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ABSTRACT. - Using a Nekhoroshev-like perturbation technique, we
investigate the solutions of the one-dimensional stationary Schroedinger
equation, with bounded analytic potential. For sufficiently high energy E,
we construct (in principle, up to any order in 1/~/E) approximate sol-

utions, which resemble free waves, and are ’ very close" to the true

solutions over very large distances, growing exponentially with /E. For

potentials which decay sufficiently rapidly at infinity, we find that the
scattering matrix differs from a trivial one by a quantity exponentially
small in /E (m particular, the reflection coefficient is exponentially small
in Special attention is also devoted to the case of quasi-periodic
potentials. These results unify, extend and make quantitative previous
results by Fedoryuk, Neishtadt and Delyon and Foulon. Some numerical
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46 G. BENETTIN, L. CHIERCHIA AND F. FASS6

and analytic tests show that our perturbative construction is, at least in
the most relevant point, almost optimal.

Nous etudions les solutions de 1’equation de Schrodinger a
une dimension avec un potentiel analytique en utilisant une technique de
perturbation inspiree de Nekhoroshev. Pour une energie E suffisamment
grande nous construisons des solutions approchees (en principe à tous les
ordres en 1A/E) qui ressemblent a des ondes planes et sont tres proches
des vraies solutions sur des grandes distances qui croissent exponentielle-
ment vite avec /E. Pour des potentiels qui decroissent suffisamment vite
à l’infini nous montrons que la matrice de diffusion ne differe de la matrice
triviale que par une quantite exponentiellement petite en /E (en particu-
lier, Ie coefficient de reflection est exponentiellement petit en Nous
etudions tout particulièrement Ie cas des potentiels quasi periodiques. Les
resultats unifient, etendent et rendent quantitatifs des resultats anterieurs
de Fedoryuk, Neishtadt, Delyon et Foulon. Des tests numériques et

analytiques montrent que notre construction perturbative est presque opti-
male, au moins pour les points les plus importants.

1. INTRODUCTION

We consider here the Schroedinger equation

where V is a bounded real-analytic function, and E a positive parameter.
When E is large with respect to max | V (x)| one might naively expect that
the solutions of (1.1) resemble, in some sense, the free solutions of the
trivial Of course, as is well known, there are
cases, e. g. when V is periodic [1], for which there are arbitrarily large

values of E (corresponding to spectral gaps of the operator

L==20142014+V), such that solutions of (1.1) are instead substantially

different (in fact, L2 at one side, and unbounded at the other side).
Nevertheless, we will construct a perturbation theory (for which the

"zero-order" is the free problem), that shows that indeed all 
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47ONE-DIMENSIONAL SCHROEDINGER EQUATION

of (1.1) are very similar to free waves over a very large distance, growing
exponentially with E, more precisely can be expressed as linear combina-
tions of functions of the form

where a is some positive constant. Evaluating the constant a is also one
of our tasks: we will prove that ( 1.2) holds with where p is the
width of a complex strip of analyticity of V (around !?), and a is any
number smaller than 2/e. On the other hand, in general, a cannot be
taken to be larger than 2, as will be shown below on some examples.
For our analysis, the hypothesis of analyticity of the potential is deeply

essential. On the other hand, relation ( 1.2) is not true, in general, for non-
analytic potentials: indeed, this relation implies that the length of the
possible spectral gaps decays with E as exp - a JE, while it is well known
[2] that, for periodic V, the spectral gaps are exponentially small with

~ only is analytic.
For relatively simple potentials, e. g. if V has a finite number of station-

ary points, or is periodic, WKB methods have turned out to be very
powerful ([3], [4]) in investigating the structure of ( 1.1): however, these
methods have not been extended yet to more difficult situations, like

quasi-periodic or stochastic V, to which our technique instead applies.
Our method is based on a classical mechanics interpretation of the

