantine assumption on w.

Un
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and i denotes v/—1. In other words, D, u is the unique analytic solution v of
.Dw’l} =u, <’U) =0.

Finally, in order to simplify a little bit the notations, we shall not distinguish between “row-vectors”
and “column-vectors”, since the right interpretation will be clear from the context: for example, if A is
a (d x d)-matrix and a € C%, then aA denotes the vector with k¥ component Zle ajAji, while Aa

denotes the vector with k' component Ejzl Agja;.

2.2 KAM tori

Given a Diophantine vector w € R?, a KAM torus with frequency w is an H-invariant (i.e., invariant
for the flow ¢!;) surface embedded in the phase space T? x R?, described parametrically, for § € T¢, by

2() = 0+a(),
y(@) = 90), (2.10)

where @, ¥ are real-analytic functions defined on T¢ and
det (1+a9(0)) £0, VOeT?; (2.11)
furthermore the H-flow in the 8 coordinate is required to be linear, i.e.:

ot (w(@), y(e)) - (a:(@ +wt), g0+ wt)) . (2.12)

Inserting (z(0),y(6)) into the Hamilton equations (2.7), in view of the rational independence of w, one
obtains that the functions @ and @ satisfy the following quasi-linear system of PDE’s on T¢%:

w+ D, — Hy(0+a,0) = 0,
D, i+ H,(0+a,0) = 0, (2.13)

where D, is defined in (2.8). Without loss of generality, we may assume that
W0) =0, (2.14)

(which is a “normalization” condition that amounts to fix in # = 0 the “origin” of the invariant torus).
Vice-versa, given a triple (@, 7,w) satisfying (2.13) and (2.11), one obtains, via (2.10), a ¢;-invariant
torus satisfying (2.12). By slight abuse of notation, we shall also call the triple (i,?,w) a KAM torus
with frequency w.

We shall be particularly interested in KAM tori lying over a given energy surface H=1(E); in such a
case (in view of (2.14)), one has

H(0,3(0)) =E .
Thus, the system of equations that a KAM torus with frequency w lying on the energy level H~1(E)
satisfies is'®

w+ D,u— Hy0 +a,0) = 0,
18Clearly, if w is rationally independent and u and v satisfy the differential equations w + Dyu — Hy(0 + u,v) =0 and
Dyv + Hez (8 + u,v) = 0, then H(0 + u(9), v(@)) is constant in # € T¢. In fact, the differential equations imply that the

function t - H (wt + u(wt), v(wt)) is constant in ¢ (as one checks by differentiating with respect to ¢t) and the density of
the flow t — wt on T? yields the claim.
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D, +H,0+a,0) = 0,
(0)
H(0,9(00))—-E = 0. (2.15)

Il
o

Henceforth, we shall fix an energy level EE € R, and discuss how to construct KAM tori on the fixed
energy surface H '(E).

2.3 Newton scheme for finding iso-energetic KAM tori

The starting point of an iterative method for finding solutions of (2.15) is the notion of approximate
KAM torus. By definition, an approximate KAM torus is a triple (u,v,w) where v and v are real-
analytic R?-valued functions on T?¢ with

det M(0) :=det (I +ug) #0, VOeT?, w0)=0,

and w is a Diophantine vector (i.e., verifies (2.9)). To an approximate KAM torus (and the fixed energy
level E) we associate the system

w+ Dy,u—Hy(0 +u,v) = f,
Dow+H,(0+u,v) = g,
u0) = 0,

H(,v(0)—E = h, (2.16)

which defines the “error functions” f, g and the “error number” h. Obviously, if the error functions f
and g and the number h vanish, the approximate KAM torus defines a KAM torus with frequency w and
energy E. The idea beyond the Newton iteration is that, if the error functions f and g and the number
h are small enough, then one can start an iterative process leading to better and better approximate
KAM tori (meaning that the new errors become nearly quadratically smaller).

In this paragraph we shall describe, at an algebraic level, how to construct a new approximate KAM
torus given by

u=u+2z, vi=v4w, Wi=1+a)w =w,,

starting from an approximate KAM torus (u,v,w). Notice, that, for a # —1, w, is automatically Dio-
phantine with Diophantine constants 4’ := |1+a| v and 7. Varying w by a (small) factor will be necessary
in order to meet the energy constraint, as explained below.

Notational Remark 2.1 In what follows, given an approximate KAM torus (u,v,w), H (or H?, etc.)
will be short for H(6 + u(8),v(6)) (or for H, (6 + u(),v(H)), etc.).

We start with a preliminary result, which reflects the symplectic structure of the problem.

Lemma 2.1 Let (u,v,w) be an approximate KAM torus and let f and g be as in (2.16). Then M :=
I + ug and vy verify

D,M—-H)M—-H) vy = [,
Dyvo + Hj, M+ Hjyvg = g5 - (2:17)
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If one defines

b:=vl f—MTyg
Bi= MTvg—vi M,
G:=flvo+ MVgp—vjfo—gg M, (2.18)
then,
(by=0, (B)=0, (2.19)
and B satisfies the equation
D,B=¢G, (2.20)
so that, in particular,
(G)=0

Proof The system of equations (2.17) is obtained immediately by taking the gradient with respect to
6 of the first two equations in (2.16).

The following identities are immediate consequence of the given definitions:

vaw=D,v, (2.21)
O H® = MTH +vj Hy . (2.22)
Thus,
®) = {vgf—-MTg)

CLY (wTw + v Dyu — v HY — MTD,v — MTHY)

(2:21) (vg Dy — ug Dyv) — (vg HY) + MTHY)

(222 (vd Dyu — u} D,v)

0

where the last identity follows by a double integration by parts'®. This proves the first equation in
(2.19).
The second equation in (2.19) also follows immediately by a double integration by parts2°:

(B) == (M"vp —vg M) = (ugvg —vj ug) =0 .

From (2.17) and its transposed version, (2.20) follows at once. |l

v ou
191n fact: / Zkp U, :/ (Dyvg) k.
a06; T4 06;

vy, Ou vy, Ou
20Tn fact: ] k %7k _ / Tk Tk
Td 08; 00; Td a6; 00;
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Remark 2.1 If (u,v,w) is an approximate KAM torus, then so is (u,v,w,) = (u,v, 1+ a)w) with
associated system given by

wa+Dwau—H2 = fa,
Dy,v+H) = ga,
u(0) = 0,
H(0,v(0)—E = h; (2.23)

the relation between the pair (f,,g,) defined in (2.23) and the pair (f, g) defined in (2.16) is given by

fo = (14+a)f+aH,,
go = (14+a)g—a H?. (2.24)
Clearly Lemma, 2.1 holds also for (u,v,w,) (for any a) with the obvious changes. For sake of clarity, we

now translate Lemma 2.1 in the a-dependent case.
Lemma 2.2 Let (u,v,w,) be an approximate KAM torus. Then M := I + ug and vg verify

DwaM - HSzM - Hl(/)yve = fa,0 Y
Dwav.g + ng./\/l + Hgyv.g = 94,0 - (2.25)

If one defines

b, = Unga - MTga
B:=MTvg—viM,
Go := f(;‘r,ova + MTga,O - U(;Tfa,e - QZ,(;M ’ (2.26)

then,

and B satisfies the equation
D,.B=G,, (2.27)

so that, in particular,

(Ga) =0.
The Newton-KAM algorithm is described in the following

Proposition 2.1 Fiz E € R and let (u,v,w) be an approximate KAM torus. Define?*

T=MTH)MT, M:=TI+u, (2.28)
and let, as above,
for=(Q+a)f+aH), g.:=(1+a)g—aH],
ba = Ugfa - MTga ) Ga = faT,avo + MTga,H - vgfa,a - g(Z:aM .

21The suffix H® means that the argument of H. is (0 + u(ﬂ),v(a)) .
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By Lemma 2.2, (b,) =0 and (G,) = 0. Assume, now, that there exist c € R? and a € R\{—1} such that

(TYe+{(TD 1 ba) —(M71fa) =0,
. i’ (2.20)
H(0,0(0) + M=T(0) [+ D315, (0)] ) = B ,
where w, := (1 4+ a)w, D, := w, - 0y. Define
2 = Te+TD,'ba — M 'f,,
o= —(02)0),
z = MDU;12+M20 ,
w = M T(w§z+c+ D, b) , (2.30)
and assume that
det (M +25) #0 .
Then, the triple
(w0, W") = (u+ 2,v +w,w,) (2.31)
is an approximate KAM torus satisfying
wa+Dwaul_Hy(0+ulavl) = fl )
D, v +H,(0+u'0v) = g,
') = 0,
H(0,v'(0))—E = 0, (2.32)
where f' and g' verify the following relations. Let
Q1 = —[HyO0+u+zv+w)—H)—Hy,z—H)u],
Q2 = fa,GMilz )
Qs = H),M T(D;'G.,) M~ 'z,
Qi = H,0+u+zv+w)— H —ngz—Hgyw )
Q5 = M_ng’,gz )
QG = _MiT 3:97” )
Qr = M T u5(Q2+Qs),

then
['=Q1+Q2+Qs3, g =Qi+Qs5+Qs+ Q7.

Remark 2.2 (i) The meaning of (2.29) is the following. The first relation in (2.29) is equivalent to
require that () = 0, which is necessary in order to be able to define D'z and (hence) z.
As for the second relation in (2.29), observe that

v'(0) = v(0) + M~T(0)[c + D, 'b.(0)] ,

which is exactly the second argument of H in the second equation of (2.29). Therefore, the second relation
in (2.29) is equivalent to last equation in (2.32). In particular, this means that the new approximate
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torus describes a surface which sits exactly on the energy level H (E). The solvability of equations
(2.29) will be discussed below (see, in particular, Lemma 2.4); we only observe, here, that, if the matrix
(T) is invertible (which, in general, is not true), one can express ¢ in terms of a and (2.29) reduces to a
single equation for the scalar unknown a.

(ii) The definition of 2y implies that z(0) = 0. This implies immediately the third equation in (2.32).
(iii) The quadratic character of the iteration scheme described in the above proposition may be easily
explained as follows. Imagine to replace the error functions f and g, respectively, by nf and ng with
some small parameter 7. Now, assume that

el fal ~ - (2.33)

Then, by (2.24), it is f, = O(n) = g,- Then, also

ba=0(m),  Ga=0(n). (2.34)
The relations (2.33) and (2.34) imply, now, that
z=0(m, w=0(@m),
which, in turn, yields (as it is immediate to check)
Qi = 0(r)

But this means that f' = O(n?) = g¢'.

Proof (of Proposition 2.1) We start by noticing that (2.25) may be rewritten as

~Hy, —(Dy, MM + H) opM ™ + fo oM™,
MTH?, = —D,vj —viH), +904, (2.35)

and that, by definitions of z, w in (2.30) and 7 in (2.28), one has
MD,,, (M '2) = H), M "(c+ D, 'bs) — fa »
MTw=vlz+c+ Dw_alba . (2.36)
Then
Wo + Dy, u+ D,z — Hy(0 +u+ 2,0+ w)
= wat+Duu+D,z—H)—H)z—H)w+ Q1
= D,,z— Hgmz - Hgyw +fo+
M Dy (M™'2) + Hyyog M~z — (Hgy M™T)(MTw) + fo + Q1 + Q2
W HY M T (M vy — o] M)M ™ 2+ Q1 + Qs

Q1+Q2+ Q3
—- fl , (237)
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where: (7) holds by definition of Q1; (i¢) holds by the first of (2.23); (4ii) holds by the first in (2.35) and
observing that
D,z = (D,, MMz =MD, (M™'2) ;

(7v) holds because of (2.36); (v) follows from the definition of B in (2.26), (2.27) and the definition of
Qs-
Notice that equating the third and the sixth line in (2.37) we have

Dwaz—ngz—Hgyw+fa =Q2+Qs3 . (2.38)
Next,

D, v+ D, w+ Hy(0 +u+ z,v+w)

i Dy, v+ Dy,w + H) + H), 2+ H) jw + Q4
(#9)

—~
Nabd

MIMT (Dy,w+ HS 2 + H;ij + 9a) + Q4

DM Dy, (MTw) = (Do, MTYw — (D0 )2 — o HE, 2+ MTHS,w + Mg,
+Q4+ Qs

(iv) M T [UaTDwaz +vf fo = (Dy,MT)w — vg’Hggcz + MTHgyw] + Q4+ Qs

—~

v

= M*Tvg [Dwaz—}—fa —ngz—Hgyw] + Q4+ Qs+ Qs

© M T ( Qo + Q3) + Qu+ Qs + Qo

= Qi+Qs+Qc+Qr=:g",
where: () holds by definition of Q4; (77) holds by the second of (2.23); (4i%) holds by the second in (2.35);
(7v) holds because the definition of w implies that

Dwa (MTw) =D, (’U;‘;FZ) + b, 5

a

—

(v) follows from the transposed of the first equation in (2.25); finally, (vi) follows from (2.38). 11

We turn, now, to discuss briefly system (2.29). We start with an elementary result, which allows to
find a root g of a (small and non-degenerate) function F(a). If « is a vector, |a| denotes the standard
Euclidean norm, while if A is a matrix, |A| denotes the standard norm sup,|— [Ac/|.

Lemma 2.3 Let Q:={c € R?: |¢| < p1} x{a € R: |a| < p2} for some p1, pa > 0; let a == (c,a) —
F(a) € CYH(Q,R¥*Y) such that there exists F'(0)~ =: B and such that

sup lo — BF ()| < min{p1,p2} ,

sup|I —B F'(a)| < 1. (2.39)
Q
Then, there exists a unique oy € Q such that F(ag) = 0. Moreover, one has
-1
sup |(F'()) '] < [B| (1 - sup|I - BF'|) (2.40)
aeQ Q
and
ool < (sup (7)) [F(O)] (2.41)
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Proof Conditions (2.39) guarantee that a €  — ¢(a) := a—BF(«) is a contraction on Q: in particular,
if ¢ := (¢1,02) € R? x R and |¢| = /|¢1]? + |¢p2[?, then the first equation in (2.39) yields |¢1] < p1
and |¢2| < p2, so that ¢ : @ — Q. Thus, there exists a unique ag € Q2 such that ¢(ag) = o, namely
F(ap) = 0. Furthermore,

|F' ()"t =1(I = (I - BF')) " B < |B| 1~ |I - BF'|)",
from which (2.40) follows. Also, since F(ag) = 0, one has (for some ¢ € (0,1))
F(ao) — F(0) = F'(tag)ao ,

which implies
g = —Fl(tao)_l F(O) R

proving (2.41). |

Notational Remark 2.2 For the purpose of the following discussion and the associated estimates, it
will be useful to introduce a suitable (fixed) normalization parameter p having the physical dimension
of the momenta y, and to re-scale a (the number appearing in the definition of w,) by such parameter
p, letting

a:= pa .

Define F := (F|,F>) € R? x R as

Fi(e,d) = ((Te— (M 'fa) +(TDuba))| _, (2.42)
1
Fy(e,d) = ;(H (0,v(0) + M=T(0)[c + Db, (0)]) — E) .
1 ) .
- ;(H(O,v (0;¢,a)) —E) ,
where
o' (0:¢,8) = 0(0) + M T(O) [e + D, 15 0)]|
Then, system (2.29) is equivalent to
Fl@)=0, a:=(ca)
It is convenient to have “explicit” formulae concerning F'.
Lemma 2.4 Let F' be as in (2.42) (same notations as in Proposition 2.1). Then
1
FO = (=(M7) + (TD7), 3 [HO00) - B+ B, 0,0 MTOD700)] ) . (243

where
o == v(0) +t M~1(0)D~b(0)

for some t € (0,1).
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Let v be short for
vg == v'(0;0,0) = v(0) + M~L(0)Db(0) ,

and define the vector x and the matriz N as follows

X(8) = S M (6 + u(6), 0(6);

p
. (ML)~ (TD (@, H")
N o= g
| (B0 - H,000) MO gy 0,0)- MTOD @) |
p P’
Then,
( (T) —(x))
F'(0) = +N . (2.44)
x(©* 0
Define, now, F as the second-order remainder of F':
F(a) = F(0) + F'(0)a + F(a) . (2.45)
Then?2,
F@) = (={5,TD @) 5 | 5Ha(0. 0000
- P H0.00:0)- M TOD@E)O]) . 249

where, for some 0 <t <1,
0o := v'(0;0) + t(v'(0; @) — 2'(0;0)) , 8y :=0'(0; @) —v'(0;0) .

The Jacobian of F' has the form
2+a

-1 0
B 1 0 —a m(TD (agH ))
Fa(a) = ’
=T J_H _a 2+a '(0: =T -1 0
srMTE) (P8 G Hy 0.0 (050)) ) - M T D (3 HO)(0)
(2.47)
where §g 1is short for
du == Hy(0,0'(0; ) — Hy(0,v"(0;0)) = Hyy (0, 05) 0y
and
¥ == v'(0;0) + #'(v'(0; @) — v'(0;0))
for some 0 < t' < 1. Finally,
OpH (6 + u,v) = 0D~ (HY - f+ Hy) - g) . (2.48)

22Recall that a = a/p.
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Remark 2.3 (i) In view of (2.44) (the matrix N has to be thought small, see next point of this remark),
one sees that the non-degeneracy condition to be required in order to solve (2.29) is

det A#0, (2.49)
where
(M -

A= , Te=MITHIMT, M:=I+uy, x:= leng. (2.50)
x0T 0 g

The non-degeneracy condition (2.49), in the nearly-integrable case
H = HO(y) + EHl(way) ’

will be recognized to be, in the limiting case e = 0 (taking as approximate torus the unperturbed torus
u=0,v =y), Arnold’s iso-energetic non-degeneracy condition

HY H}
det #0; (2.51)

H) 0
compare next item.
(ii) Let us briefly discuss, here, the geometrical meaning of Arnold’s iso-energetic non-degeneracy con-
dition.
The standard KAM non-degeneracy condition for Hy : V C R* — R.at a point yg € V, can be formulated
by saying that the frequency map

_ 0H,

w:yEVﬁw(y):—a—y(y)eR",

is a local smooth diffeomorphism near yo, or equivalently (“infinitesimal version”), that
Byw (TVyo) =TRY . (wo€V),

where TV, = R? denotes the tangent space of V' at yo. The (infinitesimal version of the) iso-energetic
non-degeneracy condition for Hy at a point yo on the energy level Hy L(E), can be formulated by saying
that

Oyw (T'SE,y,) ® Ny, = TRzo ) (yo € Sk) , (2.52)

where T'Sg,,, denotes the tangent space of Sg at yo and Ny, := {Aw(ye)| A € R} denotes the normal
space at yo to T'Sg,,,. Notice that (2.52) requires implicitly that Hy'(E) is smooth ipersurface in a
neighborhood of yo.

Clearly, condition (2.52) is equivalent to require (2.51) at the point yo € Sg.

Notice, also, that the matrix in (2.51) is the Jacobian at (y,a) = (yo,0) of the “frequency-energy map”

b1 (,0) = (@, B) = ((1+ a)w(y), Ho(y))

Another version of Arnold’s iso-energetic non-degeneracy condition (corresponding to ask that Jyw is a
local diffeomorphism in the non-fixed-energy case) is to require that the map

Qr:y € Sg — Qr(y) =7mow(y) ,

23



where 7 is the canonical projection of R? onto the real d — 1 dimensional projective space P41, is a
local smooth diffeomorphism near yo € Sg, i.e., that the rank of the differential Qg . of the map Qg at
Yo € Sg is maximal (d —1).

Let us show, in fact, that the vanishing of the determinant in (2.51) at a regular point yo € Sg Is equivalent to have
rank(Qg «y,) < d — 1. We prove this claim using local coordinates. Since yo is a regular point of Sg = HO_I(E), there
exists 1 < ¢ < d such that 9y; Ho(yo) = w;(yo) # 0. Let us assume (without loss of generality) that ¢ = d. Then, as
local coordinates on Sg around yo we can take § := (y1,...,y4—1) since, by the Implicit Function Theorem, there exists
a (unique) smooth function g from a neighborhood of §o into a neighborhood of o4 such that Ho(g,9(9)) = E. As local
coordinates in a neighborhood of 7(wo) := m(w(yo)) we can take

4= (U1, tg—1) € Up = W((ﬁa 1)) )

where Uy is a neighborhood of (wm/wo,i, ...,wo(d_l)/de). In such coordinates, as it is easy to check, the (d—1) X (d—1)

matrix associated to the differential Qp , is given by

vy = wi | wiwj Qwg  wj Owa  widwa) g g
Oy, 2.9 wyq 0y; wq Oy - -
Wq Yj Wy 9Yd d OYi d OYj

(everything is evaluated at yo € Sg). On the other hand, the vanishing of the determinant in (2.51) at yo is equivalent to
say that there exists ¢ € R4\{0} and X € R such

ow

(o) E=Awo, wo-€£=0, (2.53)
Oy
which is equivalent to
) d—1 1 d—1 a 18 d—1
Wq Wd
- _ £ A= — Hhy £
gd wq ZUJ]{; ’ wq Z ayj §] wﬁ Byd ijfj ’
Jj=1 j=1 Jj=1
d—1 P s
D S+ e =i, 1<i<d-1, (2.54)
= dy; 0ya

(everything is evaluated at yo € Sg). Therefore, if the determinant in (2.51) vanishes, then taking £:= (&1,...,€4—1) with
£ as in (2.53), from (2.54) it follows that Q.€ = 0; vice-versa, if £ € RE=1\{0} is such that 2. = 0, then, defining &4 and
X as in the first line of (2.54), one sees that (2.53) holds (with ¢ € RZ\{0}).

(iii) Recall the philosophy of Remark 2.2, point (iii); in particular imagine to replace the error functions
f and g, respectively, by nf and ng with some small parameter 7. Assume also the non-degeneracy
condition (2.49) and let |c| < 7, |a| < 77 with

gLl . (2.55)

Then (see also (2.48)),
b:=1bg = 0(77) > 60H(9 + U,U) = 0(7)) 5 (256)

and, by (2.43), (2.46), (2.47) and (2.44), one finds easily

F(0)=0(), F=0@), Fa=0@@), N=0®). (2.57)

Thus, F’(0) is invertible and, denoting by B its inverse, we find

B:= (F’(O))A = A+ 0®) . (2.58)
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Furthermore, recalling the definition of F,
la — BF(a)]| [BF(0) + BE(a)| < [B| (|F(0)] + |F(a)])
[T —BF'(a)| IBFo| < |B| [Fa(a)l - (2.59)

Thus, we see that (2.55)+(2.59) allow to apply Lemma 2.3 so as to obtain a root ag = (cg,dg) of F
satisfying (2.41), i.e.,
(co,a0) = O(n) -

Notice in particular that such ¢y and aq verify (2.33), which was assumed in Remark 2.2, point (iii).
Proof (of Lemma 2.4) From the definition (2.42)

H(O,U(O) + M—T(O)D—lb(O)) _ E)

F(0) = (—(M—lf) + (TD™'b), p

and equality (2.43) follows immediately from Lagrange formula.

We compute now the linear part of F. Recalling (2.22) and the definitions of b and b, (i.e., (2.18) and
(2.26)), one finds that
bo = (14 a)b+ a(9pH)

and therefore
Db, D™'b+ aD; (0, H°)
Db+ 2 D 1(9,H®
+ 1+a (BoH7)

a2

_ -1 -1 0y _ -1 0
= D7 b+aD (agH ) 1+aD (69H ) .
Next, we remark that
6afa =f +H2 )
0a9a =9 — Hg(p) )
Dby = b+ OgH® |
D—l :D_l HO _ a D—l HO

8,(D5"b0) = DO HO) — D700 H)

I S P

= oD @)

1
—1p _ —1p 0\ _ —1 —1770\ _ -1 0

6a<M fa T‘Dwa ba) (M f) + <M Hy) (1 + a)2 (T‘D (agH )) °

Therefore, since 8; = %8,1, we find

_ B (TD~ (8, HO))
(MY + (M 1H3)—W

<T> - p

H,(0,v'(0;¢,a)M T(0)  H,(0,v'(0;¢,a)) - M~ T(0)(D 18, H)(0)
P p*(1+a)®
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where

a

v'(0;¢,a) = v(0) + M T(0)D b+ M T(0) (c+1+a

D1(69H0))

2
o/(050,0) + M-T(0) (c+ aD=(0y1%) — 1

aDl((?gHO)) .

Setting (¢,a) = (0,0), one obtains immediately (2.44).
Subtracting the linear part F(0) + F'(0)a to F, one obtains the expression for F' given in (2.46).