Schroedinger equation. In fact, ( 1.1) is equivalent to the Hamilton equa-
tions for a harmonic oscillator with time-dependent frequency [E - V (x)]~~2
(here the role of time is played by x). To such a system we apply a
Nekhoroshev-like technique ([5], [6]) (see also refs. [7]-[10]), carrying out
a simple but very careful quantitative analysis. The same mechanical
system has been studied by Neishtad [8], and an application to the Schroe-
dinger equation has already been made by Delyon and Foulon [11], in
order to prove the exponential decay of the Lyapunov exponents. How-
ever, these studies do not carry out any quantitative analysis, nor report,
at least explicitly, direct estimates on the solution, say of the form ( 1.2).
A novelty of our scheme is also the use of "local norms" ([12], [13]),
which allow one to take explicitly into account the presence of regions
where V is particularly small. For example, if V is L1 (in a suitable sense)
we construct approximate solutions, which differ from the actual solutions

of (1.1) by exp-a over the whole real axis. In particular, as a

byproduct of our local estimates, we get an exponentially small bound for
the reflection coefficient R, of the form A similar
bound has been obtained by Fedoryuk [14], by means of asymptotic
expansions; unfortunately, a precise comparison cannot be given, since in
reference [14] the constants are not explicitly evaluated.
Our results cover, in particular, the case of a quasi-periodic potential.

Such a case has been widely studied by means of KAM-like perturbative
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48 G. BENETTIN, L. CHIERCHIA AND F. FASSO

techniques ([15]-[18], [24]), with the result that there exist solutions which
are also quasi-periodic, for sufficiently high values of E belonging to a set
of large measure, but with a Cantor-like structure. By means of our
Nekhoroshev-like perturbation theory we obtain (as usual) a complemen-
tary result, namely that, for any (sufficiently high) value of E, the solutions
are very close to quasi-periodic waves, over an exponentially large length
scale, as in ( 1.1 ) .

In the next Section we formulate precisely our main result

(Proposition 1), and illustrate it on some relevant classes of potentials. In
Section 3 we prove Proposition 1, on the basis of the result of our pertur-
bative technique (Proposition 2), which in turn is proved in Section 4.
Finally, Section 5 is devoted to the comparison of our estimate for the
constant a with an exact result (in the particular case of a periodic
potential), and also with some numerical results (for scattering problems).

ACKNOWLEDGEMENTS

We are indebted to F. Martinelli and T. Spencer for useful suggestions.

2. STATEMENT OF RESULTS

2.1. The main Proposition

We are concerned with the one-dimensional Schroedinger equation ( 1.1),
with analytic potential. More precisely, denoting by the complex strip

we assume that V is analytic in !/ p’ and real for real x (similar functions,
possibly vector- or matrix-valued, will be called, throughout the paper,
real analytic). For any analytic function f : !/ p ~ C, it is convenient to
introduce, besides the usual supremum norm, denoted the following
family of "local norms":

For the solution of the Schroedinger equation (1.1) we shall use the vector

notation w=tB)/, 1 E 03C8’), with B)/=2014’; for vectors w2)~2 we

adopt the norm ~ W 112 = |w1|2 + I W212, while for linear operators acting on(:2 we use the corresponding norm ~I A 11= supw~ A W w II.

Poincaré - Physique théorique



49ONE-DIMENSIONAL SCHROEDINGER EQUATION

Our results can be formulated in the following general statement:

PROPOSITION 1. - Let V be real analytic and bounded in sp, P &#x3E; O. Foy
any E satisfying

there ’ exist a 2 x 2 real analytic matrix T (x), and a ’ real analytic function
V (x), such that:

(i) T is close to the identity, precisely

(ii) V is close to V, precisely

(iii) Denote M= 20142014 ~ ’ i ), ~ ~x~ ~ ~ ), with
~/2B-! -1/ B 0 

then for any constant UEC2 the , solution w (x) of ( 1.1 ), with w (0) = MT (0) u,
is "exponentially close" to the , function

precisely, denoting by NE the integer part of p jE/2, one has

with

Remarks. - (i) Both T and V also depend on E; although they are not
analytic in E, they are, in a sense, polynomials of degree NE in 1/ for

instance, one has with Vs independent of E. As
s=o

will be clear in Section 4, both T and V could be explicitly written up to
any order in 1/~/E, while (2.5) could also be replaced by inequalities
accurate to any order in 1/ /E.

(ii) As remarked in the Introduction, one could replace the expression
for NE by NE=03B103C1 E, a being any number smaller than 2/e, with a
corresponding worsening of condition (2.3) (see Section 4.5).

Vol. 51, n° 1-1989.



50 G. BENETTIN, L. CHIERCHIA AND F. FASSO

Proposition 1 is clearly interesting only for sufficiently high E; in this
case the expression (2.9) for P essentially reads

In the next subsections we illustrate some consequences which can be
drawn from Proposition 1.