Notice that from the definition of F', (2.45), it follows that F,(a) = F'(a) — F'(0) and a straightforward
computation yields (2.47).

Finally, (2.48) is obtained by applying 95D ~!(-) in the following relation:
DH(0 +u,v) = Hj-(w+ Du)+ H,-Dv
= Hp-(Hj+f)+Hy (H} +9)
= Hg-f+H2-g. |

2.4 The KAM Map

We now define the KAM functional map as follows. Let w € R? be a (vy, 7)-Diophantine vector (see (2.9))
and let us consider an approximate KAM torus (u,v,w) as in (2.16), satisfying (2.49), i.e., following the
notations in § 2.3, u,v : T — R?¢ are real-analytic function satisfying

det M(0) #0, YO €T M(®B) =1+ ug; (2.60)
(M - 1
det A #0, A:= , T := M_lﬂgyM_T, X = —M_ng; (2.61)
x@T 0 p
u(0) =0 ;

where p > 0 is a prefixed weight and the suffix © means, here, that the argument of the function is given
by (6 + u(),v(8)). Let f, g and h be defined by the following “approximate torus equations”:

w+ Dyu—Hy(0 +u,v) = f,
D,v+ Hy(0 +u,v) = g,
uw(0) = 0,

HO,v(0)-E = h. (2.62)

The functional KAM map is defined to be the map
K:(u,v,w) = @, 0,w) = (u+2z,0+w,(1+aw), (2.63)

where 2z, w and a are as in Proposition 2.1.

In the next sections we shall equip the functional KAM map with (careful) estimates.
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2.5 Technical Tools

In this section we fix some notation and review a few technical facts, which are needed in the estimates
performed in the rest of this paper.

2.5.1 Norms on numbers, matrices and tensors

If a € C¢, we denote by | - | the standard 2-norm

If A= (ai;) € Mat(n x m), then

|Al:= sup |Aaq|. (2.64)
a€Cn:|a|=1

1Al < /D ] - (2.65)

In particular, if a,b € C" and if we denote by a ® b the matrix with entries (a ® b);; = a;b;, then
Yy J j

Notice that

la ®b| <|allb] .

In the coming sections we shall also use the following elementary bounds on the (Euclidean) norm of a matrix
A€ Mat((d+1) x (d+1)): write A as
A= (An a2 )
az a2

with A;; € Mat(d x d), a12,a21 € C?, azs € C; then?

Al < V]Au? + |as2]? + |a21]? + |aze|? (2.66)

4]

IA

Vmax{|Aui|? + [az1 %, |a1a]? + |aza|*} + [AT a1] + [a21] || - (2.67)
Finally, if T' is a 3-tensor, i.e., a linear map from C¢ into Mat(n x m), then

T|:== sup |Ta|= sup sup  |(Ta)b| . (2.68)
aeC?:la|=1 a€Cd:la|=1 beC™:|b|=1

23The two inequalities (2.66) and (2.67) are independent, as one checks immediately on the two matrices ((1) (1)) and

(1 ?) in the first case (2.67) is better, in the second case (2.66) is better. Let us check here (2.67) ((2.66) is left to the

reader). Let € C? and y € C s.t. |z|? + |y|2 = 1 then:

2

4 (Z)] < JAnel + anP P + 2ylaT oo |+ an -of? + [an] [ + 2laz -oljaze| Iy
< (JAnl + a2 )|zl + (lar2|® + |a2a|*)|y|* + (|AT 12| + |a2a|a21 )2z |y|
< max{|Au1* + |a21]?, |a12]? + |a22]?} + (|AT 12| + @22 /@21 ).
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Remark 2.4 (i) The space C?, thought of as a vector space over C, will always be endowed with the standard
orthonormal basis (1,0, ...,0), (0,1,0,...),..., (0,...,0,1). Therefore, we shall identify linear maps from C™ into
C" with Matc(n X m) and 3-tensors with “three-index-objects”. In particular if T is a 3-tensor, T'a denotes the
(n x m) matrix with entries

d
(Ta)q;j = ZTiJ-kak -
k=1
(ii) Notice that if T is a matrix or a tensor with non-negative entries, then C in (2.64) and (2.68) can be replaced
by Ry := [0, ).
(iii) To unify notations, we let X; = X;(d), X2 = Xa(n,m) and X3 = X3(n,m,d) denote, respectively, C¢,
Matc(n x m) and the space of linear maps from C?¢ into Matc(n x m) (i.e., the space of 3-tensors).

2.5.2 Norms on analytic functions

Let D" (yo) and Tg* denote the complex sets given by

D" (yo) ZZ{yE(Cmi lyi —yoi| <7, Vi},

T :=<2yeC”: |Imy| <€, Rey; mod2rw; .
3

If f is an analytic function, f : ']Tg — C, with Fourier expansion

fla) = Z fn exp(in - z) , o= Tdf(a) exp(—in - §) % :

neZd

we set

Iflle :== D 1fal exp(lnlé) -

neZd

If f is an analytic function, f : ']Tg x D™ (yo) — C, with Taylor-Fourier expansion®*

F@y) = far (y—y0)* exp(in- =),

nezd
kend
we set
k
lles = |falr exp(nle) = Y [ farlr™ exp(lnle) ,
n n,k
where

d
lklx =" lks] -
j=1

Notice that
sup  [f| <|[|flle,r -
T¢x D} (yo)
The above definitions generalize immediately to the case in which f takes value into spaces of vectors, matrices
or tensors.

24 As standard, (y — y0)* = (y1 — 01)*1 -+ (Ym — yom )F™.
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If f is a X,-valued, real-analytic function on Tg, we let N¢(f) denote the element (with non-negative entries)
in X, defined, for ¢ = 1, 2, 3, respectively, as

Ne(f)i = fille ,  Ne(£)is = fislle s Ne(Fije = fijrelle (2.69)

then, we define
Iflle == |Ne(£)I - (2.70)

For example, if f takes value in X2(n,m) = Matc(n x m), it is®®

e = sup 15 (D Wfullear)”
j=1

a€R™
+ i=1

la]=1
If f is real-analytic on Tg x D™ (yo) we simply replace || - ||¢ with || - ||¢,» in (2.69) and (2.70).
Consistently, if f = Z fx (y —yo)" is real-analytic on D™ (y0), we set

keNd
£l = D el

keNd

Clearly, if f is a Xg-valued function on 'Jl‘g x D" (yo), a simple bound on its norm is given by

fller < [ D0 fiigllZ, - (2.71)

i150mrig

2.5.3 Banach spaces of real-analytic functions

Let Q be either Tg or Tg x D™ (yo) and denote by R(£2, X,) the space of X,-valued, real-analytic functions on
Q with finite norm || - ||¢ or || - ||¢,». The space R(€, X,) is a Banach space, as one immediately checks.

2.5.4 Product of real-analytic functions

We first notice that R(Tg, C) is a Banach algebra, that is

I£glle <IIflle lglle , VY f,9 € R(TE, ©) ;5 (2.72)

in fact:

Ifglle = D 1(f9)ulexp(Inlé)

= ; ‘ ; frmgn-m

< Y exp(Iml) exp(|n — m)| ol |gn—m|

n,m

= IFllellglle -

exp(|n¢)

25Recall point (ii) of Remark 2.4.
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Relation (2.72) generalizes to the X,-valued case, provided the product fg is well defined (as in the case when
f € Xa(n,m) or f € X3(¢,n,m) and g € X1(m)). For example, let us check the inequality in (2.72) in the case
f € R(T¢, Matc(n x m)), g € R(T¢,C™):

lfglle == |Ne(fg)l

= \ SN figsl2

i=1 j=

IA

\ > O lifiillellgslle)?

|Ne(f) Ne(g)l
[Ne ()] 1Ve(9)]

I £1le llglle »

IA

(in the first inequality we used (2.72)).
Analogous estimates hold in the case of product of analytic functions on D™ (yo): if f, g € R(D7(y0),C), then?®

I £gll- < 111l llgll- -

To conclude this paragraph, we give some explicit examples of evaluations of norms:

llexp(n - )l , ||sin(n -zl , [[cos(n-z)lle = exp(|nlf) , (2.73)
£ (y) sin(n - 2)lle,r = [|f]l- exp(|nl€) ,
1 (y) cos(n - 2)lle,» = [|fll» exp(|n€) ,

and, more in general,

| s ein- o)

)

&r

> fawsinn-o)| | Y fatw) costn - )

’ |
&r

< 3" Ifall- exp(lnle) - (2.74)

&

2.5.5 Composition of analytic functions
Let0< ¢ < & andlet h € R(Tg x D" (y0), Xq), f € R(TE,C"), g € R(T¢,C™). Assume that
Iflle <€=¢€,  llgs—woslle <7, (1<s<m), (2.75)

and define
$:0eTe > p(6) = (9 + f(9),g(0)) cCHm

Then, ho ¢ € R(T¢, X,) and

IR o @lle < [Rllg,, -
26Tn fact:

1£glls =:Z|(fg)k|r'k'1:2\ D7 pirtgnrmin <3N flr g™ < ||l llglle -
k

k I+m=k k l4+m=k
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Proof We first consider the special case X, = X1(1) = C. Using (repeatedly) the fact that R(T¢, C) is a Banach
algebra and using (in the final inequality) the assumptions (2.75), we find*?

oot = X[ S50 (0 vt wr), | ewtie
YA L,k,j
< ¥ exp(|z|§)|h"°| ‘((é f) (Q—yo)k)l,_é exp(je’ — £[¢)
2 ek,j
_ me (- £ (g — )" [lc exp(|£€)
L,k,j
< 3 Peeb e 1 TL0oe = woulle exotiee
0.k,j s=1
< Zm;_'u (S teatiste) Hngs—ymnf;s exp(|£[€)
2,k,j s'=1 =
< > Pl ga vy o vl explcie
£,k,j s=1
_ Z |hl k| |£| ||f||§)] H||gs—y0.s||§s exp(wlf)
2,k,j s=1
< S el gy oot expete)
£,k,j 7
= lle, . 70

The case when h takes values in X, follows easily; as an example let us check the case when h is matrix-valued,
ie., X, = Xo:

lhodlle = [Ne(hod)|= Sup, |Ne(h o ¢)c|
- o SIS e
le|=1
- = \/DZnhﬁ o llecs
- 5
< mp \/Z |3 Il el
= sup [Ney (0)l = [N, ()
= |hller
where the inequality follows from the already proven scalar case (2.76). |

27The indices £, £, k and j run over, respectively, Z4, Z:%, N™ and N.
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2.5.6 Majorants

Let us, now, recall briefly Cauchy’s theory of majorants (see [76], chapter 5, for generalities).
Given two analytic functions f and F on D;*(yo) with (convergent) power series expansions

=Y fy-w), F@=Y Fly-w),
keNm keN™

we say that F is a majorant for f, f < F, if |fx| < F} for any k.
Clearly, majorization is preserved by sum and composition (see [76]). Also, if f < F', then

I£ll- < Flyo+ (r,-..,7)) - (2.77)

m times

For example the following elementary majorizations hold:

V1i-y<2-y/1-y, (m=1,y=0);

I-y) E<(1-y) %, (m=1,y=0);
Yy <yl +y—yo, (m=1,y€C);
1 1

(m=1,y0 € C\{0}) ;

Iyo (¥ —yo)
e(y1, y2) \/1— y—2 <E(y1,y2)—2— - m=2,y0 € R}),
2y01—y1

1 ya ~2
e(y1,y2) < By ) = ( (2y01—y1)) ,  (m=2,yp0€R). (2.78)

Finally, we shall need the following simple result.

Lemma 2.5 Let d,m,M € Z and let

Z fn(y) exp(in - z) , (2.79)

neZd

be a (absolutely) convergent series where x € T¢ and the f,’s are analytic functions on a complez ball around
Yo € RT. For 1< j < M, let a¥)(0) and b (8) be, respectively, R? -valued and R™ -valued functions of § € T¢
and analytic on ']Tg for some £ > 0 and let

M M
a(fe) =Y a¥(0) &, b(6,€) = b9(0) & .
Jj=1 Jj=1
Let F,, be a majorant of fn:
fo<F,, VYnelZ®. (2.80)

Let, also, for 1 < j < M and n € Z¢, AY) € [0, 00) and BY) € [0,00)™ be such that

In-a@fe <AY,  pPe<BY, V1<j<M, V1<i<m,
and let
M M
Anle) =Y AP B(e):=Y BUYe .
j=1 j=1
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Finally, define

fe:6) = f(6+a(8,),y0 +b(b,¢)) ,
fue®) = Y [f(0)]¢, (2.81)
J>M+1
F(e) = Y Fu(yo+B(e)) exp (Inl¢ + An(e)) ,
neZd
where,
1 &
()= 53 O
Then,
IFe.olLll, <[F],, Vvizo; (2.82)
sup Ifulle < Fleo) = 3 [Feo” . (2:83)
S¢€o j=0

for any €0 > 0 for which F(go) < 0.
The same statement holds if f in (2.79) is replaced by

F@y) = faly)enla) (2.84)

neZd

where ¢, (x) = cos(n - x) or cp(x) = sin(n - z).

Proof Estimate (2.83) is an immediate consequence of (2.82). Also the final statement about (2.84) follows
immediately by writing ¢, as (exp(z’n -x) + exp(—in - :c))/? or (exp(in -x) — exp(—in - a:))/(2z) and applying
twice the result for f asin (2.79).

It remains to prove (2.82). To simplify notations, we shall discuss in detail only the case m = d = 1, leaving the
straightforward generalization to the higher dimensional case to the reader.

By definition, for any j > 0,

b)

7e0],

so that (2.82) will follows from

. < Z H [fn(yo + b) exp(inf + ina)]

VAL

H [fn(yo +b) exp(ind + ina)]

< [Fn(y0+B)exp(|n|§+An)]‘ . VneZ,j>0. (2.85)
J

FALS

For j = 0 (2.85) is immediately implied by (2.73) and (2.80). Let, now, j > 1 and let

Fo@) =) fak (0= 10)" <D Fup (y— v0)* =: Fuly) -

k>0 k>0

Then?®

H [fn (yo + b) exp(ind + ina)]

FALRS

28The dumb indices k, h run over N, while the indices j, and £, run over Z .
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exp(inf) % [bk (ina)h]

<>
k,h

ille
< For || [k h
< exp(nfé) Y = | [ (na)" |
Bh . AL
F . .
< exp(|n|£) Z;k Z b(]l) __,b(Jk) ('I‘La(zl)) L. (na(lh))
P I L P ¢
Fuk G1) Gx) (1) n)
< exp(|nle) ) = > o]l - 67l ma®2 ]l - - - [ma™ ],
k,h Jit ettt +Hn=j
< exp(|nl¢) FZ.’k 3 BUD ... BUY 4C0) . g0
kh o jitetikt b =)
Fo
= exp(lnle) Y = [BHal]
kR J
Fok
= exp(nle)| Y- A BR AL
kb J

= exp(|nfé) [Fu(yo+ B) exp(4)], .

2.5.7 Small divisor estimates

Let w € R? be Diophantine (see (2.9)). For p € N, £ € N* and § > 0, we define®®

$pa(5w) = 5,00) = sup (In*lexp(=dlnDlw |77 ;
n€Z4/{0}

d
D spe; (6)2

j=1

sp(0iw) = 8p1(9) = (2.86)

Notice that (2.9) implies that, for k € N,

b\ _,._
sp.k(0) < (E) FPST b:=|klx +pr;
indeed:

spk(d) < Sl;%v_plnkl [n|"” exp(—d|n|)

< supy?|n| " nf"" exp(=d|n])

n#0
< 47?6 Psup (tbexp(—t))
t>0

e (D\?
_ ps—bfY
= ()

29{e;} denotes the standard orthonormal basis e; := (1,0,0, ...,0), e2 := (0,1,0,...,0), ...
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Let f € R(T¢, X,), let pe N and 0 < § < €. Then

ID™"flle-s < sp,008) lIflle , (2.87)
ID7P0 flle-s < 8p,1(0) lIflle ; (2.88)

in (2.87) f is assumed to have zero average over T¢.
Below, we shall only use (2.87) with ¢ = 1 (i.e., with f being C™-valued) and (2.88) with p = 0 and ¢ = 1,2
and with p = 2 and f scalar.

The proof of (2.87) and (2.88) follows easily from the definitions given; as an example let us check (2.88) in the
case f € R(T¢,C) and f € R(T¢,C™). If f € R(T¢,C), we find

10700 s = 1Y Gy Fe exlin - 2)le-s
n#0
= |Ne-s (Z ﬁfnexp(in-x))l
) \/zj:”zn:#f"e"p(m'”)||§a
_ |5 —a)
- \/2 (30 plset exnlnlie - )
< S s 02112
J
= 5p,1(9) [ flle 5 (2.89)
if f € R(T¢,C™),
1D flle-s = |Ne—s(D™"06f)|

T e \/Z | D_ID%00, filles 52
APID]
< sup \/Z(Zsp,e,. (6) e 2IIA
i J

le|=1
< spa(d) NIflle

where in the first inequality we used (2.89). The estimates discussed in this paragraph in the context of supremum
norms are more delicate (see [120]).

2.6 The KAM Norm Map

The purpose of this section is to equip with (careful) estimates the functional KAM map defined in
section 2.4, proving, in particular, the existence, under suitable assumptions, of (¢, a) € R? x R satisfying
(2.29).

We begin by introducing a set of parameters controlling the norms of relevant quantities associated to
the approximate torus (u,v,w).
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Assume that H is defined and bounded on Tg x D&(yo) for some &,r > 0 and yo € R?. Let E,, be

positive numbers such that3°

[Heller < Ero,  Hyllg, < Eou,

”Hwy”{,r <Ei, ||Hyy||£,r < Epp ,

”szy”!;:,r < Esi, ||Hwyy||§_,r <Ep,

”wawHE,r < EB,O > ||Hyyy |E,r < E0,3 : (2-90)

Fix p > 0 and recall the definitions given in Proposition 2.1 and the definition of A given in (2.50).

Let v be as in (2.9), let Q > |w| and let &, F, G, h, M, M, U, V, V, A be non negative numbers such
that

Iflle < F, lglle <G,  |hl<h,
Mlle < M, Ml <M,
sup|Tm | <U,  [olle <V,
T¢
llvalle <V, A7 <4, (2.91)
and such that B
sup|Im u| <U <€-¢€, sup [v(8) — yoloo < T (2.92)
Td Td
¢ ¢
Fix
1<k<2, 0<6<g. (2.93)

Finally, let o, be upper bounds (computable in a finite number of steps) on3' s, defined in (2.86),
§ 2.5.7:
sp,k (03 w) < 0p,(8) = op(d;w) - (2.94)

We shall define the KAM norm map as the map

Ks = Ksops : (€7 F,G,h, M, MU V,V,A) = (¢,7, F', G, K, M, MU, V', V', 4),  (295)
where, of course, the primed quantities refer to the new approximate torus defined in Proposition 2.1,
so that |w'-n| >+ |n|~7, ||f'|le < F', etc.
The rest of this section is devoted to the computation of K (which means to compute &,~', F’, ... so
that (2.91)" holds for the primed quantities).
First of all, we define ¢’ as

gi=¢-25.

In the following bounds, we shall use systematically the general properties discussed in § 2.5 (see, in
particular, § 2.5.4, 2.5.5 and 2.5.7); n will denote positive numbers “proportional” to the size of the
error functions f and g or to the “energy error” h.

30Recall that by our definitions ||Hayllg, = |[Hyzllz, and [|Hezyllg, = ||Hzyallg,, = |Hyazllg, (and similarly for

1Hyzzllg )-
31 In fact, we shall need only 01,0 and op,1 with p =0,1,2.
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We start by estimating the quantities appearing in Lemma, 2.4 in order to ensure (using Lemma 2.3)
the existence of (c, a) satisfying (2.29).

Here is the first list of estimates that the reader will check without difficulty>2:

blle < VF+MG=:m,
D~ 'blle—s < a1,0(8")ble
< 010(0)(VF + MG), Vo< d <€,
[D~'b(0)] < [ID7"bllo
< 010 )(VF+MG)=:ny, VIeT?,
(M) < MF=:n3,
ITle < M Eps,
{TD'b) < M2E0,2772 =i,
ID~"(8H®)lo = |D7'0sD'(Hy-f+ Hy-g)lo=0D*(Hy - f+H)-9)lo
< 02,1()(EroF + Eg1G) =:1)5 ,
_ —2
(TD ' (0sH®))| < M Eoans =:n6 ,
-— a
V0ca) =0 0:0,0] < M+ m) . Mal<1. (2.96)

In order to guarantee that v(0) + tM~T(0)D~1b(0) lies, for ¢ € [0, 1], inside the y-domain of definition
of H we assume that

[v(0) = yoloo + Mz <1 . (2.97)
If such condition holds, we find (for a suitable ¢; € (0, 1))
[H, (0, 09) = Hy (0,0(0))] = |Hy, (0,0(0) + 1 M~T(0)D7'6(0) ) M~T(0)D~"b(0)|
< MEgyn; - (2.98)

We can now estimate the norm of the matrix A/ defined in (2.44). Let

0 N
N =1 Ny |0 Nz AN € R N €R.
PNy =
p
By (2.96) and (2.98), we find
Nia| < m3+m6
[Na1] < HzE0,2772 )
|Nao| < MEguns ,
so that, by (2.67), we obtain
V] < %max{Nl Ny} =i (2.99)

32Recall that b := by = v, f — M7Tg and that (b) = 0.
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where

——3
_ M By yno
Ny = \/[M2E0,2172]2 " w 7

— —3
ME0,1775]2+ M Ep2m2Fo0,175

N := \/(773 +n6)? + [

2.100
p ) (2.100)
Recall that
F'lloO)=A+N
(compare (2.44) and (2.50)). Then
[F'O) =T+ AN AT < [ATHA - AT V)T <A AN T,
so that _
! -1 A
1B := |F'(0)!| < — - — = B
1— Ay
Next, define
R _—
Mg 1= \/(773 +m4)? + P(h + Eo1Mn2)? ,
let k be as in (2.93) and let
7o := min {1, rBig } . (2.101)
Let, also,
Qpmo) :=A{(c,a) : |e| < pno , |al <mo}
and assume that
[0(0) = yoloo + M (112 + pmo + 1’7i’7;0) <r. (2.102)

Notice that (2.102) implies (2.97) and it implies that v + t(v'(0) — v§) is inside the set {|y — Yo|oo < T},
for all 0 < t < 1. Furthermore, one sees easily that one has

[FO) < s,
[0'(0;¢,a) —vo| < M(pmo + %) =7 , (2.103)
= nane \2 , (FEo.m3 ng  EoiMns\2 2
sup |F(a)] < ( ) + ( + 1 ) =:"o »
Q(pmo) 1—mno 2p - P

6| < Eoamno ,

N Fono M\ 2 2+10 Mot \?
swp [Fufe)] < [mac{ (P20E)', (00 0)
2(pno) " ’
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Ep2m9 24m0 Ep1\%2-52 »
+( 21 : ) M
R (RS °

Eo2meM \ ( Eo 2m9 24n0 Eo1\=+
() (5 )M
p I C(1—m0)2 p?

sup |a— BF(a)] < B(ns+niy) =1ma,
Q(pmo)

1
2

=:IT1,

sup |I - BF'(a)] < Bmn .
Q(pno)

The conditions for applying Lemma 2.3 are implied by
M2 < prjo Bmi <1,

and one sees that 712 < pro is implied by 7%, < (k — 1)ng so that conditions for applying Lemma 2.3
are, now, implied by

i < (k—)ng Bnip <1. (2.104)
As a corollary of Lemma, 2.3, we thus obtain the following
Lemma 2.6 (On the solution of (2.29)) Assume (2.104). Then, one has

sup |(F'(a))”'| < B(1—Bin)™!
|a|<pno

and there exists a unique solution (cg,ag) of
F(Co,do) =0 , (2.105)
i.e., of (2.29). Furthermore, (co, o) satisfies

B

do| p < do)| < ———"ng =113 - 2.106
max {Jeo| , Jao]} < I(co, )| < =g = ms (2.106)
From here on, a, a and ¢ stands, respectively, for ag,
Go
ag i= — (2.107)
p

and ¢g as in (2.105), (2.106).
We now proceed to estimate the new Diophantine constant +'; let

W= w, = (1+a)w
with @ = ag as in (2.105) and (2.106). Then, w' verifies

!
T

' s
Y= (1 - —)7 ;
P

W' -n| > |,Z— Vn € Z4/{0}

with
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provided

Next, recall the definition of z:

where

ms<p.