2. 2. General consequences

Let us discuss the basic estimate (2.8). The quantity there

appearing is uniformy bounded: for example, by (2.4) and (2.3) one has
The function P remains instead small over a quite large

interval, growing exponentially with /E: one has for instance P (x) ~ (30,
with

as far as

Consequently, for x in this interval, the estimate (2.8) gives
II w (x)-w (x) II  2 Po ~u~ = (!) (I V On the other hand, from (2.4) and
(2.7), using also I ~M~ = 1, one obtains

In conclusion, for I 
~ ~ 

satisfying (2.11) one gets

In -turn, the phase cp (x) satisfies

By the way, we also notice that in intervals shorter than (2.11), for
instance

Annales de l’Institut Henri Poincare - Physique " theorique "



51ONE-DIMENSIONAL SCHROEDINGER EQUATION

one could replace (2.12) by an expression accurate up to order 1 +m/2 in
I V (one needs approximations for T accurate to order 1 + m/2, see the
above remark).
Another general consequence of Proposition 1 is an exponential estimate

on the Lyapunov exponent (when it is defined) of the Schroedinger
equation [11]. Indeed, from (2.7) and (2.8) one gets, for any solution w,

and thus

this gives, for the (maximal) Lyapunov exponent ~+ of the Schroedinger
equation, the exponential bound

2. 3. The scattering problem

We shall now discuss the case of a potential V (x) which decays suffi-
ciently rapidly for x -+ ± oo; precisely, we need p 

-+ 0 for x -+ ± oo,

with ~+00 dx = C  oo. From (2.8), (2.9) one has then, for any XE f~,

this means that the approximate solution w is now close to w for any
x e [R, and moreover, the error is exponentially small in E.

Let us then investigate the properties of w. Clearly, for x -4&#x3E; ± 00 one
has T (x) -4&#x3E; 1, while the limits

f.. 
/ 

I} 
1 r :t 00 B 

h.are finite actually, 03B3±~ 2E J( 
V By choosing

Vol. 51, n° 1-1989.
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in (2.7), and denoting y=y+2014y-, one immediately deduces, for

=(, 1 E ’), the asymptotic behavior

with a corresponding expression for -BIt’ (’). In particular, for either a or b
vanishing, (2.20) represents a purely left- or right-travelling wave, with no

reflected wave, and small phase-shift 03B3~1-
From these approximations, we shall now derive exponential estimates

for the scattering matrix and the reflection coefficient [14]. The scattering
matrix corresponding to (2.20) is the trivial matrix

§==( B 0 ~ ~/ ; using (2.18) one can then say that the true scattering
matrix S (which is known to exist essentially in our assumptions, see for
example [19]) differs from S by a quantity exponentially small in /E: for
example, it is not difficult to get

in particular, the reflection coefficient R turns out to be bounded by

2.4. Slowly decaying potential

Let us here consider the case of a potential which decays to zero, for
x ~ ± 00, in a non integrable way; to be definite, assume

(1+H)~ for large One can see, from (2.8) and (2.9), that,
although w now is not uniformly close to w, nevertheless the error remains

for an extremely large interval, growing with
E essentially as exp exp ~. In a shorter, still exponentially large interval,
one gets instead, as in the scattering 

e) Be aware that is just a notation for the second component of w: although ’,

according to (2.8), approximates 03C8’=d03C8, in general it does not coincide with 2014.g 
dx dx

Annales de l’Institut Henri Poincaré - Physique theorique
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Concerning w, one can notice that it does not properly reduce, asymptoti-
cally, to a pair of plane waves, because the phase shift now diverges
logarithmically with x j. However, if one accepts to restrict the attention
to a finite but large interval, growing exponentially with E, then the

phase shift is finite, and the "asymptotic" behavior is like in (2.20), On
this finite but large scale, the overall picture is essentially the same as in
the scattering problem.

2.5. Quasi-periodic potential

To treat this case, we assume that the potential fulfills the following
two conditions (which are also needed in the KAM approach [15]-[18]):

(i) V is quasi-periodic in x, with real frequencies 0)1, ... , by this,
we mean that one has ... , for all the func-

tion ... " being analytic and 203C0-periodic in each
of its arguments;

(ii) the frequencies ..., OOn satisfy the Diophantine condition

for some positive constants c and T.
We shall denote by the Fourier coefficients of V, defined through

1/ (PI’ ...,(?~)= ~ similar notations will be used for the other
k~Zn

quasi-periodic functions.
From the general theory of Section 2.2 we know that the actual solution

w of the Schroedinger equation differs by quantities from the

approximate solution w defined by (2.7), over distances

We now prove that, in the present case, w is a quasi-periodic function of
x, with n + 1 frequencies (00’ ro1, ..., where ~o ( E) _ ~ + C~ ( 1 /~) .
To this purpose, we first observe that, under condition (i), the functions

V (x) and T (x) of Proposition 1 turn out to be quasi-periodic, with the
same frequencies as V(x) [indeed, this immediately follows from the
corresponding statement in Lemma 2 of Section 4, if one takes into

account the very construction of V (x) and T (x)]. Furthermore, by (2.6)
the phase cp entering the expression (2.7) for w can be written as

Vol. 51, n° 1-1989.



54 G. BENETTIN, L. CHIERCHIA AND F. FASSO

with

Now, using the quasi-periodicity of V, and also the Diophantine condition
(2.22), one easily proves that 9 is quasi-periodic too, with the same

frequencies as V: indeed, one has clearly

and, as is well known, the Diophantine condition assures the convergence
of the series. Moreover, the expression (2.23) for cp shows that the addi-
tional frequency which enters w besides the frequencies (01’ ..., (On of
the potential, is given by in agreement with the
above statement.

Let us now consider more closely the approximate solution w. First,
one can produce a more accurate expression for the frequency (00’ precisely

This expression is obtained from the one above by using the relation
V~=V~+~(1/E), which follows from

(use is made of the fact that the flow ..., on

Tn is ergodic).

Furthermore, one can easily verify that w = B)/, 1 B)/) is a linear

combination of "Bloch waves" with frequencies 03C90, 03C91, ... , i. e.

... , ... , (2. 28)

the functions being 203C0-periodic in each argument. It is also possible
to show that B)~==1+~(1/E). Indeed, from the expression (2.25) for 8,
using standard techniques and the relation (2.5), one can estimate I
as

Annales de l’lnstitut Henri Poincare - Physique - theorique -



55ONE-DIMENSIONAL SCHROEDINGER EQUATION

C = C (c, ’t, n, p) being a suitable constant (for instance, using the estimates
of refs. [20], [21], one gets C = c-1 ~j(2t)f). One then easily
finds, using ( 2. 7), ( 2.4), ( 2. 23), ( 2. 26) and (2.29):

From this analysis, one concludes that the solutions of the Schroedinger
equation with quasi-periodic potentials have the following structure, over

distances (!) 1 ex p N : E u p to quantities of order l/E they resemble
(linear combinations of) Bloch waves (2.28), which in turn differ from the
free solutions by quantities of order 1/)E.

3. THE HAMILTONIAN THEOREM,
AND PROOF OF PROPOSITION 1

3.1. Statement of the Hamiltonian theorem

The proof of Proposition 1 is obtained by regarding the Schroedinger
equation as a dynamical system, namely an harmonic oscillator with

frequency [E - V (x)] 1~2 depending on the "time" x. To this system we
apply a Nekhoroshev-like perturbation theory, leading to the exponential
estimates.

It is convenient, in our perturbative approach, to use canonical coor-

dinates related to Bj/, B)/ = by
dx

M being the matrix introduced in Proposition 1; the Schroedinger equation
( 1.1) is then immediately seen to be equivalent to the canonical equations
corresponding to the Hamilton function

Vol.51,n°l-1989.
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precisely

The Hamiltonian H, as well as all functions we will deal with, is defined
for (p, q, and is real if x is real and q = - ip. The corres-
ponding reality condition for linear transformations of the form

(pq)=T(x) (p’q’), T (x) being an analytic 2 x 2 matrix, is that the relation
is preserved for any real x; in particular, this condition guarantees

that, after the substitution (p, q) H (p’, q’), the new Hamiltonian is still
real for real x and ~=2014~/. Such reality conditions will be implicitly
assumed, whenever working with the p, q coordinates.