Z = MDw_alf + M2,

D'y, =
GH® =

(recall that (HY - f + H) - g) = 0).
Then, the following bounds are easily checked:

|fa|§

|9ale

|ba|£

|Tcle

|D~'bl¢_s

|D~ (0 H®)|¢—s
|Dw_a1ba|£—5
12le—s

2ol

|zle—26

|z0l¢—26

<

IA

IN A

IA

IA

IA

INIA

IA

(1 * %)FJ“ 78 By

(1 + B)G + 2R,
p p

Te+TD bg — M7y,
—(D;19)(0)
(1+a)f+aH] ,

(1 + a)g - aHz(c) )

vgfa - MTga )

D 'b+aD, ' (0sH")
aGD_l(H.(z) f+H2 g) )

I =:Ma4 ,
p

=IMs5

Vi + Mms =: mig

M2E0,27713 =:m7,
D™ (v f — M" g)le—s < 01,0(8)([ve fle + M gle)
01,0(0)(VF + MG) = 010(0)m =:ms ,

0oD?(Hg - f + Hy - g)l¢—5 < 02,1(8)(EroF + B G) =: 1o
1 msmo

"718+; 1=

(ms/p) 707

—9 -
Mz + M Eganz + Mnia =: 021 ,

Wa

22 ,

M (D} 2le—25 + m22) < M(

1

5 1 1
(D5 H0)] < | ID7 2l <

1

1
1 — (ms/p)

mﬁn@ — 8)n21

|D™" 2l¢_25 + 722)

(mtﬁ,o((s)ﬂm + m22) =: 123 ,

|IMoD, " 2l 25 + |[MD, ' 8g2l¢ 25 + | MoZole—2s
M00’1(26)|DJG12|§,25 + MlDU_]_:agﬁlg,zg + M00,1(25)ﬂ22

MO’o,l (25) 1

24 .

v
— (m3/p)
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Recalling the definition of w:
w:=M T(vfz+c+D,b,) ,

we find o
[wle—26 <M (Vnos + ms + n20) =: 125 (2.110)

and

lwele—2s = (M_T)a (voTz +c+ Dw_alba) + M T ((U{,T)gz + v?za + D;zl(')gba>

IA

00,1(20)125 + M<VUO,1(25)7723 + me + 772000,1(5)) =726 -

Remark 2.5 The estimate on [D 19pbq¢—25 could be slightly improved, since

D 0gby = D™'8gb+a D, ' 05 HO .

We proceed to the estimate the “quadratic” functions @);. Concerning @); and )2 we have:

|Q1le—25 = [Hy(@+u+z,v+w)— Hg - ngz — Hgywk,gg
1 1
< §E2,177%3 + Eq 2M23M25 + §E0,37}§5 =iq1,
|Q2le—26 < Ma400,1(20) Moz =: ¢o .
Moreover, one has
D¢ < 2 8) [vi'o MLy,
D51 Gale_ps < T=(malp) 71,0(0) |vg Do fa — b9al ¢ _s
2 .
= (ns/p) 01,0(0) (Voo,1(8)ma + Maoo1(8)ms)
— (ms
= M7,
and L,
|Qsle—25 < Eg oM nogner =: q3 -
Thus,
If'le—2s <@ +q@+qs=:F".
Concerning ¢’ one obtains:
1 1.

|Qsle—2s < §E3,07723 + E5 1123725 + §E1,27725 =:iqs,

|Qsle—25 < Moo1(28)misma3 =: g5 ,

|Q6le—256 < Moo1(20)m4m25 =: g6 -

Thus, L
19'|e—26 < s+ a5+ a6+ MV (g2 +q3) =: G .
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Notice that, since we solved exactly, by the Lemma, 2.3, the equation F'(c,a) = 0 we have

KM =0.
Next,
M| == M+ zgler <M + 14,
namely
MI =M +1’]24 .
From
sup|Imu'| = sup |Im (u + 2)| < U + m23 ,
T T¢
¢ ¢
it follows that we can take
UI = U + N23 -

From
[v'lle = llv+wlleg <V +ns

it follows that we can take
VI = V + 25 -

From ;
llvgller = llve + woller <V + 26,

it follows that ~ ~
V=V + 726 -

Remark 2.6 In general, if A is invertible and |B| is small, i.e. |[B| |4|~! < 1, then

(A+B)'=4A"14+C

with .
C:=[I+A"'B)y'—IA =) (A'B) A"}
jz1
i |4~ B]
L—mMm——— .
IS T

Thus, concerning (M')™! := (M + 25)~! we find

M) =M+ ((1+ M lzp) 1 I)M* —M1liq

and L,
M 124

C1|| 1 S = =:7]28 ,

ICuller < 1— ey
provided o

My < 1. (2.111)
We can then set L
M = M + 28
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Defining Cy by
Hyy(0 +u+z,v+w)=H) +Ca,

we have, by Lagrange’s formula,
[|Caller < En,2m23 + Eo 3725 =: 129 -
Defining C3 by setting
T =T+Cs, C3:= (M "+ Ci)(Hp, +C)M T +C{) - T,

we find

—92 -— =

ICslle < M n2g + 2Eo2Mnzs + 2Mastiae + Eo 2755 + Tg020 =: 70 -

Define 1

¥ = p MTH,O0+u+2,0v+w) = x+x1,
so that 1

= (M‘15 +CH)T + 615) ,

with

§:=Hy(0+u+2zv+w)—H) .
Then, one finds

1r—
Ixille < ; [M(E1,17723 + Eo,2m25) + Eo,1m28 + 128 (E1,1123 + E0,27725)]

= M3t -
Concerning A'~" we have
—1 —1
. (T =) (TY+Cs —(x) — {(x1) N
A7 = = =A14+C.
X7 0 x(0)" +x1(0)" 0
If
_ Cs  —{x1)
Ci:= ,
x1(0)" 0
then B 3
C={I+A'C)"'-I}A".
Therefore,
—2 = —2
= A|C] A3 + M1 + o
< —=—=- < ——F—F—= =132,
1= AlC.| ™ 1= Ay/n3y + 15, +ns07m1
provided
Z\/ﬂ%o + 73, + 303 < 1. (2.112)

We shall then set _, _
A = A+nz,.

The computation of the KAM norm map I/C\(;,Jp,k is completed and we have proven the following
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Proposition 2.2 (The KAM norm map) Fiz E € R and let (u,v,w) be an approzimate KAM torus
with u and v real-analytic on Tg and such that the matriz A in (2.50) is invertible on ']I‘g. Let£> €& r

and B, be as in (2.90); let v be as in (2.9); let F, G, h, M, M, U, V,V, 4 be as in (2.91) and assume

(2.92). Fiz k and 6 as in (2.93) and let op 1 = opr(d;w) be as in (2.94), (2.86). Define the following

non-negative numbers>::

2 1= al,o(é)(‘}F + MG);

n3 = MF;

M4 = MZEO,an 3

N5 1= 02,1(§)(E1,0F + E01G);
6 = H2E0,27]5 ;

—3 — —3
1 — M E, E ME 2 M°E E
7 = ; max \/[M2E0,2772]2 + —0’2;72 0.175 s \/(773 +n6)? + [ 2'1175] + 0’2;72 0,175 3

1 — _
18 1= \/(773 +n4)2 + p_2(h + Eo,1 Mn3)?;

B := A_ ;
1— Any
o :mln{l, HBWS},
p
AT 7075
=M + —);
9 (pro 1—no)
2 2 2 <7 i
fo = (7’0776 )2+<E0,2719+ 0 ]5’0,11\/-fﬂs’:)2 .
=m0 2p 1-m p ’
Eo2moM \ 2 24+m0 momes? Eop,2m9 24+n0 Eoi1\%-—2 »
M1 = | max (7) ,<7—) +( —— +mn — ) M
( { p (1-m0)% p p? (1—m0)> p? °
— 1
Eo2moM\ ( Eo,21m9 24mn0 Eo1\-+ 2
o (oIl (Foaw 772_2)Mn5) :
P p (I—-m0)* »p
B
ms =

1-— BT]H 7]8 ;

Ta = (1 + @)F+ nﬁEo,l;
p p

ms 1= (1 + E)G + 77EEH,o;
p p

M7 = M’ Eoams;
718 1= 0'1,0(5)(‘71'7 + MG) ;
Mo := 02,1(0)(E1,0F + E0,1G);

1 713M19
N0 :=M8+— —————;
p 1—(ms/p)
721 1= M7 + H2E0,2T]20 + Mna;
1
N2 1= —————~010(§ — 0)n21;
1 — (ms/p)

33The quantities 11, 712 and 116 do not appear in the following list.
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1
o3 1= M(————on,
1 —(ms/p)

1
=M 20)———
124 0'0,1( (S) 1= (1713

/p)

0(8)m21 + m22) ;

01,0(0)n21 + Mo1,1(8)n21 + Moo,1(28)n22

25 1= H (V’ﬂ23 + ms + 7120) )

6 = 70,1(20)m25 + H(f/ao,l(%)n% + Vo + 172000,1(5)) :

2
2 -
27 = 1= (ms/p) 01,0(6) (Vao,1(8)ma + Maoo,1(d)ms);
728 = L_n%;
1— Mns

N29 = E1,2m23 + Eo 3m25 ;

— — _
N30 1= M 12 + 2Eo,>Mpos + 2M1pst)a0 + Eo,2113s + 1387129 5

17—
=D [M(E1’1"23 + Eo.2125) + Eo,1128 + 128 (E1,1723 + Eo,lezs)] ;

—2
A \/77:%0 +n3; + n30ms1

M32 1=

1= Z\/ngo + 03, + nzoms1

b

1 1
Q= §E2,177%3 + E1,2m23m25 + §Eo,3n§5 ;

@2 :=1M400,1(26)Mns3 ;
—2
q3 := Eo2M 123275

1 1
q4 = §E3,077%3 + E2,1m23m25 + 5E1,217§5 ;

a5 = Moo,1(20)ms72s ;
de ‘= MUOJ(Q(S)T}14T]25 .

Assume, now, that

M(m + pmo + %) <r—|v(0) — yoloo ,
— T1jo

o < (k—)ns

Bmi <1,

ms <p,

Mnaa <1,

Z\/77:30 + 77?%1 +n3om31 <1,
n23 <20,

n2s < 7 —sup |[v(f) — yo|eo -
¢
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and define the KAM norm map Iﬁ;,w in (2.95) by letting

( §’=§_257

v = (1—”%)7,
F=gi+q@+aqg, o
G =q+qg+gp+MV(ig+g),

. B=0,
Ksopr t 3 M =M +1n4 , (2.121)
MI=M+7728,
U =U+ns ,
V=V +mns,
‘7'=‘~/+T]26,
\Z':Z+T’32.

Let (u',v',w') = K(u,v,w) be as in (2.63), and let f', ¢', b', M’ and A" be as in (2.62), (2.60) and
(2.61) after having replaced (u,v,w) with** (u',v',w'). Then W' is (7', T)-Diophantine and

If'lle < F", lg'lle <G, H=0=h,
Ml < M M e <,
sup|Im o'| <U', [l <V,
d
EI
llvslle < V', A le <A (2.122)
Furthermore
sup |Imu'| < € — ¢, (2.123)
d
T?,
sup [v'(8) — yoloo < T . (2.124)
'JI‘d

I

Note that the conditions (2.113)+(2.118) correspond to, respectively, (2.102) (which implies also (2.97)),
(2.104), (2.108), (2.111), (2.112), which are all the conditions used in this section to derive the above
estimates.

Condition (2.119) together with (2.121), (2.122) and (2.92) imply that

sup |Imw'| KU +mp3 <E—E+mps <E—E+20=6-¢
']I‘d
E/

which proves (2.123).
Condition (2.120) together with (2.110) and (2.92) imply that

sup [0/ (0) = yo , < sup[v(d) = yo, + llwlle < sup [v(d) — ol +ms <7,
T T
El 6’ €I

which proves (2.124). 1

341n particular, H® has to be replaced by H (8 + u’,v').
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Remark 2.7 (i) Relations (2.123) and (2.124) imply that, for 6 € Tg,, one has
(6+/(6),0'(8)) € T2 x D(yo) ,
which is inside the analyticity domain of H. Thus if (2.123) and (2.124) are satisfied one can apply again
the KAM map K to (u',v',w").
(ii) When one iterates the KAM maps, it is useful to simplify conditions (2.113) and (2.120), as we
proceed to explain. Let, for 1 <i < j,
(u(i),v(i),w(i)) = K(u(i—l),v(i—l)’w(i—l)) :

and let f(&, g p® MO and AD be as in (2.62), (2.60) and (2.61) after having replaced (u,v,w)
with (u(i— 1) , (1) w(’ D); let FO ., Z(l) be the corresponding bounds on the norms ||f®||¢,,...,

|Z(i)| with & = &1 — 26;—1 (& belng assigned numbers such that &_1 — 2§;—1 > 0 for 7 > 1).
Then, conditions (2.113)+(2.120), indexed by j, needed to construct and control the approximate torus
(wFD) U+ G+ are immediately seen to be implied by3®

— (o 11PN e O
M (n]+pn3+ (])) Zn <7 —[v7(0) = yoloo

(n9)* < (x — 10§,

By <1,
% <p,
M9 <1,
()
A7 \/ )+ ()" + ) <1,

né{,’) <245,

Zn(’) < r—sup[v®(8) — yol-o -
T,

2.7 TIso-energetic KAM Theorem

We are now ready to formulate an iso-energetic KAM theorem based upon the above analysis. For con-
venience, we formulate the theorem in a self-contained way (repeating, therefore, some of the definitions
given in the previous sections).

Theorem 2.1 Let d > 2 and let H be a scalar, real-analytic function on’® ']I‘g— x D3(yo) for some

Yo € R%. Let E, , be positive numbers such that

|Hzllg, < Eio, IHyllg,r < Eoa,

||sz||§_r <Ei, ||Hyy||§r < Epz ,

|Hezyllg, < Ea1 s | Heyyllg < Er2

||HMZ||1;‘ r < ES 0, ”Hyyy”E,r < E0,3 . (2-125)

35 Just recall that v() = (® 4 E] Lw(® and lw®|le, < né?, see (2.31) and (2.110).

36Td ={yeC?:|Imy|l <¢ Rey; deﬁned mod 27}; Dd(yo) ={yeCé:|y; —yoi| <7, Vi}.
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Let (u,v,w) be an approximate KAM torus satisfying

w+Dyu—HyO@+w,v) = [,
Dow+H,0+u,v) = g,
w(0) = 0,

H(O,v(0)—E = h,

where: D, :=w - 0y := E;i_l wj %; w is (v, 7)-Diophantine, i.e.,
- 2

|w-n|:= ‘ijnj‘ > i VY n e Z%\{0}, (2.126)

for given numbers v > 0, 7 > d — 1; u and v vector-valued functions, which are real-analytic on ’]I‘g for
some 0 < £ < € and are assumed to satisfy

sup |[Imu| < € — ¢, 7 :=sup [v(0) — yoloo < T - (2.127)
T¢ T¢
¢ ¢

Fiz p > 0. Assume that the (d x d)-matriz
M) ;=1 + uyg

is invertible on T¢ and that so is also the ((d + 1) x (d + 1))-matriz defined as
A= , (2.128)

where:
T:=M"1H,, 0 +uv)M T,
1
x(0) = x(8;p) == ;M_lHy(e + u(6),v(0))

and {-) denotes average over®” T?. Let F, G, h, M, M, A, V, Q be non-negative numbers such that

Iflle<F, lglle<G, [h<h,
IMllg<M,  [IMTYe<M, |AT <A,
lolle <V, wl <. (2.129)

Define the following weighted norms:

E
Eik = max{Eo,l ; ﬁ} ;
pP

E
E; = ma.x{Eo,g , %} ;

37Note that the invertibility of the matrix (2.128) does not depend on the choice of p > 0, which should be interpreted
as a free weight (having the physical dimension of the momenta y).
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ﬂO = max 17 K} )
p
Q*
ﬂl =,
Y
AQ*
a :max{l, ’ },
F G h
Fix
0<éo <
and let
£ = min{1 oo ‘5_45‘” } . (2.131)

Then, there exist constants ¢ < ¢, and c. larger than one and depending only upon d, 7 and k such
that the following holds. If i is so small that

(cc 370 o) Lo2gist) <,

(o M2 €27 a3t L) <t (2.132)
r—r

then there exists a (unique) constant @ € (—1,1) and (locally unique) functions @& and ¥, real-analytic
on T¢_, satisfying®®

wa + Dati— Hy(0 +i,5) = 0,
Do+ Hy(0+a,5) = 0,
@0) = 0,
H(0,9(0)) = E,
and
1s;t;pllmﬂl <€—fw sup 15(8) — yoloo < T -

§oo §co

Furthermore, ||, ||u — @lle., and ||v — D|l¢,. are small with u, i.e.,

max {Jal , 13— ule.. . lio — wolle.. , p™15=lle.. o170 — vole..

< (é M M2 Y aﬁgﬂf) . (2.133)

38 As usual, wg := (1 + @)w, Dz := Dw, = ws - Oy.

49



The proof of this theorem is based on Lemma 2.7 and Lemma 2.8 below.
Lemma 2.7 Fiz 1 < k <2, and (using the notations of Theorem 2.1) let

§_§oo g_foo‘

9i 7 92+i

& =80+ 0; =

Let
(U(O)W(O),w(o)) = (u,v,w) ,
and, whenever it is defined for i > 1, let
(u(i),v(z’),w(z‘)) = K(u(i—l),v(z’—l),w(i—l)) 7
(&i57vis Fi, Giy hay My, M3, Uy, Vi, Vi, As)
= Eéi,ap,k(&—l,%—l,Fi—l,Gi—l,hz‘—l,Mi—l,ﬁi—hUi—1,Vi—1,Vi—1,Zi—1) )

where K and K are the KAM maps defined in (2.63) and (2.121). Denote by n,(f) the corresponding
parameters appearing in the KAM estimates described in § 2.6 and let

. E G M
Mi i= 1nax QanJQp .

Let j > 1 and assume that, for 0 < i < j — 1, the following bounds hold:

Nl <ry (2.134)
M, < KM | (2.135)
M; < kM , (2.136)
A; < kA, (2.137)
Vi < pe (2.138)
p
n(i)
o< (= 1)p, (2.139)
1 -
i 7 (@) () n(()i) Uéi)
[00(0) = yolo + 7 (0 + pu? + 1055 ) < (2.140)
— Mo
— (i K — 1
Ant? < o (2.141)
(i)\2 ) * (i)\2
() ) Bo Min{? < (k- 1)9— (7 ) ; (2.142)
1— (%) ? P 2
"o
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(n (z))z (%) O* ( (z))

e
0 <wlk-1 55 > (2.143)
24m) mpme | L [@m o 24m) Q]
(1) + 3~ T (z) — i7l5
(L=m’)?> P p (1=mng")2 P
x, ()77
< X M (2.144)
p
Q*nng) ) 2+n() O | — Q) ) Q*néZ)Mz
l e o WF Ming” < (k —I)T, (2.145)
(me)? < (s =g, (2.146)
k—1
Byfj < = (2.147)
i k—1
iy < % P, (2.148)
i)/P —(7+1) i
%f* BT <1, (2.149)
(ms/p)
-1
M) < “ o=, (2.150)
oy < (51— 1) 2B 2, (2.151)
-—2
My + (n$9)? < (s — 1M, , (2.152)
nSy < k(k—1)M , (2.153)
-1
A \/ (n5e)? + ()2 + ) < = = (2.154)
NSy < 26; , (2.155)
(5) <r —sup [v@(8) — yoloo - (2.156)

g,

Then, the functional KAM map (u?,v® w®) = K@D, 001 01D is well defined for any 1 <

i1 <j and, for any 0 <i <j—1, one has
ny

IN

ckviXk By i, (2.157)

£

IN

ek Xk By 1 (2.158)
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Fipa
Git1

hita

Hi+1

IN

IN

<

L B2
crrxr By p;

csigXsBg i

0,

R T
CovoXoBy p;

(2.159)
(2.160)
(2.161)

(2.162)

where the constants ci’s, vi’s, Xr’S, Br’s, C1’s, Ur’s, Xx’s, Br’s are defined below; in (2.157) it is
1<k <32 with k #12,16 (ng) and n§2 do not appear any more), while in (2.158) it is 1 < k < 6.

Let

c::max{l K (ﬁ)r} . @ ::max{l, \/En”(

Then:

=2k, nn:=M, x1:=Qp6, B:=1,

c2:=2kc, wvo:i=MET, x2:=pBf,

3=k, v3: =M, X3::Qa

—2 _
C4 ::K;202 s Vy ::M Mé-*‘r y X4 :ZQ*ﬂoﬂl 5 B4 =1 5

cs = 2c(2) , Usi= é-*—(Q‘r—}-l) ,

co =K, voi= M &P | xgi=E3pf?, Bgi=1,

¢7 '= max {\/m , \/(03 +c6)? + K22 + 530205} )

ve= MOME XY |y

-2 —r * —
Cg 1= \/(03 + C4)2 + (]. + HC2)2 s Vg = M ME* ) X8 : = Q ﬂoﬂl s Bg =1 s
—9 _r
co=rKcg, wvo:=M MET, xo:=afeBi, Bo:=1,

—3 _
co:=kK%cog, vo:=M MET, xo:=pxo, Bo:=1,

X5

= pfBi ,

32::1,

B5::1,

Q*
= 7/305%; B =1

vio i =1y , Xi0:=V{*xo,
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—d Q*
C11 ‘= I<.'/209 s Vg = M ME* y X11 ‘= 7)(0 , Bll =1 ,

Cc13 1= "5308 , V3= M M{:T , X13:=pxo, DBiz=1,
Cl4 ‘= KR —I— c13 , Vig 1= H Mé-*_‘r ; X14 ‘= Q*XO y B14 = ]. y
s =k+cs, vsi=M MET, xi5:=px0, Bis:=1,

—4 _ .
K’cis, wvizi=M MET, xi17:=Q0, Bir==1,

Ci7

c1g :==ccp vig 1= Mg;‘r ,  X18 1= 050,31 , Big : =27 R

Clg:=0C5 , Vig:= 5;(2T+1) . Xi9:=pB;, Big:=2"T",

c:=cig+ (k—1)c19, voo:=v1g, X20:=X18, DBoo:=DBis,

a1 i=ci7 + Koo + Kea Vo1 = M4M§*_T s Xo1:i=Q"%0, B2 :=27,

7 —27 T
C22 1= KCC21 , Voo = M Mg* ) X22 ‘= ﬂ1X0 s B22 =2 ,

—4 _

Co3 = K(Kcear + 22) ,  vaz = M MPE%T | Xagi= Xaz , Baz =277,
1 1

Coq 1= (51920(0)04— fec(l))cm + imc(o)czg ,

4 _
vas := M MZ?¢, (27+1) , Xoa = X2z, Boq: =21

cos = K(KcCaz + €13 + Ca0),

Ve —27 T
vas = M M7 | xa5 1= pPofixo , Bos:=2°T,

1 1
Cog 1= 50(0)625 + ﬂ(§HC(0)023 + KCos + C(O)CQO) )

—5 e .
vog := M~ M2, (27+1) , X26 = X25 , Bog =221

Cor 1= 250(&0(0)614 + fcc(o)cls) ,

—2 _
vor := M M2 | xori=xa5, Bapi= 271,

. 3 At a2 (2741 o o 927+1
C28 1= K°C24 st-—MMf*( ), X28 = X24 , Bag:=2°"T1
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—5 _
Cog 1= Ca3 + Ca5 , Vag =M ME°T X209 := E5pBoPixo , Bag =27,

2
30 = 2K cog + K3Cag

e n E* T
v3o := M M, @r+1) | X30 1= 75051X0 , Bsg:=2"T1

C31 1= 52(023 +co5) + Cos

—6 e
v31 =M M, @r+1) | X31:=X30 , Bs1:=DBs,

— 3 2 2
C32 = K C30 + C31 + C30€31 ,

Evdd —(27 vy T
vsp = M M3, (2r+1) ., X32:=AaBoPixo, Bs2:=2"1",

1, 1,
Cc| = 5023 + co3Co5 + 5025 ,

_ —-——10 _ _ . . _

m=M MY xa= Bt RBixg . Bii=2',
Go 1= K (o) e M7M3 —(374+1) Vo = (* 2 B, := 9271
2 2C C1aC23 v2 = 5* ’ X2 = IB]-XO ’ 2 = ’