Proposition 1 turns out to be a direct consequence of the following

PROPOSITION 2. - Consider the Hamiltonian (3. 2), V being real analytic
in // p’ and assume E ~ 51 V Ip. Then there exist a 2 x 2 analytic matrix
T (x), and two analytic functions V (x) and F (x), such that:

(i) T is close to the identity, as in (2.4);
(ii) V is close to V, as in (2.5), while F is bounded by

(iii) the transformation

is canonical and, for x E IR, gives the new Hamiltonian H’ the form

3.2. Proof of Proposition 1

We defer to the next Section_ the proof of Proposition 2, and show here
how one can use it to prove Proposition 1. To this purpose, let us write
the equations of motion deduced from (35) in the vector form

Annales de l’lnstitut Henri Poincaré - Physique theorique
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where ~==(~ q’), and

From (3.6) one first works out the preliminary estimate

This inequality can be achieved by introducing a variable r~ =e-‘~ ~x~ ~,

whose equation of motion is immediately seen to be d~ d~ =e-i03A6Bei03A6~

(one profits here of the fact that the matrices 03A6 and  commute); from

this equation one deduces - 2014 11111121 which in turn, using

~03B6~=~~~, gives (3.8). Let us then write (3.6) in the integral form

Using ( 3. 8) inside the integral, one gets

and since one obtains

P being defined by (2.9). Finally, if one recalls

and denotes one finds (2.7) and (2.8), with

has also been used. The proof of Proposition 1 is

complete.

VoL51,n°l-1989.
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4. PROOF OF PROPOSITION 2

4.1. An equivalent autonomous system

As a preliminary step in the proof, we replace the non-autonomous
Hamiltonian ( 3. 2) with an equivalent autonomous one, having one more
degree of freedom. To this purpose, we consider x as a dependent variable,
with equation of motion x =1 and initial datum x (0) = 0; one then immedi-
ately recognizes that the non-autonomous Hamiltonian ( 3. 2) is equivalent,
for what concerns the variables x, p and q, to the autonomous one

K (p, q, y, x) = y + H (p, q, x), y being the momentum conjugated to x.

We shall work out, in the extended phase space ~ 3 x !/ p’ a canonical
transformation ~ which preserves the property x= 1 and extends (3.4),
namely of the form

where one has denoted ~~~3c)=~~~~x’); the matrix T is

obviously required to have the properties stated in Proposition 2, while h
is a suitable analytic function. The new Hamiltonian will be

required to have the form K’ (p’, q’, y’, x’) = y’ + H’ (p’, q’, x’), H’ having
the form and the properties stated in Proposition 2.

4. 2. The algebraic framework

Let us denote by j~p the space of all analytic functions: ~p -~ C; for
and any p’ ~ p, we shall use the local norm p’ introduced in

Section 2. If let us define F* (x) = F (x); one has clearly 
and 20142014 = 2014 . Throughout the proof we shall be primarily concerned

dx dx / 
g p p y

with homogeneous polynomials of degree two in p and q, with coefficients
in in particular, a basic role will be played by the spaces

( GG p 77 and "m" are abbreviations for "pure" and "mixed"). We shall also
consider the space Ap = Ag Q A;, and denote by TIP, IIm the projections
from Ap to Ag and respectively A;. For f belonging to either Ap or AP,
and any p’  p, we shall use the norm I f I x, P, = I F Ix, p" while for f E Ap we
denote I f lx, p’ _ |03A0pf|x, p’ + I TIm f Ix, p’.

Annales de l’Institut Henri Poincare - Physique theorique
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Functions f E Ap will be also regarded as y-independent functions defined
in the whole phase space 3 x 03C1. Denoting by { , } the usual Poisson
bracket, one immediately deduces the following elmentary algebraic rela-
tions :

and also gets the basic estimate

for any f, gEAp, any p’ _ p and any 

4. 3. Elementary canonical transformations

The canonical transformation  is obtained as the composition of a
finite number of elementary canonical transformations generated by the
Lie method, namely as the time-one map of a suitable auxiliary Hamil-
tonian flow; we shall use, in the phase space 3 x f/ p’ y-independent
auxiliary Hamiltonians belonging to AP. The properties of the elementary
canonical transformations generated in this way are stated in the following

LEMMA 1 (on canonical transformations). - Consider, in the phase-space

C3 x 9’p, the Hamiltonian ~=1 X x 2 - !X* x 2 and denote b O
4 

~ )p 
4 

~ ) q p~ y

the corresponding time-one map. Then:
(i) O is an analytic canonical transformation of ([3 x onto itself, of

the form

(ii) The operator L = {~, .} is bounded by

for any f E AP, any x E IR and any p’ _ p. Furthermore, if f E AP, then one
has f0398 = (exp L) f E Ap, the exponential being defined by its series, which
is convergent.

(iii) The 2 x 2 matrix i is analytic in f/ p, and for any p’ _ p it satisfies
the estimate

while K E Ap is given by

Vol. 51, n° 1-1989.
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Proof. - The equations of motion associated to x are

the flow is certainly defined and invertible for any initial datum in C3 x !/ p
and any time, and in particular at t= 1 it has the form (4.5). A trivial

inte g ration gives 03C4=exp1 2(0 X 0 / ), and consequently (4.7). Consider

now f~039B03C1. The inewquality ( 4. 6) follows from ( 4. 4); on the other hand,
.. 

00 

1 ~ .

one and the series converges for any

fixed x. Finally, (4.8) is an obvious consequence of {~ .Y~ == 2014 2014. N
ax

4. 4. The iterative lemma

It is convenient to use here the two parameters

We aim to construct a sequence 
" Oi, ..., 0N of elementary canonical

transformations of C3 x ~P onto 0 itself, such that, denoting £ Ko=K and ’
S = 1, ..., N, one " has

where is analytic in E, while fs~039Bp03C1 is analytic in E, and divisible
by ES.
We proceed iteratively, and determine fs+1, gs+1 in terms gs; more

precisely, denoting ð = p/N, and

we work out iterative estimates for |fs x, Ps and |gs|x, ps. 
Let us notice that

Ko has mdeed the form {4.10), with |110 x, PO = |g0 |x, po = I V |x, P. 
Our estima-

tes are stated in the following

LEMMA 2 (Iterative Lemma). - Let Ks be as in (4.1©), s  N, with

gs E A: analytic an E and ~s E A: analytic in E and divisible by Es. ~,et

po, ... , PN be defined by (4.11 ). Then there exists a canonical transforma-
tion 0398s+ 1 of (:3 x onto itself, such that:

(i) The new Hamiltonian has the form (4.10), with
gs+ 1 E A; analytic in E, and 1 E A: analytic in E and divisible by ES+ 1;

Annales de l’Institut Henri Poincare - Physique theorique
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Denoting one has

and

(iii) Denoting one , has x’ = x and 1

with

Moreover, if gs and fs are ’ quasi-periodic in x, with frequencies 03C91, ... , ron

(in the , sense , of S ection 2.5), then so are gs+i 

Proof - We use Lemma * 1, choosing j ~ such that f~ + ~ does not
contain terms of order ES. Let us denote one 

’ can write

We determine x in such a way that denoting

that We then obtain of the form (4.10),

with

Let us now estimate 03A0m03BA on the basis of its expression (4.8). First of all,

since using the algebraic relations (4.3) one obtains
~ ~

nm K = - L~ -~. On the other hand, since X is assumed to
~=2.4.... ~ ~

Vol. 51, nO 1-1989.
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be analytic in f/ p’ its derivative is also analytic in 9~; Cauchy inequality
gives then õ - 1 and thus |d~ dx | x, 03C1s+ 1 ~ õ - (this

estimate is the only point where analyticity is ever used!). Using the basic
estimate (4.4), one then immediately gets

In a very similar way one can estimate 03A0p 03BA, as well as the sums entering
(4.15); as a result, the inequalities (4.12) are found.

Concerning point (iii) of the statement, it is a trivial consequence
of the inequality (4.7) of Lemma 1, together with the estimate

|~|x, 03C1s=1 2(~ ~)2 |fs|x, 03C1x. 
To prove the last statement, one observes that ~

is quasi-periodic whenever~ is; as a consequence, the matrix is quasi-
periodic too, and, moreover, since the Poisson brackets preserve the quasi-
periodicity, the series (4.15) define quasi-periodic functions..