_ e _ . _ .
83 i= K2cagear , by i= M MUY | xp = BipBoBixg, By =281,

Coi=0C, Da:=i, ¥xa:=Eip°BiBix3, Bi:=B,

Cs 1= 20(0)615023 , v i= MM G g = Q*ppixg, Bs:=271",
e := 50(0)014025 , g = H8M3§;(3T+1) . Xe:=QpBoPixg , Be =271,
Gri=C G+, bpi=M O OMYE YD = A2A22, Bpi= 207

Cg i=C4 + C5 + Cg + K> (G2 + C3) ,

- 710 - — * ', T
vg = M M4§* (4r+1) ) X8 = Q Pﬁgﬂ%xg ) B8 = 24 )

O* O* _
Co :=max{Cr , g}, WDo: =07, Xo:= ﬁﬂgﬂfx?) = ﬁffﬂgﬂ% , Bo:=2'7.
(2.163)

Remark 2.8 (i) The definition of &, and the inductive assumptions

YD >k A VI<i<i—1,
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imply immediately that s, (&, w®) and s, 1 (6;,w®) verify, for 0 < i < j — 1, the following bounds

s10Ew?) < oyTlEgT <eyleT
= ()AL,

sp,1(§z',w(i)) < P 4P fi_(pT—H) <@ NP 6*—(1)7'—}-1)

= P @)y Y

sl,o(di,w(i)) < c*yfldl-_T <ey e Tom
= (Q*)7'pig 2T

Sp,l((si,w(i)) c(p) ,Yfp 5;(1)7'-‘1-1) < c(p) ,yfp é‘:(p7+1)2(1)T+1)i

IA

= @ () rpp ¢ P9l (2.164)

Clearly, for ¢ = 0, (2.164) holds without any further assumption.
(i) Notice that

251,
v
as it follows from (2.126) by taking as n the versor (/) (so that |w;| >+, ¥§). Thus 8; > 1. Furthermore,
min{M, M} >1;
in fact,
M > [[Mlle = M le > IM ]l = [M]lo
and 5
To() — o) 4 91
M'e e + 50
Thus, if 6y is a critical point of the multi-periodic function § — u,(6), we have that
MT(0)e™) =) | (2.165)

and (recall the notation in § 2.5)

Mo = INo(MT) = sup \/Z\annoc,\

ceC?:|c|=1
> \/2|Z|Mji<oo>|e§”\
i J

Clearly, since, by (2.165), one has

ML (Bp)eV = M) |
the same argument applies to M~! . We, therefore, have

Q O
min{M M 50 ,,Bk,ck,ck;Vk;Vk:Bk;Bk} 1.
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(iii) By (2.137), one sees that (2.141) implies

—(i) (4) K — 1
A 777 S —(i = )
1- AP, 0
which, in turn, implies
; % — (i)
B .= o SKEAT. (2.166)
1- 4"

(iv) The twenty three inductive assumptions (2.134)+(2.156) include the eight conditions (2.113)-(2.120)
plus fifteen conditions, which are used to simplify the bounds given in (2.157) (in the same fashion as
(2.141) has been used in the previous point to simplify the estimate of B(®)).
For later use we specify where, in the proof of Lemma 2.7, it is used each single assumption in
(2.134)+(2.156):
the eight conditions (2.113)--(2.120) correspond to or are implied by, respectively, (2.140), (2.146), (2.147), (2.148),
(2.150), (2.154), (2.155) and (2.156);

39

(2.134)+(2.138) are used systematically to derive (2.157) (for ¢ > 1);
(2.157) for k =1, 2, 3, 4, 5, 6, 7, 8, 0, 18 and 19 needs no other inductive assumptions in order to be derived besides
(2.134)+(2.138); the estimates on n( Y and n( 9 do not appear in the sequel;
(2.141) — (2.166);

(2.139) — (2.157) with k£ = 9;

(2.142) and (2.143) — (2.157) with k = 10;

(2.144) and (2.145) — (2.157) with k = 11;

(2.147) — (2.157) with k = 13;

(2.148) — (2.157) with k = 14;

(2.147) — (2.157) with k = 15;

(2.147) — (2.157) with k = 17;

(2.149) — (2.157) with k = 20;

(2.147)+ (2 149) = (2.157) with k = 21,22, 23,24, 25, 26;

(2.147) and (2.148) — (2.157) with k = 27;

(2.147)=(2.150) — (2.157) with k = 28;

(2.147)+(2.149) — (2.157) with k = 29;

(2.147)+(2.152) — (2.157) with k = 30;

(2.147)+(2.150) and (2.153) — (2.157) with k = 31;

(2.147)+(2.154) — (2.157) with k = 32.

(v) In view of the definitions of 7y, o and xg, the first condition in (2.132) may be rewritten as

1

<— . (2.167)
C«VoXo
(vi) A quadratic relation (among positive numbers) of the form
pip1 <ab'p,  i>0, (2.168)
is equivalent to the relation ‘
Py < f = abt (2.169)

Tterating (2.169), one gets '
pi <pg ,  i>0,

39We use the notation “(a) — (b)” meaning“(a) is used in the derivation of (b)”.
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which corresponds to

_ (abug)”
oS g
In particular, if
flo = abpo <1, (2.170)

then fi; <1 for all ¢ and
friyr < i < i
which yields f; < fig, i.e.,
i< <o (2.171)
Indeed, (2.162) has the form (2.168) with a := GyDyXo and b := By. Therefore, assuming that
¢ > Bog = 246 (2.172)

(as we shall do later: see (2.182) and (2.181) below), we see that (2.167) implies (2.170), so that (2.171),
ie.,
Ho _ M

pi< = g (2.173)
holds under the hypotheses of Lemma 2.7 (and (2.172)) for i < j.
(vii) For later use, we note that
Vg > vy, Vi,
2741
Xo > max {ﬂ1X07X24,X28,Z_1X32, %, %, %;ZXLZE;XO} .
(2.174)

Proof (of Lemma 2.7) The estimating technique, based on a systematic use of points (i)+(iv) of Re-
mark 2.8, is rather straightforward and goes along the following lines:

a) use (2.134)+(2.138) and (2.166) to get rid of the i-dependence in the parameters M;, M;, A;, V;
and B;;

c) define the upper bounds op r > sp as the right hand sides of (2.164);

d) in each expression factor out the terms (all of which are greater or equal than one) M, M, &1
with the maximal power with which they appear: this term gives the v, or the 7y;

e) in each expression factor out the term 2¢ with the maximal power: this term gives the By or the
Bi;

f) in each expression factor out the maximal term involving v, Q, E, 4, p, V, A, F;, Gy, h; expressing
it in term of*® By, fi, E;, a and p;: this term will give the x;u; or Xk i3

40Tn doing this operation there is, in general, some freedom and we shall try, in the following, to discuss it with some
care.
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g) the expression that remains after the above operations gives the numerical constant ¢, or ¢.

To illustrate the above strategy we start by performing, in details, the first few estimates. For clarity, we
denote by (2.157), the estimate (2.157). Let us begin with (2.157),. By (2.138), (2.135), the definition

of p; and the fact that 8y and M are greater or equal than one, we find
= ViF; + M;G;i < k(pBoF; + MG;) < £(pBo + MQp) s
< (2R)M (QpBo) pi =: camixa Bipi ,
proving (2.157),. Estimate (2.157), is gotten similarly using (2.164). Estimate (2.157), is obvious.
(2.175)

e

A i

Since, by the definitions (2.130), it is
pEo2 < pE; <QF
one finds, using (2.136), (2.157), and (2.175),

O = M?Eo,znéi) SH2M2E0,277¥)

T4
9 Y 2 Zr s
< (KPe)(M MET)(pEo2BoBf1)ps < (K2ca) (M MET)(Q*BoBr) i
=: cavaxaBipi .
Observe that B B Q
max{ﬁ,Eo,l}zEf ; max{Q—iam} <1. (2.176)
Then, by (2.164) and (2.176), one finds
i i i Fio Fi G
= 001 (6w D) (B oFi + Fo1Gi) < 02,1 (6,0 ))QP($5 + Eo,1 Q_p)
Cor Q B Con
< @ee T (o8] o e < @& 0B

=: csvsxsBipi -

Estimate (2.157), follows at once from
Eoz2xs = Eo2pB7 < E3pB < Q67 =: Xs -

Let us turn to (2.157),. Recalling (2.100) and (2.99), one finds that

Ey,1x5 Ey,1x5 i
p p ()

1
nr < crvy ;max {E0,2X2, Ep2x2 » X35 X6,

and*!
1 Eoy1xs5 Eo,1x5
p max { Fp2X2, \/E0,2X2T,X3;X67 p

E 1 * *
0,1X5 } < ;max {Ezpﬂoﬂla 0, E3pBi, EO,lﬂ%}

— ——

S — max {E0,2X27 X35 X6,

A

O*
S 760/8% =1X7,

“1For any a,b > 0, Vab < max{a, b}.
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which proves (2.157),.
Estimate (2.157)4 follows observing that

IN

max {Q, E35pBoBi, Eo,1 8051 }

< (ﬁoﬂl)ma»x{ﬂaE;ﬂ, EO,I} < Q*Bo
= X8 -

Ep 1
max {X37X47 QJ 7X2}

Estimate (2.157), follows easily recalling (2.166) and the definition of a.
By (2.139) one gets
Mpni” < < &*Mpn? .
The second estimate in (2.177) together with (2.157), implies at once (2.157),,.
Using (2.142) and (2.143), one finds that*?

Q*
P2

') < w2

which, by (2.157),, implies immediately (2.157),,.
By (2.144) and (2.145), one finds that*?

. O
o < w3,

from which (2.157),, follows.
As mentioned above, the explicit estimate on 712 is never needed.
As pointed out in (iii) of Remark 2.8, (2.137) and (2.141) imply (2.166), i.e.,

B < k?A .
By (2.147) and (2.179), one finds
niy < wAng’
from which (2.157),, follows.
Condition (2.148) implies that
niy <pls—1),

which, in turn, implies that

. E
&) < kFi+ 77?3)% < (KQ + c13v13X0F0,1) i
< craViaXaafhi -

The estimate (2.157),; is completely analogous (using, again, (2.180)).

(2.177)

(2.178)

(2.179)

(2.180)

421f q,b,c are non negative numbers such that ¢ < (k — 1)b and a < k(k — 1)b (which is less than xkvk2 — 1b), then

v/a2 + (b+e)? < k2b.

431f a, b, c are non negative numbers such that b+ c+d < a, then b2 + (c+d)? < a? so that max{a?,b? + (c+ d)%} = a?;

furthermore, if ¢ + d < (k2 — 1)a then y/a2? + a(c + d) < ka.
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As mentioned above, the explicit estimate on 74 is never needed.
The estimate (2.157),, is obvious (since Ep2p < Q*).
Also the estimates (2.157),5 and (2.157),4 are completely straightforward.
Condition (2.149) implies that
(i) < () k-1 (i)
Mo < s + §;(T+1)Bl2(7+1)i Mo >
which yields easily (2.157),,.

Estimates (2.157),; + (2.157),4 follow, now, easily along the above lines (using (2.148) for (2.157)
(2.157),5 and (2.157),, and (2.150) for (2.157),5).

By (2.151) and (2.152) one finds

22

. o
sy < 26Eo s Minsy + &M, 15y

which yields immediately (2.157),,.
By (2.153) one finds

N T ) ) )
i) < ;[HM(ELWZSQ + Boans) + Boansy |

which yields immediately (2.157),;.
Finally, by (2.154) we get

N o , - —
0 < A @) + @) +nans)
from which (2.157),,, follows easily.

At this point, the estimate (2.158) (with 1 < k < 6), as well as (2.159)+(2.162), are immediately
checked. |

Lemma 2.8 Under the hypotheses of Theorem 2.1, the bounds (2.134)+(2.156) and (2.157)+(2.162)
hold for any i > 0. In fact, the constants c. and c.s in (2.132) and é in (2.133) can be taken as follows.
Let*t

A e— 2 Al o— AL e— AL .—
C1 = K C13 Cy 1= 2C24 s C3 1= 2028 s Cq 1= 2032 y

_20
By—-1"

é5 = 2626 s é(; = KCg , é7 = KCs ,

A a— g2 A e— 2 A e— P 5

Cg ==K Cr, C10 ‘= 2K Cs , C11 = 266 5 C12 = 3K Cs ,
A._lg A ._ 3 A A A
C13 = 5"3 €, Cla=KC1, Ci5:=KkKC3, Cig:=Ci5,
A2 A .. C32

Ci7 = K'Caq , C1g:= 2KCog , Ci9:= Pk

44The constants ¢ and By are listed in (2.163). Note that és does not exist.
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and

= O Go 1= 247’— 4 . 2181
0= s G0 @O max{2"7 ¢, 3K"ce } (2.181)

Then, one can take

~

~ - Co 4 9
¢ := 2max{cy3, C23,C4,Co5,Co6} , Cx = max{co, — 1} , Cax 1= 5025 +Kkes + Ko . (2.182)

Remark 2.9 (i) The proof of this lemma is by induction: first one shows that (2.132) with ¢, and c.«
given in (2.182) imply (2.134)+(2.156) with ¢ = 0; by Lemma 2.7 it then follows that (2.157)+(2.162)
hold for ¢ = 0; then one fixes j > 1 and assumes that (2.134)+(2.156) hold for 0 < ¢ < j — 1 and proves
that, thanks to (2.132), they hold also for ¢ = j; again, by Lemma 2.7, it will then follow that also
(2.157)+(2.162) hold for any i = j completing the inductive argument.

(ii) As above, we shall attach an index ¢, ; or ; to the inequalities (2.134)+(2.162) to specify the index
with which such inequalities are considered.

(ili) Note that in the proof of (2.157), for k¥ =1, 2, 3, 4, 5, 6, 7, 8, 0, 18 and 19, the assumptions
(2.134),+(2.156), are not needed (compare also (iv), Remark 2.8). In particular, (2.157), with the
above listed k’s hold without any further assumption.

(iv) In the first part of the following proof, namely, in the proof of (2.134),+(2.156),, there will appear
powers of k, sometimes, in excess: the reason for this will be plain in the second part of the proof
(compare also with, e.g., footnotes 45 and 46 below).

Proof First, we show how (2.132) imply (2.134),+(2.156),.

In the following estimates we shall use point (iii) of Remark 2.9, besides (2.132) and (2.174). We recall
also (iv) and (v) of Remark 2.8 and, in particular, (2.167), which is equivalent to the first condition in
(2.132).

(2.134),+(2.137), are obvious since x > 1.
(2.138), follows from the definition of f.

Now we prove that
1

1—ng
In fact, by (2.157), with k =0, (2.167) and (2.174),

<kK. (2.183)

1
covoXxop < CotoXo — X
*Y0 X0

IN

"

C k—1
< <
- Cyx K

, (2.184)

where the last inequality holds since (by definition of c.)

Inequality (2.184) is equivalent to (2.183).
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(2.139),: by (2.183), (2.157), with k = 5, (2.167) and (2.174),

(0) 1
L < wnl” < kesvsxsp < KesvsXs—— (2.185)
1- 77(()0) C«VoXo
KCy 67
< = - p<(k—-1
< p= (-1,

where the last inequality holds by definition of c..
The bound (2.157), with k = 9 then follows (compare (iv), Remark 2.8).

(2.140),: by definition of # (see (2.127)), by (2.139),, (2.157), with £ = 0 and k = 2, the definitions of
X2 and xo (which imply that x2 < pxo), the definition of c.«, the second condition in (2.132),

(0),(0)

[000) — voloe + 32 (0" + pu” + 005 ) < W (2 4 o)
—To

7+ M(cwz)(z + npcoyox())u

7+ (c2 + 'iCO)PH2M§*_TX0H
7+ C**pH2M€*_TXO,U
F+(r—7)=r.

IN

VANV

(2.141): by (2.157), with k = 7, (2.167) and (2.174)

Acrvrxr _er
CkUgXo ~ Cx
ég k—1

K2c, — K2

An}”

The bound (2.166),, then follows (compare (iii), Remark 2.8).

(2.142),: from the definition of 7{”, (2.103), it follows that

ng! > Mipny’ > Mpng” ; (2.186)
thus (2.142) is implied by
n(i) -1
Sy Bor < 5 - 2.
L =g &

Setting ¢ = 0, using the first line in (2.185), (2.174), we get

() )
b Eyy < kesvsxs———Fp1 < £ p*
1—nl® <% X0 Cx
o
610 1 % K

-1
= — — p*< Q*p
2K Cs p 2K p

where last inequality holds by definition of c,.
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(2.143),: by (2.186) and (2.183) one sees that (2.143) is implied by

(0)

g’ < =(k—1)Q". (2.187)

N | =

Using (2.157), with k£ = 6, we see that (2.187) holds because of (2.167), (2.174) and the fact that

1
C11 = —(206) .

. >
C_K?—l k—1

The bound (2.157), with k = 10 then follows (compare (iv), Remark 2.8).

(2.144), and (2.145),: it is immediate to check that (2.144), and (2.145), are implied by the following
three inequalities:

24mg) mo'my _ 1 "M,

: < , (2.188)
@-n2 o T
x, (D77 (%) _ x, (D77
2*ng ]3\/[#75 < k—1 Q 7792 M; 7 (2.189)
p K p
——— My’ L —5— —— . (2.190)

(-2 P oo

Notice that (2.183) implies that

(0)
2+ §52<3—1)<3n2.
(1 -2 &

Thus, by (2.177) one has that (2.188)+(2.190) (with ¢ = 0) are implied by

1 *
3t
0 k—1
ﬂé) 97 )
1 (o k—1
- < -
p T’5 —_ 3&5

IN

"

IN

Proceeding as above one easily checks that these inequalities hold since (recalling the definition of é;2
and c¢)

1 .
Cy > max {3&406, - 1012} .
The bound (2.157), with k = 11 then follows (compare (iv), Remark 2.8).
(2.146),: by (2.178) and (2.186) (with i = 0) one finds*>

P

02 o K
(7710) S5

45 The bound (2.191) holds, in fact, with k2 in place of k®. However, later (in the case 4 > 0) the power 8 will appear;
compare also point (iv) of Remark 2.9.

O M) . (2.191)
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Recalling the definition of n(()i) (see (2.101)), one finds

. (%)
@) _ "o’ P
=B
so that, for i = 0, recalling that B < k2A4,
(0)
O 5 M0 P
778 - I‘EBZ ’

and (2.146),, in view also of the definition of @ (in (2.130)), is seen to be implied by*

K TR O
— —<1. 2.192
5 @ M n, 1= (2.192)
But, by definition of néo), by (2.167), the relations
vo > M'vg ; Xo = axo , (2.193)

(which follow by definition), the definitions of é13 and of ¢, one finds

K —2 o 1 k% —2 covoxo 1
B o < YW
g @M T = g @ exloXo k-1
9 A
< B & 1 —. as 1
- 2 k-1 e k—1
< 1

showing the validity of (2.192) and, hence, of (2.146),.
(2.147),: observing that, by definition of x11, the definition of a and (2.193),

_ _O*

AX11=A7 Xo < a xo < Xo
one sees that (2.147), is immediately implied by the definition of é¢;4 and the definition of c.. The bounds
(2.157), with k = 13,15 and 17 then follow (compare (iv), Remark 2.8).

(2.148),: it follows from the definitions of x13, ¢15 and c,. The bound (2.157), with k = 14 then follows
(compare (iv), Remark 2.8).
(

2.149),: using (2.148), one sees that (2.149), is implied by

n(i) L )

s é:*—(T-i- ) ﬂ12(T+1)Z <k-—1,
which, for ¢ = 0, holds because

M3 g <%0, MMEP <py,
p

46 Here would be enough to require the bound (2.192) with k% replacing k%; however, since later we shall need the
stronger condition with k°, we require it already here.
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and because ¢, > (k — 1) 'é16 := (k — 1) 'ke13. The bounds (2.157), with 21 < k < 27 and k = 29
then follow (compare (iv), Remark 2.8).

(2.150),: it holds because ¢, > (k — 1)7*é17 := (k — 1)"'K?cas. The bound (2.157), with k = 28 then
follows (compare (iv), Remark 2.8).

(2.151),, (2.152), and (2.153),: first notice that (2.151), is implied by (2.152),, which, in turn, is implied
by47

i k=1 —

< (2.194)
Such relation implies also (2.153),. Thus (2.194) implies (2.151),, (2.152), and (2.153),. For i = 0, (2.194)
is immediately seen to hold since ¢, > (k—1)"'é1s := (K — 1) 7' 2kcos. The bounds (2.157), with k = 30

and 31 then follow (compare (iv), Remark 2.8).

(2.154),: using the bounds (2.157), with k¥ = 30 and 31, the definitions of ¢33, v32 and x32, one finds

_ Cac X
2/ (192 + ()2 + 1O < v n<E-1,
since
vss <1 aBoBixo < Xo
and ¢, > (k — 1)é19 = (K — 1)7! ¢32/K3.
The bound (2.157), with k = 32 then follows (compare (iv), Remark 2.8).
(2.155),: the condition (2.155) is equivalent to

c - ipi
? & 1vog x23 2'Bhapi <1,

4

which, for ¢ = 0, is satisfied since*® ¢, > co3.

(2.156),: by (2.157), with k = 25, the definition of v25, X25, X0, C+« and the second condition in (2.132),
we find

0 R
sug) [v — oo + 7}55) < T+ CasVasXas it
T
¢
. —5 _or
< FtesM M ETap 3BT 1
< 7 C**H5M2 £;2T0‘p /Bgﬂf w
< f4r—rf=r.

This finishes the proof of (2.134), + (2.156),. Thus, by Lemma 2.7, (2.158), + (2.162), follow.

Fix, now, j > 1 and assume, by induction, that (2.134), + (2.156), hold for any 0 < i < j — 1. By
Lemma 2.7, (2.157), + (2.162), hold for any 0 <4 < j — 1. If we show that (2.134); + (2.156); hold, then
(again by Lemma 2.7) the proof of Lemma 2.8 will be complete.

1 k-1
oo —— <L

K 4K
48 In fact, by (2.182), (2.181) and the definitions in (2.163) one sees that (recall that 7 > 1)

e > 8 > 162 > 16 &7 > 16 &3 > 16 cas3 .
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(2.134) ;1 we shall use the following elementary inequality

1

(1—2z) > exp(—tz) , Vt>1, VOSJUSl—;-

Thus, in view of (2.148), (which implies that n%) /p < 1—1/k) and in view of the definition of vy;, we
find

(3-1) (-1)

vj o= (1 - 7713p )%’—1 > Yj—1€xp ( - ,i’hzT)

K =1 i

> yexp ( - an)
p =0
j—1

K ()

2> 7(1 5 27713) ; (2.195)

i=0

(we used also the trivial bound exp(—z) > 1 — ). Let us now prove that

1 i1 G k=1
- < . 2.196
P ; s = 2 ( )

In fact, by (2.157), with 4 < j — 1 (which hold because of the inductive assumption) and by (2.167), we
get

2 1471 2 i1
k* 1 () K
R < .
K—1p* s = K_1013V13XOZM1
=0 =0
2 j—1
K 1
< C13V13X0 —— 57
k—1 ; cxpXo By
— K?_as _Bo ) s xo
k—1ce By—1/ m xo
< 1,

where the last inequality holds because v13 < 7, xo < Xo and

s 1 (2 By )
Cy ¢l := K C13= .
k—1 1" k-1 BBy —1

By (2.195) and (2.196), (2.134); follows.
(2.135),: from now on we shall use systematically (2.157); with  <j —1 and

Recalling the definition of M, := M; + né?, we find

j—1

M; < M"‘Z”é?
=0
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j—1

< M + cosvaaX24 ZBEUM
i=0
Co4V24X24 = Bag\ ¢
< syt S
C X0 ; By
CoqlasX 21
24V24X24
< M+——7— 5
- CxVo X0 ;21
2
< M+ Cz4lj24_X24
C«V0 X0
2
< M+ C24
Cy
< kM,

where, besides (2.174), we have used the fact that ¢, > é2/(k — 1) := 2ca4/(k — 1).
(2.136),, (2.137); and (2.138);: recall that

My = M; + 77%), Aipr =4 + néiz), Vz’+1 =Vi+ né? .
Thus, replacing ng? with, respectively, néis) n:g;) and né? in the above estimate on M; one sees that
(2‘136)]'7 (2137)] and (2138)1 hold since Cx Z ék/(lﬁl — 1) and 63 = 2028; 64 = 2632, 65 = 2026-

In exactly the same way we proved (2.183), one sees that, since ¢, > é/(k — 1),

1
L=

(2.139),: in view of (2.197), one sees that the argument used to check (2.139), extends immediately to
Jj>0.

(2.140),: by (2.135); (which has been already proved), by (2.139);, by definition of 7 (see (2.127)),
(2.157), with k = 25,2,0 and ¢ < j — 1, (2.173) (which, by the inductive assumptions and Lemma, 2.7,
holds for ¢ < j), the definition of ¢, and the second condition in (2.132), we find
. _ . ) (4),.(5)
WD) = goloo + 35 (0 + pn” + 1)
1—ng

j—1
< [0(0) = yoloo + Y 1w (©)] + 53 (0§ + rpnf?)
=0

IA

j—1
P+ Y k) + kM (0 + wpn )
=0
j—1

T+ Ca525X25 Z Bis i + NH<02V2X2 + HPCOVOXO)M
i=0

IA

Jj—1
. 1 — _
<P+ (0251/25% E v + HCQMI/Q% + n2c0My0x0)p,u
=0
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<7+ ( Cos + KCo + K Co) VasX25 M
S T+ (C**MM2 §*2T 0450:81)
<74 (

Using (2.173) (and playing some attention to the use of the inductive assumptions together with their
consequences), one checks easily that the argument used to derive (2.141), + (2.155), may be used to
derive also (2.141); + (2.155);; the proof of (2.156); is analogous to that of (2.140);.

Finally, we prove (2.133). From the definitions given (compare, in particular, (2.182)), one sees imme-

diately that*® ¢ < ¢,. Furthermore, recalling § 2.4, from what we have proved until now (in particular,
that, thanks to (2.132), the KAM map is well defined for all i > 0) we have that

i - ulle.. < Zn23 - welle < 30

=0
15— vlle.. < zné? . N9 = velle., < Zn% : (2.198)
3 =0
and, since
o0
a:= [H(l—l—ai) -1,
1=0
we have also that -
1 .
p (; Soad) -1, (2.199)
i=0

From (2.198), (2.157) (with k = 23, 24, 25, 26), the definition of ¢, (2.173), we find that

max { || = ulle... , lliio = wolle.. , o115 = vlle.. , o 1150 = volle.. }

. 22T+1 i
< = MM a2 (Bo )

l\DlO)

—5 (27
M Me a8 p

N

<

N o

e L1

o
Il
<

~ 370 —(27
= (e 7M7) a3 g i
Next, observe that by (2.182), (2.181), (2.163) and (2.132) it follows that

1
C13 < CO < ]__6 pP 1013V13X13/,L < ]__6 (2200)

N o

c13 <

Thus,

— an < 013V13X0MZ i = C13V13X0,U >

49The argument is similar to that used in the footnote 48.
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so that, by (2.199) and (2.200), one finds®°

la] < 18 c13V (1 + e ci3v )
S 15 CisVisXop 15 C13V13 X0k
16 1
< 2 1 —)
S 15 C13V13X0M ( + 5

16 °
= 15 C13V13X0 M1

< 2c13v13Xop
P —(2r
(672267 a3p) i

IA

completing the proof of (2.133). [

2.8 Iso-energetic Lindstedt series

In this section, we discuss shortly (convergent) power series expansions for KAM iso-energetic tori in
terms of a smallness parameter. Such series (in the non-fixed energy case) are known as Lindstedt series.
Here, we follow, essentially, Moser’s original (indirect) argument ([111]).

2.8.1 Analytic dependence upon parameters

Roughly speaking, if the system depends analytically and uniformly on a set of parameters, then so do
the KAM tori obtained via Theorem 2.1.

More precisely, let £ be the closure of an open, connected, bounded set of parameters in C™ (with
non-empty intersection with R™) and assume that, in Theorem 2.1,

H=H(z,y;e), E=E(E), w:= (1+a(5))wo ,

u=u(b;e), v=uv(b;e), (2.201)

are real-analytic (and bounded) also in the parameters ¢ = (€1, ...,6m) € &; thus, f, g and h will also
depend analytically upon €.

Let us, now, indicate the modifications that are needed in order to extend Theorem 2.1 to the present
parameter-dependent case.

Assume that wp is (7o, 7)-Diophantine and let
vi=(1- sup lal)yo >0,

so that (2.126) holds also in the present case uniformly in ¢ € £. Next, replace systematically the norms
| - |le and || - ||¢,» with, respectively,

- llee =supll-lle s - llere :=supll-ller -
£ &

500bserve that exp(z) — 1 < z(1 4+ z) for any 0 < z < 1.
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Thus, for example, the E, ;’s are upper bounds on ||H.||¢ re; (2.127) reads, now,

sup [Tmu| <&—¢, 7 :=sup [v(05€) = Yoloo <7 ;
Tgvg Tgag

Qin (2.129) is, now, an upper bound on sup; |w|, which we shall take to be

Q> (1 + supla])Juwo| -
£

Then: if (2.132) holds, there exists a (locally unique) real-analytic solution (i,v) = (@(0;¢),7(8;¢)) of
the system
wi + Dati — Hy( +a,%;¢) = 0,
Dyt + Hy(0 +4,556) = O,
@0e) = 0,
H(0,5(0);¢) E(e) , (2.202)

where w; := (1 + a)w, Dg := D,,, := wg - Op; & and ¥ are real-analytic on ’]I‘goo x &, a is real-analytic on
&. Furthermore, |a|, ||u — 4|| and ||v — || are small with u:

maX{|&|£ o lE—ullew e 5 o — ugllen,e s p 15— vllew,e » p ' 1T0 — ’Ua||£°°,£}
< (e T M2 apip?) p (2.203)

The proof of this statement rests upon the complex extension of Lemma 2.3 and on Weierstrass theorem
(on the analyticity of uniform limits of analytic functions). The complex version of Lemma 2.3 (whose
proof is basically identical to the real case and is omitted) reads as follows.

Lemma 2.9 Let Q:={c€ C?: |c| < p1} x{a € C: |a| < p2} for some p1, p2 > 0; let a := (c,a) and
let (a,e) € 2 x & C CH x C — F(aze) be a real-analytic function with values in CH. Assume that
the Jacobian F, is invertible for all (a,e) € Q x €. Let F,(0;¢)~! =: B := B(e) and assume that

sup |a — B(e)F(a;e)| < min{p1,p2},
QxE

sup [I — B(e) Fy(a;e)| < 1.
QxE

Then, there exists a unique real-analytic function ¢ € £ — ap(e) € Q such that
F(ag(e);e) =0.

Moreover, one has

-1
sup |(Fula;e) ' < |Ble (1~ sup |- BF.))
(a,e)EQXE QxE

and
joole < (sup [(Fa) ) sup |[F(0;2)]
Qx& &

At this point the proof of Theorem 2.1 goes through estimate-by-estimate and the analyticity in the
parameter ¢ follows, as mentioned above, from Weierstrass theorem.
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2.8.2 The nearly-integrable case: Recursive equations

We apply, here, the result of the previous section® to the nearly-integrable case
H(z,y;e) = Ho(y) + eHi(z,y;¢) , € T¢, ye Di(y), e€DL(0), (2.204)
under Arnold’s iso-energetical non-degeneracy assumption on the energy level Ey := Hy(yo), i.e.,

Hg (o)  wo
det .A() # 0 y A(] = , W = H(I)(yo) s Ho(yo) =: E(] . (2205)
wWo 0

Assume that the vector w := wp is (70, 7)-Diophantine (in particular, we let a(e) in (2.201) to be zero®?);
assume that H is real-analytic on 'Jl‘g x D%(yo) x D}, (0) and let

E(E) =FEy+eEi +--- , (2206)

be a real-analytic function of € € D;O (0). Now, we take as approximate KAM torus simply (u,v,w) :=
(0,90, wo)- It is then easy to check that, fixed 0 < £, < &, if one takes eg small enough®® then (2.132)
can be met and there exists a real-analytic solution (,?) = (4(6;¢),7(6;€)) of the system (2.202), which
satisfies (2.203) and is the e-analytic continuation of the unperturbed solution (0, yo,wo).

Thus, the functions @, ¢ and the number @ admit convergent power series expansions
oo o ] o0
i=Y cu;(), b=yt ev;(0), a=)» a;, (2.207)
Jj=1 j=1 j=1

in the complex domain &£ := {e¢ € C : || < &o}; such series will be called the iso-energetic Lindstedt
series for the Hamiltonian system associated to (2.204), (2.205).

The iso-energetic Lindstedt series satisfy a set of “linear recursive equations”: denote by [-]; the projec-
tion onto the k" coefficient of an e-power series,

] 1 d*()
k= 75 )
k! dek | __,
and, for k > 1, define (recall that w = wp)
k—1 i k=1
Xp = =Y aDoue;+ [Hy(yo+ > v;) (2.208)
j=1 i j=1 .
[ = =
+ Hl,y(0+257u]',yo+2.€]vj) ,
L Jj=1 Jj=1 k1

S1With: m = 1 and £ = D} (0).

52The assumption that wo is Diophantine, thanks to the iso-energetic non-degeneracy (2.205), can always be met by
a slight change of yo on HO_I(EO). In fact, as discussed in point (ii) of the Remark 2.3, (2.205) implies that the map
y € HO_I(EO) — mo H{(y) (r being the canonical projection of R? onto P4~1) is a local diffeomorphism and this implies
that the set of Diophantine points on Ho_l(Eo) is dense in any small neighborhood of yo.

53Notice that f = —edyH1(-¥0), 9 = €dxH1(*,%0), b = e(H1(0,y0) — E1) + Z;‘;Q Ejel so that p in (2.130) is
proportional to &g.
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k—1 k—1 k—1
Yk = —Zaij’kaj - Hl,w (6+ZEjUj7y0 + Zejvj) ’
i=1

=1 =1

k—1
k—1 k—1
Zy = — H0<y0+25jvj(0)) - | H1 (0,y0+25jvj(0)) + By .
j=1 k j=1 k—1

Remark 2.10 X}, and Y are real-analytic function of 6 € ’H‘d , while Z, is just a real number; X},
Y) and Zj, depend upon {a;}, {u;}, {v;} for 1 <j<k-1 only When k = 1 the sums over j, in the
formulae (2.208), are absent.

Proposition 2.3 Let, for k > 1, Xy, Y}, and Zy, as in (2.208). Then (Y;) = 0 and, if one sets

Uk _ g1 [ —(Xk)
(—ak) = A ( 7, ) ; (2.209)
then
v = D'y + 0 (2.210)
Furthermore
<H6'(yo)vk + Xp — akw> =0, (2.211)
and, if we define
iy =Dyt (H(I)'(yo)vk + Xy, - akw) ; (2.212)
then
Up = U — ﬂ,k(O) . (2.213)

Notice that the identity (Yj) = 0 together with (2.211) may be interpreted as compatibility conditions,
while (2.209), (2.210), (2.212) and (2.213) may be viewed as definitions of ay, uj and vg.

The proof of this Proposition 2.3 is, at this point, trivial: plug the e-expansion of @, % and ¥ into the
system (2.202) and expand in €; the compatibility conditions are immediately checked by taking averages
over T¢ of the obtained relations. [

3 The restricted, circular, planar three-body problem

3.1 The restricted three-body problem

Roughly speaking the restricted three-body problem is the problem of describing the bounded motions
of a “zero-mass” body subject to the gravitational field generated by an assigned two-body system®*
To describe mathematically such system, let Py, Py, P> be three bodies (“point masses”) with masses
mo, M1, My interacting only through the gravitational attraction. If u®® € R®, i = 1,2,3, denote the

54For general references, see, e.g., [128], [119].
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position of the bodies in some (inertial) reference frame (and assuming, without loss of generality, that
the gravitational constant is one®), the Newton equations for this system have the form

Pu®  m® —u®)  ma(u® —u®)
a2 [u®) — 403 [u® — w3

Eu®  me® —u©®) oy (u® — @)
a2 u® —uOp  [u® -y

Pu®  me® —u®)  myu® —u) (3.214)
a2z T @ — O @ — @O - '

The restricted three-body problem (with “primary bodies” Py and P;) is, by definition, the problem of
studying the bounded motions of the system (3.214) after having set my = 0, i.e., of the system

d2u0) _ ml(u(o) — u(l)) 2y _ mg(u(l) — u(O))
di2 - = |u(1) _ u(0)|3 ’ a2 |u(1) _ u(0)|3

d2u® B _mo(u(2) - U(O)) B ml(u(z) — u(l)) (3.215)
dt2 - |u(2) _ u(0)|3 |u(1) — u(z)lg . .

Notice that the equations for the two primaries Py and P; decouple and describe an unperturbed two-
body system, which can be solved and the solution can be plugged into the equation for u(?), which
becomes a second-order, periodically forced equation in R3.

3.2 Delaunay action-angle variables for the two-body problem

In this section we review the construction of the classical Delaunay [46] action-angle variables for the
two-body problem.

The equations of motion of two bodies Py and P, of masses mg and m;, interacting through gravitation
(with gravitational constant equal to one) are given (as in the first line of (3.215)) by

Pu® g (u® — u) Pu®  mo(u® — u®)

B - (i) ¢ R3
dt? - |’U,(1) — U(0)|3 ’ dt2? - |U(1) _ U(0)|3 ) u ek . (3216)

As everybody knows, the total energy, momentum and angular momentum are preserved. We shall
therefore fix an inertial frame {k, k2, k3 }, with origin in the center of mass and with ks-axis parallel to
the total angular momentum. In such frame we have

ugo) =0= ugl) , mou'® +myu® =0 . (3.217)
We pass to a heliocentric frame by letting,
(,0) :=u® — 4@ | reR?. (3.218)

In view of (3.216) and (3.217), the equations for z become

F= —M% . M:i=mo+m . (3.219)

55This amounts to re-scale the time.
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This equation is Hamiltonian: let y > 0 and set

_XP pM o
Hiep(z,X) := o El X = pt, (3.220)
then (3.219) is equivalent to the Hamiltonian equation associated to Hkep with respect to the standard
symplectic form dz A dX, the phase space being R?\{0} x R?; the (free) parameter y is traditionally
chosen as the “reduced mass” mgm;y /M.

The motion in the u-coordinates is recovered (via (3.217) and (3.218)) by the relation
0 _ (M W — (Mo
U ( 7 m,O), U (M:c,()),

T2

U2 f

u® z
r ®o
/ @ o1

U1
|z| = |[u®) — u®)| o=@+ f

Figure 1: The geometry of the Kepler two—body problem

The dependence of Hkep on x through the absolute value suggests to introduce polar coordinates in the
z-plane: x = r(cos ¢, sin ¢) and, in order to get a symplectic transformation, one is led to the symplectic
map @pc : ((r,9), (R, ®)) — (z,X) given by
x = r(cosp,sinyp) ,
pc : X = <R cosp — % sin ¢, Rsin ¢ + % cos cp) , (3.221)
dry ANdXq1 +dza ANdXe =dr AdR+dp ANdD .
The variables r and ¢ are commonly called, in celestial mechanics, the orbital radius and the longitude
of the planet P;.
In the new symplectic variables the Hamiltonian Hkep takes the form
P2

1 .
Hpc(ru », Ra (I’) = HKep o ¢pc(7'; @, R; (I)) = ﬂ (RZ + _)

uM
r2)

r
The variable ¢ is cyclic (i.e., 0Hp./0p = 0 so that ® = const ), showing that the system with Hamil-
tonian Hp, is actually a one-degree-of-freedom Hamiltonian system (in the symplectic variables (r, R)),
and is therefore integrable. The momentum variable ® conjugated to ¢ is an integral of motion and

., OH,, @

9%~ ju? = ® = ur’p = const .
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Remark 3.1 The total angular momentum, C, in the inertial frame (and referred to the center of mass)
is given by®®

C = mou® x 49 + miu® x g .
Taking into account the inertial relation moa(® = —m;4() one finds that
momi . Moy
C=——zxt=—1zxX,
M My
and the evaluation of the angular momentum in polar coordinates shows that
momy momi
M Mp

thus if p4 is chosen to be the reduced mass ™§7*t, then ® is exactly the absolute value of the total angular
momentum.

C:k3 T2¢:k3 ‘I);

The analysis of the (r, R) motion is standard: introducing the “effective potential”

o2 uM
Venr(r) = Ver(rs @) = g = 5
one is led to the “effective Hamiltonian” (parameterized by ®)
R2
Heg = 2% +Ver(r), (R=upr).

Vers

Emz'n —

Figure 2: The effective potential of the two—body problem

The motion on the energy level H ! (E) is bounded (and periodic) if and only if

3M2 @2
E e [Eminao) ; Emin := eﬁ'(rmin) = _/1/2@2 ; Tmin = N2—M . (3222)

56«x» denotes, here, the standard “vector product” in IR3.
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For E € (Enin,0) the period T(E) is given by

T(E) =2 [ e dr : (3.223)
~(B) ([ 2(E ~ Ver(r))

where ry(E) = ry(E; ®) are the two real roots of E — Veg(r) =0, i.e.,

B V() = g (s =n)r =7,

2 2E®2
pM [ (pM)? + =22
—2E )

re(E; @) = (3.224)

The integral in (3.223) is readily computed yielding Kepler’s second law

T(E) = 2n M ( gE)3/2 .

Let us now integrate the motion in the (r, ) coordinates. The equations of motion in such coordinates
are given by

2
By symmetry arguments, it is enough to consider the motion for 0 < t < T'(E)/2; furthermore, we shall
choose the initial time so that 7(0) = r_ (i.e., at the initial time the system is at the “perihelion”): the
corresponding angle will be a certain ¢ and we shall make the (trivial) change of variables

p=wo+1, sothat r(0)=r_(E), f(0)=0. (3.226)

The angle f is commonly called the true anomaly; the angle (g (i.e., the constant angle between the
perihelion line, joining the foci of the ellipse and the z; axis) is called the argument of the perihelion
(compare figure at page 74).

Equations (3.225) become
f =75 £(0)=0
? LB~ Vig(r) , 1(0) =r_(E)

Eliminating time (for ¢t € (0,T(E)), 7 > 0) we find (recall the definitions in (3.222))

f= [ dp/’ = Arccos —L—— . (3.227)

(B) V/21(E — Veg(p

Emin

Setting
E

Eoin ) D = Tmin , (3228)

e:=4/1—

we get the classical focal equation

p _ p

" 1tecosf 1+ ecos(p — o)

(3.229)
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which shows that Py and P; describe two ellipses of eccentricity e € (0,1) with common focus in the
center of mass (first Kepler law).

If a > b > 0 denote the semi-axis of the ellipse, from (3.229) it follows immediately that

__P
1Fe

Ty , re+r_=2a, p=a(l-¢€?), ro=a(lte). (3.230)

From the geometry of the ellipse (see Appendix A and in particular (A.306) and the figure at page 113)
one knows that
r=a(l —ecosu) , (3.231)

where u is the so-called eccentric anomaly. Then, from the definition of Ei,, (3.222), the expression
for E — Vg in (3.224), the relations (3.228) and (3.230), one finds

M M M i 2
Epin=-22  p=_F2 p_y,-RE[_&0Y ) (3.232)
2p a \1—-ecosu

Remark 3.2 The circular motion for the two-body problem is obtained for the minimal value of the

energy F = Epin = —“;éf. In such a case
@2
= =P = Tmin = ) 2
e=0, r=p=r 2 (3.233)
the constant angular velocity and the period are respectively given by
3172 3
wM P
Weire = ? s Tcirc = 27TW . (3234)
Eliminating ® in (3.233) and (3.234) one gets
M r3
Weire = T'_3 ) Teire = 27 H .
The motion in the z-variables is given by
z(t) = r(cos(cpo + Weire t), sin{wo + Weire t)) . (3.235)

We turn to the construction of the action-angle variables. For E € (Emnin,0), denote by Sg the curve
(energy level) {(r, R) : Hegt(r, R) = E} (at a fixed value of ®). The area A(E) encircled by such a curve
in the (r, R)-plane is given by

awy =2 [ fou( - viar) 0
E=2[ 2u\ E — Veg(r) Jdr =27 pM | —= — 27D .
_(E) —2F

Thus, (by the theorem of Liouville-Arnold) the action variable is given by

which, inverted, gives the form of the Hamiltonian Heg in the action-angle variables (6, ) (and para-
meterized by ®):
/1’3 M2

h(I):= h(I;®) := TIFTIEE
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Furthermore (again by Liouville-Arnold), the symplectic transformation between (r, R) (in a neighbor-
hood of a point with R > 0) and the action variables, (6, I), for the Hamiltonian Heg is generated by
the generating function®”

(r,Ry.(ri1))
So(I,r;®) := [ Rdr R (r;I):= \/Qu(h(j) — Verr(r))
r—(h(I)),0)

where the integration is performed over the curve Sy (1) oriented clockwise: the orientation of Sy(r) and
the choice of the base point as (r_(h(I)),0) is done so that an integration over the closed curve gives
+A(E) and so that # = 0 corresponds to the perihelion position.

Figure 3: Level curves of the effective Hamiltonian

The full symplectic transformation (in the four dimensional phase space of Hy.)

¢ . (O,I/J,I,J)—)(T’,QD,R,(P)
aa - ddNdl+dyp NdJ =dr NdR+ dp N dP

will then be generated by the generating function
S, ) = SoL,rs )+ Jp,  (J=9).
The form of h(I) suggests to introduce one more (linear, symplectic) change of variables given by

A=6, y=1—0.

57Recall that the dependence upon ® is hidden in 7_ and Veg.

¢_1‘ {A=I+J, F:J,
lin

78



The variables (A, v, A,T') are the celebrated Delaunay variables for the two-body problem. If we set

by the above analysis we get

hxep © ¢p (A

¢p = ¢pc 0 Paa © Plin

N3M2

777A7F): 2A2

hkep(A) := —

The symplectic transformation @,, o ¢y is generated by (I' = J = @)

S2 (AJ F’ /r) ()0)

= So(A-T,rT)+Typ

r A2 M T2
—(hep(A)) A P P

= [ \/ hiep(A) — Vet (p;T') dp + T .
(hxep(A))

(3.236)

(3.237)

Replacing E by hkep(A) and ® with I' in the expression for the eccentricity e in (3.228) (recall the
definition of Emin in (3.222)) one finds

-0

e=¢eA,T) =

(3.238)

Recalling the relation between the parameter p (in the focal equation for an ellipse), the eccentricity
and the major semi-axis a (p = a(l — €?), see also Appendix A), from (3.228) it follows that

Remark 3.3 Recall that

I'=®=

so that

Recall also that

AZ
a = lj,z—M 5 A= nv Ma .
|C |, C := total angular momentum |,
momay
r>o0.
372
wM
Emin = — 5
212

so that E > Ep;, means (by (3.237))

F'<A.

The momentum space {L, G} is therefore the positive cone {0 < T < A}.

The angle A is computed from the generating function So:

A =

652 \/ﬁ u3M2 [
2 \/hKep

eff(P, F)
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(3.239) /ﬂ llr dp
2a a p_ \/hKep(A) — Ve (p; )
d

(3.232) 1[T1 — ecosu

a). esinu

u
[(l—ecosu)du
= u — esiny

Area(&(f))

= T real€(2n) (3.240)

where (compare Appendix A), £(f) is the area (on the ellipse (3.229)) “spanned by the orbital radius”:
EU) ={z=ax(,f):0<r' <r(f),0< ' <f};

we have also used the fact that p as a function of w € [0,7] is a strictly increasing function and that
p(0) =r_.

In view of (3.240), A is called the mean anomaly. Analogously, the angle v is recognized to be the
argument of the perihelion g introduced above (just before Remark 3.2):

v = 92 p [ ' 1 dp
or - \/Z/J/(hKep(A) - Vveff (P)) p2
G220 .
29 . (3.241)

80



ET

Figure 4: The Delaunay angles

We conclude this classical section by giving analytical expressions for the eccentric anomaly u, the true
anomaly f, the longitude ¢ and the orbital radius r in terms of the Delaunay variables.

The (Kepler) equation
A=u—esinu,
(see (3.240)) can be inverted, for |e| < 1, as
u = ug(Ae):=X+ei()e)

e? e3
= At+esinA+ 0] sin2 A + T (—sin)\+3 sin3)\) + e, (3.242)

where 4@ is analytic in A € T and |e| < 1; via (3.238), e = e(A,T") = /1 — (I'/A)2, the relation (3.242)
yields an analytic expression of the eccentric anomaly as a function of the Delaunay variables A, A, T.
From the geometry of the ellipse it follows that (compare (A.306) in Appendix A)

tanf— 1+etanu
2_V1—e 2’

which can be written, for |e| < 1, as
£ = fy(u,e):=u+ef(u,e)
e? el
= wu+esin(u) + ) sin2u + 12 (3 sinu+sin3u) +eee, (3.243)

where f is analytic in u € T and |e| < 1. Through (3.242) and (3.238), the expression (3.243) yields an
analytic expression of the true anomaly f in terms of A\, A, I":

£ = fH(\e):=hhluo(\e),e) = A+ ef(\e)
3
A+ 2e sin)\-l-gez sin2A+f—2(—3sinA+13 sin3A)+--- . (3.244)
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As above e = e(A, T).
The longitude ¢ by (3.241) is simply ¢ = v+ and can, therefore, be expressed as a function of A, v, A, T.
From the geometry of the ellipse it follows that (compare (A.306) in Appendix A) r is related to a, e

and u by
r=a(l —ecosu) .

Thus by (3.239), (3.238) and (3.242) we find

r ro(A, €)
a a
= 1—ecosug()e)
e? 3,
l—ecos/\+5(1—cos2)\)+ge (cosA—cosS/\)+--- , (3.245)

where e = e(A,T') and a = a(A) := A%/(u>M) (see (3.238) and (3.239)).

3.3 The restricted, circular, planar three-body problem viewed as nearly-
integrable Hamiltonian system

Let us go back to (3.215). Since we shall study the planar three-body problem, we assume that the
motion takes place on the plane hosting the Keplerian motion of Py and P;. This amounts to require

W =0=4al", i=01,2. (3-246)

Observe that, since we are considering the restricted problem (i.e. we have set in (3.214) mg = 0), the
“conservation laws” are those of the two-body system Py — P;: in particular the total angular momentum
is parallel to the us-axis (consistently with (3.246)) and the center of mass (and hence the origin of the
u-frame) is simply

mou'® +myu® =0. (3.247)

Next, we pass, as in § 3.2, to heliocentric coordinates:
@D,0) = u® —u©® | (@®,0):= u® —4© | (a:<1>,x<2> c R2) :

which transform (3.215) into

" o)

x = - Om ; MO =Mmg + My ; (3248)
2 1 2 1

o e 20 22 _ o) 5249

@R T M pmpE T M e — R

In view of (3.247) the motion in the original u-coordinates is related to the motion in the heliocentric
coordinates by

w0 = (%xu),o) oo = (Z_me,o) o ou® = (x(z) _ %“’(1)’0) _

The equation in (3.248) describes the decoupled two-body system Py — Py, which has been discussed in
§ 3.2.
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In the restricted, circular, planar three-body problem such motion is assumed to be circular.

It is convenient to fix the measure units for lengths and masses so that the (fixed) distance between the
two primary bodies is one and the sum of their masses is one:

dist(Po, P1) =1, My:=mog+my =1. (3.250)
Recalling Remark 3.2, one sees that the period of revolution of Py and P; around their center of mass
(the “year”) is, in such units, 2m; the z))-motion is simply (compare (3.235))

20 (1) = 20 (o + ) == (cos(to +1),sin(to + t)) .

Even though the system of equations (3.248) and (3.249) is not a Hamiltonian system of equation,
(3.248) and (3.249) taken separately are Hamiltonian: we have already seen that (3.248) represent just
the equations of a two-body system; equations (3.249) represent a 2%—degree—of—freedom Hamiltonian
system with Hamiltonian

- xX@)32 1 1
Hi(z®,x® ¢ ::l - + pmy (2@ - 20 (4)) — py ———————— ;
e )= g oy +ama (o300 —
(?, X)) e R*\{0} xR? , teT, (3.251)

with respect to the standard symplectic form dz(® A dX(®; here, u > 0 is a free parameter. To make
the system (3.251) autonomous, we introduce a linear symplectic variable T conjugated to time 7 = ¢:

|X(2)|2 1 (2) (1) 1
= — pmg + T+ pma (2 20 (T) ) — prg ——————
2u 2] (- #0) 2@ — 2l (7)]
(D, X®) e R\{0} xR? , (r,T) €T xR (3.252)

Remark 3.4 In the limiting case of a primary body with mass m; = 0, the Hamiltonian H; describes
a two-body system as in (3.220) with “total mass”

M =mq )
reflecting the fact that the asteroid mass has been set equal to zero.

If the mass my does not vanish but it is small compared to the mass of my, the system (3.252) may
be viewed as a nearly-integrable system. This is more transparent if we use, for the integrable part, the
Delaunay variables introduced in § 3.2 (see in particular (3.236)). Recall that the symplectic transfor-
mation ¢p, mapping the Delaunay variables to the original Cartesian variables, depends parametrically
also on g and M and that M is now mg. Next, we choose the free parameter p so as to make the
Keplerian part equal to —1/(2A%) (see (3.254) below) and we introduce also a perturbation parameter
e closely related to the mass my of the primary body:
1 mi my

b= —=, €= = . (3.253)
m(2)/3 m(2]/3 (1—my)2/3

Now, letting
(A 7,A,T) = ¢p' (=), X))
éo (A1 A 1), (1, T)) = (b0 (A7 A D), (7, T))
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we find that®®

272 Ce® — 20 (7

circ

. N 1 1
H2 = H1 o ¢D =———+T+e¢ (.T(z) . .73((:}30(7') —()|> ) (3254)

where, of course, z(?) is now a function of the new symplectic variables.

Let us now analyze more in detail the perturbing function in (3.254).

Recalling the definition of ¢ in (3.221), one sees that the angle between the rays (0,2(?)) and (0, :cgr)c)
isp—r.

)
ey
®
r
-
() !
x
y 1
Z1
Figure 5: Angle variables for the RCPTBP
Therefore, if we let
o = |2,
we get
=y + T+ (p=7) .
=——s e|racos(p —71) — .
2 2A? 2OO8lP V1412 —2rycos(p —7)

Recall ((3.241)) that ¢ = v + f and ((3.244)) that f = fy(),e) := X + ef (), €). Thus

SO_T:f+rY—T:A+’y—T+€?(A,€)-

58Recall (3.237).
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Such relation suggests to make a new linear symplectic change of variables, by setting

5t L=A, G=T, T=T+T
lin =X, g=v—17, T=T.

Now, recalling (3.245), (3.253) and (3.250) we see that
a=L/(*M) = my/°L?
so that, in the new symplectic variables, it is:

<p—7'=f+g=f0(€,e)+g=€+g+ef(£,e),
ry = ro(Le) = my/>L2(1 — ecosug(L,e)) .
where, as above, e = e¢(L,G) = /1 — (G/L)2.

Notice that the positions (3.253) and (3.250) define implicitly mgy and hence m(l)/ % as a (analytic) function
of? &:

mg(€) =1—6+§62—§63+"',
mo ()3 = 1_§+ %52 _ %534—---
Thus, introducing the functions
ac = ac(L):=mo(e)/*L?,
pe = p(6,L,G) = a.(L) (1—ecosu0(e,e(L,G))) :
o = o(,L,G):=e(L,G) f(L,e(L,Q)),
we get
Hs := Hy 0 i = ~5p +T=G+eF(ly,L,G),
where

1

F,:=p.cos({+g+0)— '
== pecos(f +g+0) V1+p2 = 2p.cos(l+ g +0)

(3.255)

'_Ehe variable 7 is cyclic (this is the reason for having introduced <;A$1in) and the linear constant of motion
T can be dropped from Hjz. The final form of the Hamiltonian for the restricted, circular, planar,
three-body-problem is:

Hynell,9, 1, G:€) /= =13 — G +eFa(l,g,1,G) (3.256)

the phase space is the two-torus T? times the positive cone {0 < G < L}; the symplectic form is the
standard two-form df A dL + dg A dG.

591In fact, from (3.253) one can invert the function mi — e(m1) = m1/(1 —m1)2/3 and check that the inverse function
1
mi1(e) =1 — mo(e) has radius of convergence (27/4)3 = 1.889881....
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From the point of view of KAM theory, the integrable part of (3.256)

1
Ho(L,G) = Hprc's:O = _m -G,
is iso-energetically non-degenerate since

& 0

HY H| 3

det = det 0 0 -1 :ﬁ>0'

Hy 0

&= -1 0

3.4 The Sun-Jupiter-Asteroid problem

In order to apply the above theory to a physical model, we shall consider a restricted, circular, planar
three-body problem extrapolated from the Solar system. As primary bodies, we take (obviously) the
Sun (P,) and Jupiter (P;), and we shall approximate their motion by a circular one. In reality Jupiter
is observed to revolve on an “osculating” ellipse of eccentricity

ey =4.82-102,

and, as we shall explain below, considering circular the orbit of Jupiter is the worst physical approxima-
tion in our model. The size of the perturbation parameter ¢ as defined above (see (3.253) and (3.250))
is given by?°

my/(ms + my)

(ms/(ms + mJ))2/3

As third body, assumed not to affect the motion of the primaries, we take an asteroid from the Asteroidal
belt: this is an instance of inner restricted problem since the Asteroidal belt lies between the Sun and
the trajectory of Jupiter. We shall consider asteroids whose observed osculating ellipses around the Sun
are rather eccentric®! (e ~ 0.2,0.3).

£, :=0.954-107° ~ (3.257)

3.4.1 The Sun-Jupiter-Victoria model

To be specific we choose the asteroid 12 Victoria®? whose observed osculating data are the following
ay ~0.449, ey ~0220, oy ~1.961-10" 2, (3.258)

where: ay denotes®® the ratio between the observed semi-major axis of Victoria and that of Jupiter; ey
is the observed eccentricity of the osculating ellipse of Victoria and uy is the relative inclination of the
observed orbital planes of Victoria and Jupiter measured in degrees and normalized to one®*.

60

my:=mass of Jupiter ~ 1.9 x 1027 Kg, mg:=mass of the Sun ~ 1.991 x 1030 Kg; with our rescaling (see (3.250)),
mo = mg/(mg + my) and m1 = my/(mg + my).

61There are various reasons to make this choice: we do not want to introduce extra “smallness” parameters besides the
ratio of masses of the primaries; the mathematical model arising is “non-degenerate”; it is a case quite common in the
observed data, ...

62The number refers to the standard classification of asteroidal objects; see, e.g., [133].

63Recall that in our units the orbital radius of the primaries is normalized to be 1.

64The observed inclination on the ecliptic of Jupiter is 1.305° while that of Victoria is 8.363° and the normalized relative
inclination is 7y ~ (8.363 — 1.305)/360.
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Clearly, in considering Sun-Jupiter-Victoria as a restricted, circular, planar three-body problem, we are
making a lot of approximations disregarding: the eccentricity of Jupiter; the inclinations; the gravita-
tional effects of all other bodies in the Solar system (most notably Mars and Saturn); the shape and
extension of the bodies (in particular, asteroids are typically far from being spherical and, therefore, far
from being well approximated by point masses); dissipative phenomena, (tides, solar winds, Yarkovsky
effect,...),...

A rough quantitative analysis shows, however, that the worst approximation is actually to neglect
Jupiter’s eccentricity.

Accordingly, we shall adopt the following “empirical criterion”: in considering the perturbation function
F. in (3.255) we shall expand in% e and a neglecting the contributions of O(e?), O(a®), O(e?a?) and
O(a®e) since such terms in the case e = ey and a = ay are (definitely) smaller than e;:

ey ~1.06-107%, a¥ ~819.1077,
evay ~9.76-107° | aYey ~1.99-107% .

Also, in view of (3.257), we shall neglect terms of order O(g) in F, i.e., we shall replace F; by Fp. This
1/3

amounts to replace my’~ with 1 and a. and p. with, respectively,

ap = L?, po = ag (1 —ecosug(¥, e)) , (e =(1- GZ/L2)1/2) ) (3.259)
An easy computation (based on (3.244) and (3.245)) shows that, setting

Fo = Z ij(ﬁ,g)ejaok 5
J,k>0

then the function F{™"¢ obtained from F. neglecting the above mentioned terms is given by:

—Ffrune = Z Fir (L, g)elao®

i<3,k<6
Jtk<4&j>1

2
[4%)) 9 4
= 143 7
T T
_aOQe
2

3 . 15
+(§a0 + 570 ) cos({ + g)

9
~1 ao” e cos(f + 2g)

cos/t

3 2 5 4
+(Za0 +Ea0 ) cos(2£+2g)

3
+Z ap’ e cos(30+2g)

5 5 35
+<§a0 +@a0 ) cos(3£+3g)

35
+6—4 ao* cos(4f +4g)

63
+@a0 cos(5f+5g) .

65F, is analytic for a] < 1 and |e| < 1.
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We make a final addition: to (somehow) balance the fact that the lower harmonics are physically more
important than the higher ones®%, we reintroduce in the lowest order harmonics the first discarded term.
We are then led to the following one-parameter family of Hamiltonians:

1
Hs_]v(f,g,L,G; 6) = —m -G - EPSJv(f,g,L,G) y (3.260)

= HO(LaG)+6H1(£agaLaG) ’ (E’g)ETQ ) 0<G<L7
with

2
— a0 9 4,3 95
Psz(E,g,L,G) = 1+ 4 + 64 ag” + ) ap-e (3261)

—(2 + 16a0 ) ao“e cos’t

3 15
+(— ao® + aaog‘) cos({ + g)

_(_ + —a02) ao’e cos(f + 2g)

W | © 0o
= ot

)
9 92, 9 4
(4a0 +16a0)c0s(2€+2g)

3
+Z ap’e cos(34+2g)

+

b} 35
+(— ao® + —= ao5) cos(34+3g)

8 128
35
+@ ao* cos(4f +4g)
+ﬁsa0 cos(50+59) ; <a0—L ,e=14/1 77 |

and fixing the perturbation parameter at the value € = ¢,;, we obtain the Sun-Jupiter-Victoria Hamil-
tonian:

_ 1
HSJV(Z,Q,L,G) = _E_G_ES‘]PSJV(Z797LJG) )

= H(](L,G)+ESJH1(E797L7G) -

Remark 3.5 (i) Note that
a02€2 — L4 _G2L2 ,

so that the eccentricity e = e(L, G) appears in Psyy, only linearly and in front of the odd Fourier modes.
(ii) Observe, also, that

Oe Oe

2 2 -1 2
— — = GL* .
90 aL e T "

Thus, in the gradient of the perturbation Psjv, the expressions which are not polynomial in (L, G)
appear only through e and e~!.

=e ' G°L,

66Think, for example, to averaging theory.
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Remark 3.6 (i) Of course, other inner asteroids with similar orbital characteristics could as well be
considered: Victoria is just a sample (with an encouraging name). For example, our main stability
theorem applies also to the asteroids Iris (7) and Renzia (1204). The orbital elements of such asteroids
are given by:

anis ~ 0.459 | emis ~ 0.230 , s ~ 1.172-1072
GRenzia ~ 0.435 , €Renzia ~ 0.294 | IRenzia ~ 1.603-1072 .

(ii) A numerical investigation of the validity of the model with Hamiltonian (3.260)-(3.261) has been
performed in [33], where Laskar’s frequency analysis ([86]) has been used to determine the critical break-
down threshold of some invariant tori. The dynamics of the truncated Hamiltonian has been compared
with the dynamics generated by the complete Hamiltonian function. The results show, in particular,
that, in the case of Victoria, the break-down threshold of upper and lower bounding tori agrees for
both models. A similar numerical analysis has been performed in order to evaluate the effect of the
eccentricity of the orbit of Jupiter and of the relative inclination of the asteroid-Jupiter orbits and no
relevant discrepancy has been found in both models.

3.4.2 The Sun-Jupiter-Victoria phase space

Let us now select the region of the phase space for the dynamical system (3.260), which may be considered
more interesting from an astronomical point of view.

First of all, recall the observed osculating data for the asteroid Victoria (3.258), which are obtained com-
puting the instantaneous osculating ellipses of the two-body system Sun-Asteroid (see [133]). In view of
the approximations we have made and of the relation (3.259), we compute the corresponding “observed”
value for the action variable L and hence, by the eccentricity relation in (3.259), the “observed” value
of the action variable G:

vay >~ 0.670 =: LV ;

Ly /1—€% ~0.654=:Gy .

Taking into account that the observed astronomical data are given in terms of “osculating” Keplerian
ellipses, it seems reasonable to define the “osculating energy value” in terms of the Keplerian approxi-
mation. However, since the “secular” effects®? are also certainly noticeable, we shall introduce them into
the definition of the osculating energy value. Recalling (3.260), (3.261) and point (i) of Remark 3.5, we

therefore define E\(? ) and E\(,1 ) as follows

1
Ho(Ly,Gy) = —=—=5 — Gy ~ —1.768 =: B\,
202,
LY 9 3
(Hi(-,Lv,Gv)) = —(1 + ot Vg (L4 - G%,L%,)) ~ —1.060 =: BV |
By(e) := B + B . (3.262)

The osculating energy level of the Sun-Jupiter-Victoria model is, then, defined as

By :=FEy(s,) = B + &, B ~ —1.769 .

67Roughly speaking, the effects of the average over the angles of the perturbation.
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From now on, our theorems will be concerned with such one-parameter family of energy surfaces:
S.v = Hgyy (Ev(e)) -

Next, we consider two invariant tori on Sy v, which bound from above and below the observed value
Lvy: we define ~
Ly =Ly £0.001.

The corresponding frequencies are:

L 8Hy (1 N
S (ii’ 1) = (Gg, 1) .

Since we need Diophantine frequencies to study the KAM continuation of unperturbed tori, we proceed
as follows. We compute the continued fraction representation up to the order 5 of the numbers a4 and,
then, we modify the frequencies by adding a tail of all one’s. In such a way we obtain two quadratic
“noble” numbers a4 given by:

a_ = [3;3,4,2,1%°] = 3.30976937631389...
ay = [3;2,1,17,5,1%°] = 3.33955990647860... . (3.263)
We can now define the Diophantine frequencies
wy = (ag,—1). (3.264)
The corresponding Diophantine constants are easily computed (compare § B.1, Appendix B):
Tei=T=1,  y_:=7.224496-107%, 4 :=3.324329-1072 .

We are interested in the KAM continuation of the following unperturbed tori, which lie on the energy
level Hy ' (E():

Tot = {(L+,G+)} x T2, (3.265)
with68 . .
— — _ _ m(0)
L, := 7 Gy = % E,,

and we shall prove the following statement, which shall be made precise in the next paragraph.

Claim 3.1 The tori Ts& (3.265) can be analytically continued for®® |e| < 103 into invariant tori T
on the energy level S.v = Hg}\,(Ev(€)) keeping fized the ratio of the frequencies. Since the system
(3.260)-(3.261) is a two-degree-of-freedom, iso-energetically non-degenerate, the tori 7;; and 7;; are
the boundary of an invariant region J; such region contains the surface (Lv,Gv) x T2, showing, in
particular, that the motions

(£(0),9(0), L(1), G (1)) = ¢ (o, g0, L, G)

belongs for any t € R and any (o, go) € T2 to the region J. As a corollary the values of the perturbed
integrals L(t) and G(t) stay close to their initial values Ly and Gy forever and the actual motion (in
the mathematical model) is nearly elliptical with osculating orbital values close to the observed ones.

68 The numerical values of L4+ and G+ are
Ly =0.671017866335225... , G4 = 0.656922466367295... ,
L_ =0.669016633073288... , G- = 0.650269096020133... . (3.266)

69Recall from (3.257) that g5; ~ 0.954 - 1073 < 1073,
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4 KAM stability of the Sun-Jupiter-Victoria problem

In this section we prove Claim 3.1, i.e., the stability of the Sun-Jupiter-Victoria problem modelled by a
restricted, circular, planar three-body problem, as described in § 3.4.

The analysis in divided into four mains steps, which we proceed to briefly describe. All of these steps
are “computer assisted”, namely, they are implemented on a computer using the so-called “interval
arithmetic” to keep track of the numerical errors introduced by the machine. Interval arithmetic is a
standard technique, which allows to use computers in order to prove theorems; see Appendix C for more
information.

1. Following § 2.8.2, we provide formulae for the explicit computation of the iso-energetic Lindstedt
series (up to any order in £) of KAM tori having Diophantine frequencies. We then compute the
122 _order truncation of the iso-energetic Lindstedt series for two tori 7% (described in Claim 3.1);

the energy level being fixed at the value Ey(e), see (3.262). Such 12*"-order truncations of the
iso-energetic Lindstedt series are taken as approximate tori’®

W@, v WO = (uOF HOF ,HOF) (4.267)

By applying the KAM map K in (2.63) one can get better approximate tori
(ulHDE GHDE HDEY — o (DF y(DF DF) (4.268)
In the next two steps, implementing with estimates this strategy, one shows that this is actually

the case.

2. We provide formulae for estimating the input parameters of the KAM norm map K defined in
Proposition 2.2 associated to the approximate tori defined in (4.267). The perturbation parameter
€ is taken in the complex disk

E:={le] < e} :={le| <1073}, (4.269)

which contains the physical perturbation parameter ¢, of the Sun-Jupiter problem. Recall that in
our choice of the norms it is taken the supremum over complex € for |e| < g so that, as already
pointed out, the results holds uniformly for all |¢| < 10~2; compare § 2.8.1.

3. We iterate the KAM map K a few times so as to obtain new approximate tori as in (4.268). The
norms relative to these new approximate tori are controlled by means of the KAM norm map K.

4. We finally apply the iso-energetic KAM theorem 2.1 (in the parameter dependent case described
in § 2.8.1 with £ as in (4.269)) to the two approximate tori

(u,v,w) = (u, v, wh) = W3+ )+ HE+)

and
(w,v,w) = (u™,v",w”) = (@, o™= WwH7)

obtaining two invariant tori (4%, 5+, &%) on the energy level HSj\, (Ey). Claim 3.1 will then easily
follow.

70Often, to avoid heavy notations, we shall drop the suffix 4, but keep in mind that, in actual computations, one has
to treat separately the prolongation of the two tori %i.
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4.1 Iso-energetic Lindstedt series for the Sun-Jupiter-Asteroid problem and
choice of the initial approximate tori (u(0%, v(O% ,(0F)

Recall that the coefficients of the iso-energetic Lindstedt series, u;, v;, a;, in (2.207) are determined

recursively as follows (compare Proposition 2.3). The functions X, Y%, Zi in (2.208) are computed in

terms of yo, w = wo and {u;, v;, a;} with 1 < j <k —1 (for k =1, X;, Y1, Z; depend only upon yqg

and w); then, (2.209), (2.210), (2.212) and (2.213) yield uy, vg and ay.

In the Sun-Jupiter-Victoria model we have:

d=2, z = (z1,22) = ({,9) , y= (y1,92) = (L,G) ,
1
Ho(y) = 57 ¥ Hy(z,y) = —Psgv(z1,22,91,92) ,
1
1
Yo = (Yo1,Yo2) , wo = (wo1,wo2) = | —5-,—1),
(y81 )
_ 3 1 4
w0 o 0
_ — -1 _ 1
AO - 0 0 1 ) AO - _yf}ﬂ _@(2): _1
1
& ~10 0 -1 0
(4.270)
In view of § 3.4.2, the specific values to be considered are™
yo =y~ = (yi',y3) == (L+,G1) , wo = wt = (ax,—1),
Eo=EY =Hyy*), E=EY, E=0 Vk>2. (4.271)

We shall treat simultaneously the two cases corresponding to the two tori 7., often omitting in the
notation the suffix *.

In order, to compute explicitly (and effectively) the expansions appearing in the definitions of X = X ;t,
Yy, = YE, Zy = ZF (see (2.208)), it is helpful the following simple

Lemma 4.1 For p,j € Z, denote by If the following set of indices
77 = {au),___,a(p) ev: ¥ ral® zj} _

1<2<5
1<g<p

Let
F=> frly—no)"

reNd

be a convergent power series in a neighborhood of yo € C¢; let ¢ € C — E;io w;el € C? be convergent
power series such that wo = yo; w; = (Wj1,...,wjq). Then

f(j;f;szj)

e |(1(1)|1!. ..|(1(d)|1! aﬁq) j
= f(yO) + Z Z f(\a(l)\l,...,|a(d)|1) O[(l)' . a(d); H w(fq €l .

= d . . 1<£<j5

=1 \ o), al@er; 1565

"See, in particular, (2.205), (2.206), (3.262) and (3.264).
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The proof is standard™. |

Another useful (from the computational viewpoint) simple result is:

oo
Lemma 4.2 Lete € C — Zwkek € C be a complex power series. Then,
k=0

exp (kz_owkek) = kzzobksk , (4.272)

with by = exp(wp) and, for k > 1,

| =
el

k
bk = Zjbk_jwj =
Jj=1

To check (4.273), differentiate (4.272) with respect to €, use (4.272) to eliminate the exponential and
equate coefficients of the power series. |

k—1
> (k=) bjwi_; (4.273)
j=0

Before proceeding, we recall in the next remark the form of the perturbation function H; = —Psjy.

Remark 4.1 From § 3.4.1 it follows that H; and its derivatives are of the form

Z fn(y)cn(w) )

neN

where A is a finite set in Z2, f,, are real-analytic functions in a neighborhood of yo,

)= 7 w—w)", (4.274)

rEN2

and the ¢;,’s are either all cos(n - z) (if the number of z-derivatives of H; is even) or all sin(n - z) (if the
number of z-derivatives of Hy is odd). Furthermore, (recall also Remark 3.5) the Fourier coefficients f,,
are of the form

cylvhe®)', e®)=V1-(/v)?, (c€R,jleZ, keN). (4.275)

In fact, for the first order derivatives of H; the above exponents j and k assume only non-negative

values while £ assumes the values —1,0, 1. The computation of the coefficients fy(f) is seen to be a simple
exercise, which can be implemented, in a fast way, on a computer.

Let us turn to the “explicit” computation of X}, Yy and Zy in (2.208).

Let us set (ug,vg,a0) = (0,40,0) and assume to know the coefficients of the iso-energetic Lindstedt
series

+ ,,+ + .
(Uj,'l}j,(lj):(uj,”l}j,(lj), Jgk_]-a
i J i
72Recall that (ng) = Z J—' % .
a!
£=1 aeN™: |a|y=j
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for some k > 1.
In view of Lemma 4.2, for 0 < h < k — 1, we find that™

k=1 (h) (h)
; bn”(6) + b2,(6)
cos(n-G-l—Zn-ujsJ) = s
Jj=1
i h
k-1 (h) (h)
; bn” (6) — b2, (6)
i . s e - = M7 TmnAvd
sm(n 9+Zn uje) 5 )
| J=1 h
where the b%h) are recursively defined as
1t _ = _
b (6) = exp(in-0) ,  bM(6) = 7 Db (n-uy) = 5 2. (h=1J) b9 (n - up_j) -
j=1 7=0

Thus, by Lemma 4.1 and (4.276), one finds, for h=k —1 or h =k,

Z fn(yo + kz:lsjvj) cn(ﬁ + gajuj)
neN j=1 j=1

bslh—f) + b(_hn_l) (a)

SIRINCIR o
_ b AT (@ ey [ ]! @)\
- Z Z 2 fa ' ' a1 a1 H (fn )

0<E<h (1) (2) T2 1<e'<e
men ohael 12422

h

when the ¢,(x)’s are cos(n - x)’s, and

Z fn(yo + kz:lejvj) cn(e + Esjuj)
neN j=1 =

h—¢ h—¢ q
> ) Mﬂ\a“m,\a%) laM]ita®)],! I (a(yq))ai:)
2i " oD @) "

0<t<h (1) g(2) T2 1<e'<e
n eN ¢ 1542

h

when the ¢, (z)’s are sin(n - x)’s.

(4.276)

At this point, it is simple to compute the Fourier coefficients of X ;t and YkjE and to compute, via (2.209),
(2.210), (2.212) and (2.213), the (Fourier coefficients of the ) functions uki, Uki and the number aki.

Implementing the above formulae on a computer machine, keeping track of numerical errors by interval
arithmetic, one can, now, compute the iso-energetic Lindstedt series for the Sun-Jupiter-Victoria model

up to order k = 12.
In fact, in view of the particular symmetry of the interaction in the three-body-problem (Psjv

is even

in x), it turns out that the u;’s are odd in 6 and the vy’s are even in §. Therefore the u;’s and v;’s have

a representation of the form

+ _ b+
up = Z u,y = sin(n - 6)
neNY
+ k=t
v, = Z = cos(n - 0) ,
neNY
1 d
73Recall that [] = .
J ]!dsj e=0
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Table 1: Number of Fourier modes of the Lindstedt series kt'-coefficient

k Nrour (Ukl) Nrour (ukZ) Nrour ('Ukl) Nrour (Uk2)
1 8 3 9 8

2 38 28 40 39

3 104 89 107 106
4 220 200 224 223
b) 400 375 405 404
6 658 628 664 663
7 1008 973 1015 1014
8 1464 1424 1472 1471
9 2040 1995 2049 2048
10 2750 2700 2760 2759
11 3608 3553 3619 3618
12 4628 4568 4640 4639

with u** and vf* in R? and where N and N are suitable finite subset of Z2. In Table 1 we report
the number of non-vanishing Fourier coefficients, denoted by Npoyu:(+), of each component of uy and vy,
for k < 12; the cardinality of N and N} coincide, respectively, with Npour(ug1) and Npour(Vk1)-

We now define the approximate torus (u(?), v(®),w(®) = (w(OF yOF ,(0)F) a5 the 12tP-order truncation
of the iso-energetic Lindstedt series:

(u(®, v @) (z ebu gt + ZE vE, (1 + as)w ) (4.278)
with
12
ay = Zakisk . (4.279)
k=1

In particular, following the above formulae and using interval arithmetic on a computer, we find that
4+ =—2.217750...-107* |  a_ = —2.255270...-107* . (4.280)

4.2 Evaluation of the input parameters of the KAM norm map associated
to the approximate tori (u(9* v(0* ,(0)F)

4.2.1 Choice of analyticity radii and auxiliary parameters

To evaluate the KAM norm map K defined in Proposition 2.2 (see also § 2.8.1 for the parameter-
dependent case), we have to fix the parameters £, r (which measure the domain where Hgjv is con-
sidered), £(© (which measures the domain where the approximate torus is considered), & (an auxiliary
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prefixed number in (1,2]), p (a norm weight) and e¢ (which measures the domain where the parameter

e is allowed to vary). It is convenient to make the following choices™:
&Y :=0.103782..., rT = 4.481700...- 10 %,
£ :=0.104159... r = 4.304517...- 1074
g0:=10"%, ¢©@.=01,
k:=1.01, p:=02.

4.2.2 Evaluation of E, ,

Recall that E, , are upper bounds on the (p + g)-tensor of derivatives 020JH (see (2.125)). Recalling
(2.71), we shall let E, ; be positive numbers such that

2
‘. ) SEo’q s

> (108, vs, Holle + 20 108,45, Hy

g0 | O 0%, w08 s, Hi2, <Epy, ifp#0,

where the indices i; and j; take the values 1 and 2.

The various terms appearing in the derivatives of H; can be estimated making use of the majorizations
discussed in § 2.5.6 (see, in particular (2.78), (2.77)), as follows. If k € N and i = 1,2, we have”

lyfllr < (yoi +7)* lly "Nl < (yoi —7) % . (4.281)
Positive and negative powers of e(y) may be bounded by (k > 1):

k

k —E
||e<y)’°||rs<z— 1—(%)2) , ||e(y)'°||Ts(1—(z§jj :)2) L a2y

The function Hy and its derivatives are of the form cy; I+ y% with ¢ € R, j,k € N and such terms can
be bounded, using (4.281), by

leyr? + w5 llr < le| (or — 7)™ + (yo2 +1)*

For example, if ¢ > 2, then

q+ ]. ) g+1 ! 1
\/ S 108,y Holl2 = [108, Holl, = LD e < @D (422

2 (Li — ’I")q+2 ’

74Such choices have been made essentially by a “trial and error” method, trying to optimize the various algorithms and
programs involved.
"5Recall (see (3.266)) that yo = (L+,G+) € Rﬂ_ and that r¥ < y(:)ti.
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The function H; and its derivatives, as pointed out in Remark 4.1, are of the form ) - a,(y)ca(2),
with a,(y) as in (4.275). Since”®

| 3 aneat=)]

neN T

¢S > llan®)ll-exp(Inlé)
neN

we see that H; and its derivatives may be estimated straightforwardly using (4.281) and (4.282).
Implementing this discussion one obtains the following numerical values:

Yo, +r <0.669464...,  yhh +rT <0.650717...
(yd, —rt)~! < 1.495733..., (ydy —r)~' < 1.538885... ,
+ +4\ 2
2 J1- (yﬂfi) < 1.770460...
Yor — 1T

_1
2

+ +\2
(1 - (yfjfi) ) < 4.356550...
Yor — T

Yor + 1 <0.671448..., Yoo + 7 <0.657352...,
(yor —7r 7)1 <1.491229...,  (yg —r ) ' < 1.523247...,
. -\ 2
92— \/1 _ (7'”0} tr ) < 1.802308...
Yor =7
1
|
(1 — (y"fi) > < 5.058391...
Yo — T
and
Ef,=5373428..-10°,  Ej, =3.515464...,
Ef, =5685744...-107% | Ef, = 15.384979... ,
Ef, =2211666...,  Ef, =0.413277...,
Ef, =119.267702...,  Ef, = 5.865020...- 107*

B, =5.527575...-107% ,  Ej, =3.488445...,

Er, =6.190221...-107%,  Ej, = 15.335556... ,
E;,=3.170738..,  Ej = 0.446508...,
Eq,y =159.060236...,  Ej, = 6.050803...- 107" .

4.2.3 Evaluation of U, v 7O a0+ 370
"6Recall (2.74).
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Recall the definitions of U, V, V, M and M in (2.91). In view of the representation (4.277), we have
that supr2 |Imuf| and ||Jv|] ¢ can be bounded by positive numbers U, ,go)i and Vk(o)i as follows””
¢

. 0)+
sup [Imuf| < ) |uf*|sinh(n)i6®) < U,
T5(0) neNY

3 [k exp(lnle®) < VO*
nEN;c’

0)+
loblleo < Y [k lexp(nle@) < VO,
nEN;c’

+
il < > k¥ exp(lnle®) < VO* .
nEN;c’

IA

1V lleo

Then, U@%, V(0% can be taken to be numbers such that?®

12
sup |Imu(O¥F| < ZESU,EO)i <U©O=*
d

£

Tecop k=1

12
0)* + 0)£ r(0)+
||U§ S Yoillew g < Zang(l) < V1( ) )
k=1

12
0+ + 0)+ _ t7(0)+
||’U§ = Yazlle e < ZESVk(Q) < Vz( ) )

k=1

12
[0@* — yF e ¢ < Y bV OE < VO
k=1

0)+ 0)+ 0V 04
[0 e < Iy |+ 1087 = v lleor ¢ < Iy | + KO = 7,0
5™ g e < lysal + V3" = V7%,

[0 [leo £ < lg°| + 100 = g5 llgor ¢ < lyg'| + VO = VO=.

(4.283)

(4.284)

Analogously, ||8pu||¢«) and [|0pv* ¢ can be bounded by positive numbers U®* and V(OF, such

that

We shall also need bounds on |9pui| and [v(®* — y&| for real 8, which are simply given by

[18puic o

180y Il

2 12

™

i,j=1 k=1 nEN,’;

2 12

IN

ij=1 k=1  neN?

2 12

1Bt o < | 3 (X eb X Imallih) < 00F

ij=1 k=1  neN@

77Observe that for n € Z¢ and 9 € Tg one has |Im sin(n - 0)| < sinh(|n|1£).
"8Recall that £ :={e € C: |¢| < &0}, g0 := 1073.

98

(Z 5’5 Z |nl| |u2§t|exp(|n|§(0)))2 < [0+ 7

> (X X |”f5|e><p(lnl§<°>))2 < 7O



12
< (0)+
0@ —yilloe < Y oeb D i < VO (4.285)
k=1 neNy
Finally, as M(O=, H(O)i, we can take positive numbers such that

1+ 0O < O (1— TO*)1 < FFOF

Implementing this discussion one obtains the following numerical values:

U0+ =3772624...-107% ,  V(O+ =0.933497...

VO =3144031...- 107, O+ = 4.084723...- 1074,
7O+ = 1.292660...- 103, I?;g;)]*' = 3.130263...- 107* ,
OO+ = 1.579746...- 1072, TOF = 1.302041.... 1072,
MO+ —1015797..., MO = 1.016051...

U©~ =4149873...-107% , V(= =0.939554...
V07 =3.052917.... 107, V{O7 =3.900402...- 104,
VO~ =1.256447...- 1073 , Ki(g_ = 3.014611...-10*,
7O~ =1.737659... - 1072, []’r(ggf =1.429971...-1072 |
MO- =1.017376..., M =1.017683....

In particular we have (see, also, (4.284))

U+ = 3.772624...- 1073 < 3.782624...- 1072 = £ — £(©) |

sup [vOF(6) — yd oo < max {V;OF, VOF} = 4.084723...- 107* < 4.481700...- 10~* =1 ,
']r2
£(0)
U~ =4.149873...- 1073 < 4.159873...- 1073 = £ — £ |
sup [vO~(6) — yg |oo < max {V;¥7, V") = 3.900402...- 10* < 4.304517...-. 104 =1,
2

T

showing that (2.92) is verified for our two approximate tori.

4.2.4 Evaluation of Z(O)i

Recall that A% is an upper bound on the norm of the (constant) matrix (A®*)~!, where A% is
the matrix A in™ (2.61) with (u,v,w) replaced by (u(®%, v(% (0% Dropping the suffix * we define

"9 We recall here the definition of A in (2.50):

(M = 1
A= , Ti=MTH M, x:=-MT1H), H’:=H(0+uv).
x(0) 0 p
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the matrix Ag as follows8°

3 1
. Oy Ho(yo) — w0 Rz . ) 40
A= I el I A Il B e
p E(s): _; 0 0 pP 0
Define, also, A; by letting
—0’H, — — @
A= Ao+ A, A= ()~ Holwo) (<X> ’ ) . (4.286)
x(0) — <2 0
We, then, will estimate
A= e = (T + Ag A T A e < AT (= [AGH [ALle) ™ (4.287)
A bound on Ag is immediately gotten using (2.65):
Lg 2L2 1
A <4 f=E+ =E 4+ - +20. (4.288)

9 "9 oLt

To give an upper bound on |A;|¢ we proceed as follows. Define the (2 x 2)-matrices B and C and the
vector b by letting

B +b
MY=T+B, HO+u®,0®)=082Hy(yo)+C, x= “’Op . (4.289)

By (4.284), the norm of B= 3", -, (—9u(®)* can be bounded, for real 6, by®*

1Bllo,e < l1ug”lo,e (1 = lluf”llo.e) ™" < T (1= T2 ™

real real

Recalling that H(x,y) = Ho(y) + eH1(z,y) and (4.284), we see that the norm of C can be bounded, for
real 6, by

A

ICllo.e < 185 Holl» 10 = yollo,e +eoll02Ha g
~-(0)+
1102 Holl» V.OF + 6l102Hl¢., -

real

IA

The estimate on the norm of b, for real 8, is similar and one gets

110l

0.e < 182Holl, VOF + eol|0,Hillg  + [|Bllo,e Eo,1 - (4.290)

real

Next, we estimate

T — 8. Ho(yo)llo,e

167 Ho(yo)B™ + (C + BOH®) (I + B")lo,e

< IBllo. 185 Ho(yo)| + (lICllo.e + lIBllo,e Eo,2) (1 + [I1Blloe) -
(4.291)

80The matrix Ay is related to but different from the matrix A in (4.270).
81 Recall (4.285).
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Notice that 3
L4 ’
while the estimate on ||0] Hol|» and |0f Hi ¢ . have been discussed in 4.2.2. Since (recall (2.66) and the

definition of b in (4.289)),
2
|A1|€<\/| — 92 Ho(yo)[” +2(%> 7

(4.291), (4.290) allow to bound A; in (4.286). A bound on |A~!|¢ now follows from (4.287) and (4.288).
Implementing this discussion one obtains the following numerical values®?

|82H0(Z/0)|

02H ||, < 15.384979... lO3HS || < 119.267702....,
102 Hy ||, < 15.335556...,  [|05H, ||¢ < 159.060236... ,
10, Hi g, < 1.794947...-10 %, [|02H " ||¢, < 0.366425...
10, Hy |lg,, < 1.938072...-1077 , 162 H, ||g» < 0.519666... ,
1B |lo,e <1.319218...- 1072, IC*]lo,e <0.403758...,

1B~ |lo,e < 1.450716...-102, IC [lo,e < 0.567616... ,
A" — 4630466..., A7 =42.991575... .

4.2.5 Evaluation of F(O%, GO+ p0)+

By definition, (u(?),v(®),w(0)) = (4(OF @)% ,(0%) solves, up to order 12 in €, the system (2.15) with
w= (1+a(e))ws and E = Ey(e) = E\(,O) —i—EE\(,l). Thus, inserting (u(?),v(®,w() into (2.16), we find®:

2 12 o0
W + D ou® — Hy0 +u®,0@) = k_ZB eF h_;m apDy uk—p — k_ZB [Hy(ﬁ +u(®), ’U(O))] . ek

24 12

=: Ze’“ Z athiUk—h+f(0)(035)

k=13 h=k—12

= f“”(H'E);
Dw(ow(o) +H$(€+u(°),v(0)) = Z Z apDy vp—p + Z [ 0+u (0))] e
k=13  h=k—12 k=13 k

24 12
Z ek Z anDe, vi—n + 30 (6;€)
k=13

h=k—12

82We reinsert, when necessary, the suffix *
83Recall that u(?) is a sum of sines and therefore odd in 6.
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= 990 ;

u0) = 0;
H(0,000) - (B +BY) = Y [H(0,0®(0)] <
k=13 k

= pO

We recall that F(®, G and h(?) are upper bounds on, respectively || f(O|cw ¢, |9 [l¢ ¢ and [A©)]¢.
We begin by estimating

24 12

1FNeoe < D g6 D lanl 1Dwrur—nlleo + 1FVlew e ;
k=13 h=k—12
24 12

lg@lew.e < Dol Do lanl IDusvr-nlleo + 15 lew e

k=13 h=k—12

Similarly to what done for example in (4.283), using (4.277), we shall bound ||D, uk—nll¢o) and
| Dey V—nllgor as follows:

IDostnlleo < D |ws-nf b exp(|n|e®) ;
neENY

[Dusvrnllew < D |we-n|[vE|exp(|n|g®) .
neNyY

We turn, now, to discuss estimates on ||f(0)||§(0)75, 13 le ¢ and |h®|s, which are based upon
Lemma 2.5.

Recalling once more Remark 4.1, we see that the form of (the components of ) O 50 and h© is equal
to the form of (sum of) fus in (2.81) with: j < M = 12,a9) = uF, b9 = o7, f(z,y) = X cn Fn(¥)en(2)
being given by H;, 0,, H; or 8y, H; for i = 0,1 and k = 1,2. For example

. 1
1(0) =— Z lwl ef — Z [8y1H1(0+u(0),v(0)) - e, (4.292)
£>13 (Ul ) k k>13
and the “f” (compare (2.84) and (2.81)) corresponding to the first sum in (4.292) is simply
1
f z,Y)=—""73,
(o) ==

while the “f” corresponding to the second sum in (4.292) is given by

fl@y)= D faly)cos(n =),

‘TLllSlO

with the explicit form of the f,,’s deduced by differentiating with respect to y; the function —H; = Psyy
given in (3.261) (where (L,G) = y). In general, the form of the coeflicients a,, has been spelled out in
Remark 4.1: see, in particular, (4.274).
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The functions F;, needed in order to apply Lemma 2.5 are obtained by majorizing the above mentioned
fr’s and can be obtained by using (2.78) in § 2.5.6. For example,
1 1 3
G
Y3 Yo1 — (Y1 — Yo1)
or ) -
cyse(y)™ < el (yo2 + (2 — vo2))  E(y)* .

The numbers Ag ) and ng ) are immediately computed using (4.277): for n € Z? we find

In - |lgw = H" > uﬁsin(mﬂ))g(o)
mEN;‘
< Y |n-ud|exp(m|¢®)
meN}
=: Ag);
and, for i =1, 2,
||’U;E||§(0) = H 7 cos(m - 9)|€(0)
mEN”
< 3 (o] exp(mle®)
meN
= BY . (4.293)

At this point the procedure should be clear. As an explicit (simple) example, an estimate, based on
Lemma 2.5, of the first sum in (4.292) is:

1 3 12 1 3 ‘
< — E . gl
< =352, B ) = l(Li—z;il BP)EJ') L ’

where the ij) is as in (4.293). Observe that the explicit computation of the 13 numbers

1 3 '
l(Li—Z , BY 51) ]j ’ (0<j<12)

may be trivially implemented on a machine.

- [((;T)B]fk

k>13 \U1

£©),€

Implementing this discussion one obtains the following numerical values:

FO+ < 7.463545...- 10722 | FO)- <8.488723...- 1072 |
GO+ <6.279188...-1071% | GO~ <7.520731...-10"'7 |
RO+ < 1.389888...-1072% |, RO~ <1.516977...-10 %2 .

The evaluation of the input parameters for the KAM norm map associated to the approximate tori
(uO%, v ,(0F) has been completed.
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4.3 Iterations of the KAM map

In this section we iterate the KAM norm map K defined in Proposition 2.2; recall, also, Remark 2.7. In
fact, we shall iterate K two times in order to construct the tori 7_*, for |¢| < 1073, and four times in
order to construct the tori 7_~.

We recall that the KAM norm map K (besides depending upon the fixed parameters k and p) depends
explicitly on the “analyticity losses” d; and on computable upper bounds o, on the “small divisors”
s1,0 and s, 1 with p =0,1,2; see (2.94) and footnote 31.

We begin by defining the (+-independent) “analyticity losses”:
8o == 1.237500...-1072, 6, := 6.187500...- 1073, &5 := 3.093750...-107%, J3 := 1.546875...- 1073 ,

so that, since ' '
€)= _o5, . 0<i<3,

we find

&M .= 2.575000...- 1072,  £® :=1.337500...- 1072,
£®) .= 7.187500...-107%, €™ :=4.093750...- 1072 .

The o, shall be taken as follows. First, observe that, since
wOF = (14 ax)ws

with (1 + ax) > 0 (compare (4.278), (4.279) and (4.280)), from the definition of s, (4, w), (2.86), one
has that
5pk (50 O0%) = (1 4 as) sp,8(502) -

Therefore, we turn to the definition of o} (0, w+). In view of the form of wy (see (3.264), (3.263)), by
Proposition B.1 (see, in particular, (B.307)) , we have that

lwy -m| > & Vin| > Ny
n1
jw_ | > B V| > N_
1|
7% = 2/(3+/5) and
N, =321, N™—=T11.

Thus, by Proposition B.2, we can take

V2
0; = E—
00,1(0;w) o5
P11 _5
opo(d;ws) = maxql, (1_)) = max exp(—d|n|) ,
e ('Vg)p or 1<ng <NE |ain1 —n2|1’
0<ng<ay N* +1
opa(Bi0s) 1= f0pes (0P +6pen()?
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where

(
. 1 p+1\ptl 1 1 ny exp(—4d|n|)
N H = —, ( ) ) T, (>
Preabion) = w5 5) Ggr e e Tawm ol
0$n2<cxiNi+1
\
(
p+1
5 (6 ws) ax 1 2= (p)P 1 1 . ny exp(—d|n|)
Oper (05w = max{ — , - , max —_
prea i ed’ e \e/ () T o laxn —mof?
L 0Sn2<aiNi+1
Recall that by construction (see (2.63))
i1
w®E = (H(l + a(f)i)) 1+4+as)ws ; (4.294)
Jj=0

recall also that (compare (2.107) and (2.106))
_ plD*
laW*| < % : (4.295)

We, therefore, see that, as explicit upper bounds

oi (8) == op (;00%)

D,k

for the *! iteration, one can recursively choose the following numbers:

1(;012::|: = (1+ax) opr(dsws) ,
(h i—1 n(])
pl,k = H (1 + 1; ) (1+ay) ap,k(é;wi) .
§=0
We, then, set for i > 0,
K(u®,0® @) = (u+D) o+ i+ (4.296)

and
,emg)k GRRVON 2ONCNACN V(O MO gy g A“))
— (§(i+1)’7(i+1)7F(i+1)7G(i+1)7ﬁ(i+1)7M(i+1)7ﬂ(i+1)7U(i+l)7V(i+1)7‘7(i+1)7z(i+1)) 7
provided (recall point (ii) of Remark 2.7)
=@ (@) n( )n() 5
M (n§)+pn3)+ Y ) Zn(])sr— [09(0) = goloo,e

)2 < (k= 1)nf?
Byl <1
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e <p,

M) <1,

At )\/ 2+ i) +nfgnl) <1,

n23 < 26; ,

Zn(n <r—sup sup [0(0) - yoloo (4.297)

2
le|<eo GE'JI‘E(O)

are satisfied. We will see, below, that (4.297) are recursively satisfied for 0 < i < 1 in the “+ case” and
for 0 <i < 3 on the “— case”.

In fact, implementing this discussion one obtains the following numerical values:

[ O+(0) — y* e < Z | > ktleh <5.051313.. .10,

k=1 neNy
12
0% —yFlloe <D D Julit|el <3.529186...-107*
k=1 nEN:
@ (0) —y e < Z‘ vﬁ“a’é < 6.291231...-107° ,
k=1 neNy
12
[0 =y 7lloe <D Y |vh|ek < 3.382850...- 1074,
k=1 neNy
v+ >3324329...-1072,  FM* <2411675...- 1072
G+ <1.264526...-1072° , R+ =0,
MO+ <1015797..., M <1.016051,
U+ <3.772624...-107% , v+ <0.933497...
T+ < 1.202660...- 1072, AN < 4.639476... ;
A= > 7.224496...- 1072,  FY~ <9.355917...- 10720
GV~ < 5.034106...- 1077, RO~ =90,
MM <1.017377..., M7 <1.017684...
UM~ <4.149878...-107% , vV~ <0.939554...
V- <1.256448...- 103, A" < 43.044043 ;
A= >7.224496...-107° ,  F®~ <1.524165...- 1072,
G®~ <9690154...-10721 , R =90
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M®- <1017377..., M7 <1.017684...

U®~ <4.149878...-107% , V@~ <0.939554...

V- <1.256448...-10°%, AT < 43.045127...;
3= > 7.224496...- 1072 | FG®)~ < 9.585046...- 1030 |
G®~ <6.720494....107%", B®- =90,

M®= <1.017377..., M <1.017684...

U~ <4.149878...-107% , vV~ <0.939554...

V- <1256448...- 1073, A < 43.045128....

With such values one verifies immediately that (4.297) are satisfied for 0 < 4 < 1 in the “+ case” and
for 0 <i < 3 in the “— case”. Therefore one can compute also:

42+ >3.324329....1072,  F®t <1.386735...- 10732,
Gt < 8650985...-107%° . Rt =9,

M@+ <1.015797..., M7 < 1.016051...

Ut <3.772624...-107% , V&t <0.933497...

VO+ < 1.202660...-10~% , AT < 4.630476... ;

AN~ >79224496...-107%,  F"W~ <9.194472...-10~*" |
GW~ <6.801231...- 10738 | M- =0,

M®- <1.017377..., MM <1.017684...

UM~ <4.149878...-1073 ,  V®~ <0.939554...

V- <1.256448...- 1073, A" < 43.045128....

These parameters will be used in the next step as input parameters for Theorem 2.1 for, respectively,
the “+ case” and the “— case”.

For later use, we report also the estimates measuring the distance between, respectively, (u(2)+, v(2)+),
(u®~,v™®~) from the Lindstedt polynomials (u(®+,v@+), (u(®~,v(©)~) defined in (4.278). Recalling
the definition of the KAM map (2.63) one has that

k—1 k-1

u®E = O+ 4 Z Zzi , (Rt = (OF Z wl:t ,

=0 1=0
and recalling that from that the norm of z; is bounded by ng? and that the norm of w; is bounded by
né? (compare (2.109) and (2.110)), one obtains the following bounds:

1
[u®+ — u@* |l < 3 it < 8.802982- 1071,
=0

1
0@+ — @[y < ST < 1.388253- 10712, (4.298)
=0
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for the “+ case” and, for the “- case”:

3
[u®= — @[l < 3 0l < 53320831077,
i=0

3
0@~ = 0O [l < )™ <8.353437- 10712 . (4.299)
=0

4.4 Application of the iso-energetic KAM theorem and perpetual stability
of the Sun-Jupiter-Victoria problem

We are, now, in a position to apply the iso-energetic KAM theorem 2.1 to the Sun-Jupiter-Victoria
problem. We shall treat simultaneously the “+ case” and the “— case”, i.e., the construction of the tori

T2 and T

As approximate solution (u,v,w) in Theorem 2.1, we take

(u,v,w) = (u(2)+,v(2)+,w(2)+) , (“+case”) ,

(u,v,w) := (P~ W~ W®H7) (“ — case”) , (4.300)
defined in (4.296). Then, (f,g,h) is defined as, respectively, (f&+,¢D+,0) and (f®~,g™®~,0). The

other parameters are, consistently, taken to be as follows: £*, r¥, k, p, €9 are as in § 4.2.1; yo = y™,
E :=E, as in (4.271); E, ; are as in § 4.2.2;

'7:7(19):&; 5:5(16):&, F:F(k:):l:; G:G(k):t’ h=h:0;
M=M®*; M= M(k)i 5 A= Z(k)i ; V=yv®=.

with ¥ = 2 in the “+ case” and k = 4 in the “— case”. Recalling (4.294) and (4.295), we see that as

parameter ) we can take
k—1 n(z’)j:
Q= (H (1+ e )) (1 +az) lws] ,

=0
with £ =1 in the “+ case” and k = 3 in the “— case”. Now, observe that, since (4.297) are verified for,
respectively, ¢ = 1 and ¢ = 3, by Proposition 2.2, (2.123) and (2.124) hold, i.e.,

sup |Imu(k)i| < E—f(k)i ) 7% := sup |U(k)i(9) = Yoloo <7,
Ti(k):{: T:(’“)i

for k = 2 and k = 4 in, respectively, the “+ case” and the “— case”. Thus (2.127) in Theorem 2.1 is
verified by our approximate tori (u,v,w) in (4.300).

Next, we evaluate the weighted norms defined in (2.130). Implementing this discussion one obtains the
following numerical values:

Eft =3.515464...,  E3t =15.384979...,
E3t =119.267702...,  E*t =4.770708... ,
Q*t =4.770708 ,
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B =1, B =23.853540...,

at =110.667935... pt =2.482139...- 10730
E;~ =3.488445..,  E;~ =15.335556...

E; =159.060236...,  E*~ = 6.362409...
Q" = 6.362409...

By =1, By =31.812047...,
o~ =1369.353670,  pu~ =1.967516...- 10738 .

Now, we fix £, by letting
£ := 1073, (4.301)

so that (see (2.131))
EF=10"%, & =7.734375...-10° 1.

The constants ¢, c« and ¢, according to Lemma 2.8, can be taken to be
¢y = 38528.281271... , Cir = 49.087867... ¢ = 111.699232... .

At this point we can check the main hypotheses of Theorem 2.1, namely (2.132).
Implementing this discussion one obtains the following numerical values:

(C* (H(2)+)10(M(2)+)4 (gr)7(4r+1) %;:(Oﬁ)z(ﬂék)‘l(ﬂf)‘l) ut < 0648020 < 1,

(e (FFF)> (M) (£5)727 0 (53)% (6)? — fﬁ) pt < 1.800024-10" < 1 ;

(c* (A7)0 (@) (¢r)=6r+D %L__(a—)i’(ﬁ(;)‘*(ﬂ;)‘*) p~ < 1.235897-107° < 1,

(e (BTU7)7 (M) (€0) 72 0 (85 (81 )?

- 1n-21
P ) i <5.485636-1072 < 1.

Thus, by Theorem 2.1 and its parameter-dependent case discussed in § 2.8.1, we obtain the following
existence result.

Theorem 4.1 Let H = Hy+eHy, E = E© +eEW; let, respectively, (u,v,w) = (u@+, 0@+ w@+)
(u,v,w) == (u(4)_,v(4)_,w(4)_),' let £, be as above®. Then, for any |e| < 1073, there exists constants

a* € R and real-analytic solutions (i™, %) of the system

wgt + Dy, 0F — Hy(0 + aF, 0*

84Compare (4.270), (4.271), (4.296), (4.278)-(4.279) and (4.301).
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where
1

wit 1= (1+ @)@ = L+ at) (TLA+a0))urt |
i=0

wa- = (1 +a )w? =1+ d)(ﬁ(l + a“”*))w* ,

=0

and

= = (2)+
- - . 2)4 [t —v®He, g — v lléce
max {|a*| , @t - u® e, s laF - e e 000 fe=}

?

p p
< 1.950724-1071 | (4.302)
— _ a(4)— = (4)-
o hae () @) 107 — v Mlee,  [10g —vp lew
max {Ja”|, 8~ —u® e, 157 - uf) e, ; , )
< 7.437412-1072% . (4.303)

Furthermore a* = a*(¢) is real-analytic on the complex disc {e € C : |¢| < 107} and
(8,€) = (@*(85¢),7%(8;¢))

is real-analytic on T  x {e € C: [¢] <107%}.
Finally, the Lindstedt polynomials (u(O+,v(O+) (w0~ v~ defined in (4.278) satisfy the bounds

it — u@F||e <8.804933-107" ,  [lot — 0O, < 1.427268-107'3
i~ —u©@ |l < 5.332984-107° , 167 — vl <8.353438-10712.  (4.304)

The bounds (4.302) and (4.303) come from (2.133) after having estimated
(6 () (@) 26 ot (5 2(51)?) wt < 1950723107,
(a (A7) (M=) D a—(ﬂg)2(ﬂ;)2) p~ < 7.437411...-1072 .

The statement about e-analyticity follows from § 2.8.1. Estimates (4.304) comes from (4.298), (4.299)
and (4.302), (4.303). 1

To complete the proof of Claim 3.1, it remains to show that
(), 9(8), (1), G (1)) = By ._.__ (€0,90, L, Gv)
belongs for any ¢t € R and any ({o, go) € T? to the region 7. To prove this, we shall show that

sup ¥ (0) < Ly < iqrrlzf o7 (9) , sup @y (0) < Gy < ier12f 05 (6)
T2 T2
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which clearly implies the above statement. Recalling that |w(®| < né?, by Theorem 4.1 and the above

definitions and estimates, we find:

12 2
sup 9 (0) < Li+ (Z 1073% Z |Ufb-1|_|) + 2775?” + p(r.h.s. of (4.302))
oET? k=1 neNy i=1

< 0.669270 ;

12 2
sup iy () < Gy + (Z 1073% Z |v£2+ ) + ZU%H +p(r.h.s. of (4.302))
i=1

peT* k=1 neNy
< 0.650639 ;

and

4

[ 12
inf 57(0) > Lo— (30107 37 ol ]) + 3o + p(rhs. of (4.303))
k=1

9cT?
€ neNy i=1

> 0.670771,

[ 12 4
inf 5, () > G — (210—3’c 3 |vﬁ;|) +3 +p(r.h.s. of (4.303))
k=1 i=1

per> L neNy ]
> 0.656566 .
We therefore see that
0.669270 < Ly = 0.670 < 0.670771 , 0.650639 < Gv = 0.654 < 0.656566 .

The proof of Claim 3.1 is completed. 1

A The ellipse

In this appendix we recall a few classical facts about ellipses.

Cartesian equation. An ellipse is a set of points in a plane with constant sum of distances from
two given points, called foci. The Cartesian equation of an ellipse, with respect to a reference plane
(w1, 72) € R? with origin chosen as the middle point of the segment joining the two foci, is given by

GGy

where 2a is the (constant) sum of distances between z and the foci and

(ia,h— (2)2,0) (A.305)
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are the coordinates of the foci. The positive numbers a and b are called, respectively, the major and the

minor semi-axis of the ellipse; the number
b 2
=0
a

is called the eccentricity of the ellipse. As it follows from (A.305), the distance ¢ between one focus and
the center x = 0 of the ellipse is given by
c=ea.

T2

T

d+d = cost = 2a

Figure 6: Ellipse of eccentricity 0.78

Focal equation. Introducing polar coordinates (f,r) in the above z-plane taking as pole the focus
O = (¢,0), as f the angle between the z;-axis and the axis joining O with the point z on the ellipse and
r = r(f) as the distance |z — O| one finds the following focal equation

D
=7r(f)i= ——W——
r=r(f) 1+ecosf’

where p is called the parameter of the ellipse and is given by

2
= ]_—2:—_
p=a(l—e) .

The angle f is called the true anomaly.
Parametric representation. The above ellipse is also described by the following parametric equations

1 = acosu , To = bsinu .
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The angle u is called the eccentric anomaly.

acosu = ea + rcos f

2 sy

P ea I CosSu

_p_ P — 4 _
Tte 14e — A —ae

Figure 7: Ellipse parameters

Thus a point z on the ellipse has the double representation:
x = (acosu,bsinu) = (ea +rcosf,rsinf) ,
which relates the true and the eccentric anomalies. In particular, one finds:

rcosf = a(cosu —e) ,
rsinfzbsinuza@sinu,
r=a(l —ecosu) ,

f 1+e U

tan = = u
any T—e¢ 2y

where
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B Diophantine estimates

B.1 Diophantine estimates for special quadratic numbers

Consider the vector

w:=(a,1) eR?
where « is an irrational positive number having a continued fraction expansion®® of the form
1
a = [ag; a1, ..., a5,,1,1,1,...] = [ag; @1, --., @jy, 1°] = ap + T , (B.306)
a1 +
: 1
ajo+1F—

for some jo € N and a; € N; this means that a; = 1 for j > jo + 1. If ap = 0 = jo then « is the so-called
golden mean

o = 1 _V5-1
g — 1 = .
1+ —— 2
. 1
g e

Let « as in (B.306) and (as standard in theory of continued fraction) let
g-1:=0, q:=1, g¢gj:=¢j1a;+¢g-2,Vj2>21.

Let, also,
qj—1
rji=laj; a1, 0542, 05 i=Ti40F s
j

Notice that 7j,41 = [1;1%°] = 1 4 a, and that (compare Appendix 8 of [23])

|agng +n2|2£ , Vni #0
|71
where
. 2
TV

Proposition B.1 Let a, jo, gj, 0j and v, be as above. For any n € Z* with ny # 0, one has

|any + ng| > 0

Inal ’
where ] g
7= min o
For any n € Z? with |n1| > gj,, one has
lang + na| > IZ_TI . (B.307)

The proof of this result follows easily from the theory of continued fraction; see, e.g., Appendix 8 of [23].

85For generalities, see [68].
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B.2 Estimates on s,;(0)

In this section we give “accurate” bounds on sy (d) for w = (a, 1) with a quadratic, i.e., numbers for

which there exist v > 0 and N > 1 such that

|w-n|:|om1+n2|2l V| ni| >N .

[na|

The numbers considered in § B.1 are special quadratic numbers.
Recall, now, the definition of s, ;(d), which in the present case is:

spa(d) = sup (Ink k2 | exp(~dlnDlams +no| 7) , ke N;
nez?

5p,1(0) = \/sp,(l,O)(5)2 + 8p,(0,1)(0)* -

(B.308)

(B.309)

Proposition B.2 Let w, v and N be as in (B.308) and let s, 1, be as in (B.309). Then, for any § > 0

and any p > 1:
V2
0 < —,
s01(0) < =
p 1 1 -5
spo(0) < maxql, (1—7) ~ — .,  max exp(=djn) 7
) e NP P 1<n1<N|ang — ng P
0<ng<aN+1
591(0) < \foper(0)? + 85, (92
where
]. ]_ p+1 ]_ ]_ n e _677/
§p,el (6) S max4 —, (p+ ) p Sprl max M ,
ed e yP or+ 1<n1<N |om1 _ n2|p
0<ng<aN+1
1 2u r 1 1 -5
8pes(d) < maxq—, - <B) — , max w )
) e (5 e e ’yp 6P—|—1 1<ni1<N |an1 _ n2|p
0<ng<aN+1

Proof Observing that for any a > 0

sup (t“ exp(—t)) = (g)a ,

t>0 e

for any n # 0 and for any j, one finds

1
Insl exp(=3Jnl) < Ins| exp(=3ln;]) = 5 (8lns] exp(=3Ins)) < 5 .

S|~

which proves (B.310).

To prove (B.311), let
exp(—d|n

o, = o, e
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so that

$p,0 =supab = max sup ob, sup b, sup of
n#0 Inyl<N In1l<N |ni|>N
Ing|<aN+1 Ing|2aN+1
n#0

Now, notice that, if |n1| < N and |nz| > aN + 1, then

sup of <exp(—d|n]) <1

[n1I<N
Ing|2aN+1
If |n1| > N, by (B.308),
[na[? na|?
P e _ L0 o _
of < L exp(-oin) < A exp(—dima)
1
= g )P esp(=din)
< Ly
- ryp o \e
This proves (B.311).
To prove (B.312), let
nj| exp(=d|n|)
o= O =T
We shall show that
sgﬁp0 ab i < 8pe;(0), (B.313)

which, by definition of s, ; yields at once (B.312). Mimicking the proof of (B.311) one checks easily
(B.313) for j = 1. As for (B.313) in the case j = 2, we observe that (as above) when |n;| < N and
[n2| > aN + 1, then

1

% < Il exp(~dlna]) < =,

while if |nq| > N, then

sup oy < el Iul” exp(=3n)
< el fml? esp (= slml) exp (<5l
< 05" () e (- Jgml) (3) e (- gina)
< L

The proof of Proposition B.2 is completed. |

116



C Interval arithmetic

Real numbers are represented by computers in floating-point notation with a finite number of decimal
digits. The number of digits depends on the precision declared in the program code. For example, using
Fortran 77 floating-point representation, single precision corresponds to approximately seven decimal
digits, while double precision corresponds to approximately sixteen decimal digits. The rounding-off and
propagation errors introduced by the computer can be controlled through the interval arithmetic tech-
nique, which is briefly recalled in this section (see, e.g., [48], [79]). Let us precise that our programs run
on a Dec Server 4100 5/466 with operating system v4.0f (on which the IEEE standard is implemented).
Only a finite set of numbers (which we denote as the set R of representable numbers) can be exactly
represented on a computer (encoded as strings of bits). The idea of interval arithmetic consists in
replacing any “real” number r with the smallest interval containing r, say (r—,r4), with r_,ry € R.
In order to determine r_ and r4 we compute as follows two auxiliary quantities, say d_ and d,. Let us
write a computer program which performs the following instructions:

e make a cycle on k > 0, computing oy = 1 + 3¢, yp = % — 1;

o if y; = 0, exit the cycle with index k = k*;

® set 1 1
6_::1_W7 6+:1+2k*—71

Notice that the condition y; = 0 means that the computer does not recognize any further division by 2
of Yk -

Finally, the endpoints of the interval containing r can be defined as

_ {r-5+ ifr>0

+ = r-6_ ifr<0
N r-o_ ifr>0
- r-éoy ifr<o.

We take care of exceptional cases by defining a suitable range where all arithmetic operations have a
well defined image on the computer. Once the real number r is replaced by the interval (r_,r,), any
successive operation is performed between intervals according to the following strategy. Let additions,
subtractions, multiplications and divisions be denoted as elementary operations. We reduce any other
operation (including exponentials, logarithms, trigonometric functions, etc.) to a sequence of elementary
operations, by computing an approximation, defined as a truncation of the Taylor series expansion, and
adding an estimate of the remainder.

Elementary operations between intervals are performed by replacing the exact result with an interval
whose endpoints are representable numbers. For example, for any real number ¢, let us denote by Up(c),
Down/(c), upper and lower bounds on ¢, i.e. ¢ € (Down(c),Up(c)). Then, ifa € (a—,a4) and b € (b_,bs),
where a,b € R and a+,by € R, the sum between intervals is defined as

a+b€ (Down(a— +b_),Up(ay +by)) = (a—,ay) + (b—,by) .

The subtraction between intervals is defined in a similar way. Concerning multiplication and division,
several sub-cases must be considered according to the sign of a and b. For completeness, we report the
formulae for the multiplication between intervals, say (c_,cy) = (a—,a4) - (b—,by) (the division will
follow similar rules).
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If a_ >0, then

(c-,e4) = (Down(a—-b-),Up(ay -by))  if b >0

(c_,cqy) = (Down(ayq -b_),Up(a— -by)) ifby <0

(c_,eqy) = (Down(aq -b_),Up(as -by)) ifb_ <0<by;
If ay <0, then

(c_,cqy) = (Down(a—-by),Up(as-b_)) ifb_ >0

(c_,cq) = (Down(ay -by),Up(a_-b_)) if by <0

(c—,cy) = (Down(a—-by),Upla_-b_)) if b <0< by ;

Ifa_ <0< a4, then

(c—,eq) = (Down(a- -by),Up(ag -by)) ifo_ >0

(c_,eq) = (Down(ay -b_),Up(a_-b_)) ifby <0

(c_,eq) = (min{Down(a, -by), Down(ay - b_)}, max{Up(a_ -b_),Up(a+ -b+)})
ifb_ <0<by.

D A guide to the computer programs

The results about the stability of the three-body problem have been obtained implementing on the
computer the theory developed in the previous chapters. In particular, the computer programs simulate
an algebraic manipulator in Fortran 77 and interval arithmetic is performed, when necessary. We have
separated the overall implementation of the KAM theory into four main programs, performing different
tasks.

i) Initial data: Given the initial conditions of the minor body, i.e. the major semi-axis a and the
eccentricity e, the first program computes the corresponding frequency and it fixes the unperturbed
energy FEq (see § 3.4.1). Let (Lv,Gv) be the values of the action variables, corresponding to the pair
(av,ev). The initial conditions for the trapping tori are computed as follows: let Ly := Ly =+ 0.001

and let a4 := ﬁ By means of the continued fraction representation, we modify the frequency, so
that it satisfies the Diophantine condition. Precisely, let &4 := [ag; a1, a2, ..., an, -..] and define the new
frequency as a4 := [ag; a1, a2, as, as, 1°°]. Finally, let Ly := @ and G4 = —ﬁ — Ey. Moreover,

the program computes the Diophantine constant associated to a.

1) Lindstedt expansion: Given the initial data as in ¢), we compute the Lindstedt series expansion
of the parametric representation of the invariant torus (see § 4.1). Due to time and memory limitations,
the computer is able to calculate the g-series development up to the order 14, though it was sufficient
for us to prove the theorems with an e-expansion up to the order 12. The computations are performed
using quadruple precision, which is a crucial requirement for the estimate of the error terms (see § 4.2).

i11) Evaluation of the error terms: We estimate the error functions associated to the approximate
solution, constructed as the truncated Lindstedt series expansion as in i) (see § 4.2). Due to the fact
that the error terms are relatively small, the use of quadruple precision is extremely important.
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iv) KAM algorithm: The convergence of the method is obtained through the iteration of the KAM
algorithm and the control of the KAM condition (see § 4.3). Double precision is sufficient to perform
this task.

We remark that the functions computed by the Lindstedt series expansion have the form:

flz1,20;e Zs’ Z finm exp (i(nz1 + mas)) , (D.314)

7j=0 n, mEN

where A is a suitable set of indexes in R? and f; ,m are real or purely imaginary numbers (depending
on whether the function is a sum of cosines or sines). We must recall that in order to apply interval
arithmetic, the Fourier coefficients fjnm are represented as intervals, say finm = (f}um> f; Fom)e
order to perform operations among functions of the form (D.314), we found convenient to adopt the
representation based on the following quantities:

e nf(k) (k = —1,...,N): is an N + 2-dimensional integer vector, marking the length of the order k of
the e-series expansion. More precisely, having set nf(—1) = 0, the order k of the € expansion runs from
nf(k — 1) + 1 to nf(k).

e if(k,3) (k=1,..., Z;V:1 |V;]): is a matrix of integer type with dimension (E;VZI |N;| x 3), such that
if if(k,1) = 1, than the series is of sin-type (i.e., the whole series must be multiplied by the imaginary
unity), while if if(k,1) = 0 than the series is of cos-type (i.e., no multiplicative factors are present).
Moreover, if(k,2) is the first Fourier index (n in (D.314)), while if(k,3) is the second Fourier index
(m in (D.314)).

o (cfd(k), cfu(k)) is the interval denoting the Fourier coefficient f;nm (see (D.314)). The real vectors
cfd(k) and cfu(k) have length E;VZI [N

Here is the list of programs which can be obtained upon request to one of the authors.

¢ INDATAPM.FOR: computation of the initial data and of the Diophantine constant for the bounding
upper and lower tori. The program runs in quadruple precision (without interval arithmetic).

e PART1.FOR: computation of the Lindstedt series for the functions u, v. Quadruple precision is used
and interval arithmetic is implemented.

e PART2.FOR: computation of the error terms, using quadruple precision; interval arithmetic is imple-
mented.

e PART3.FOR: implementation of the KAM algorithm and check of the KAM condition, using double
precision; interval arithmetic is implemented.
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