4.5. Conclusion of the proof

On the basis of Lemma 2, the proof of Proposition 2 is easily accompli-
shed. Let us look at the recurrent estimates (4.12), and proceed, for a
moment, heuristically, by considering the asymptotic behavior for

The first inequality reduces, in this approximation, to

Fs+1  ~N 2 ~03C1 Fs, which gives (recalling ;#’0= 1) IFN  (~N 2 ~03C1)N. A simple
computation shows that the optimal choice of N, namely the choice which
makes minimal FN for each given E, 11 and p, is

N= 20142014 ] = [ ; p JE J where [.] denotes the integer part; correspond-
ingly, one has (still within this heuristic procedure) FN  exp- [0153p JE],
with a=2/~. Passing now to a rigorous analysis, the simplest (although not
completely optimal) procedure is to slightly lower 0153, taking for example

a== , L~. N = NE == [~ p in fact, using this value of N in (4.12),

Henri Poincaré - Physique théorique
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e) and assuming E2 ~ ~ (f. ~., E ~ 51 V one easily verifies, by induction,

the following recurrent inequalities:

If we denote i V [F ( x )h 2 - F* (x) 2 then we see
2 4

that has indeed the form K/=~+H’, with H’ as in ( 3. 5); in

particular, F and V satisfy part (ii) of the statement. Concerning the
inequality in part (i), it is an easy consequence of (4.13). Indeed, one has
T(X)=’t1 (x) i2 (x)... iN (x); using (4.13), and the inequality

N

!!~i~2’ ’ Ft (1 + II ’ts-III) -1, which is immediately verified (by
s=o

induction on N) for any set of matrices, one obtains

for any real x. This concludes the proof of Proposition 2.

5. TESTING THE OPTIMALITY
OF OUR PERTURBATIVE APPROACH

As remarked in the Introduction, we devoted some attention to the
evaluation of the constants appearing throughout the paper, with special
care for the expression of NE. In the statement of Propositions 1 and 2,

one finds (forgetting here the integer part) however, as

commented after the statement of Proposition 1, one could obtain (for
sufficiently large E) JE, a being any number smaller than 2/e. It
is clearly interesting to know whether this value of a, which is obtained
at the end of a rather long chain of estimates, is nevertheless, so to speak,
reasonably good.

(2) Apparently, according to (4.11), one should impose N ~ 1, i. e., E ~ 1 4 03C12: but of

course, for smaller E the statement of Proposition 2 is trivially true, with T = 1, V==V and
H’=H.
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To this purpose, we made two different tests: (i) in the case of the

scattering, we compared our estimate for the reflection coefficient R
(Sect. 2.3) with the results of rather accurate numerical computations; (ii)
for a periodic potential, we compared our estimate from above for the
Lyapunov exponents, which in turn implies an estimate from above for
the length of the spectral gaps [22], with a corresponding estimate from
below, taken from the theory of Hill’s equation.

(i) Results of the first test. - We have performed some numerical
computations of the reflection coefficient R which, according to our

analysis of Section 2.3, is expected to decay, for large E, as

We have considered the following four potentials:

Potential (i) has two poles in x = :t i, so that one has p = 1; for potential

(ii) one has instead p= !. Potential (iii) has more poles, with p = 1, and

finally, potential (iv) is like potential (i), but with additional oscillations.
The Figure reports the results of the numerical computations, namely

-log(|R|E) versus E. In agreement with (5.1), one finds straight
lines, of slope The value of a, and thus of (x, are rather well

defined; as a remarkable fact, the three potentials with p = 1 show exactly

the same slope ~ ~ 2.02, while for potential ii (for which - 1 one

has instead ~ ~ 1.01. These values should be considered with some care;
in particular, we are not able to perform any reasonable error analysis.
Nevertheless, one has the strong impression that the law a = ap is correct,
with the same a for all of the above potentials; in fact, one is even tempted
to say that 03B1 = 2 is a kind of universal constant, say for a convenient class
of scattering potentials. This value must be compared with a = 2/e, produ-
ced by perturbation theory.

(ii) Results of the second test. - Under assumptions weaker than ours,
one can prove [22] that (for sufficiently large values of E) if the solution
of the Schroedinger equation ( 1.1) has a Lyapunov exponent less than a
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Illustrating the results of the numerical test for oc.

number  ~ 1, then the distanee d of E from the spectrum of the Schroedin-
ger operator is bounded by (here and in the following,
C1, C2, ... denote convenient positive constants). Consider then the

special case of the Mathieu equation, V(x)=cos(2x); from our estimate
(2.17), taking (as is possible and convenient) p such that the condition
E ~ 51 (Proposition 1) is strictly fulfilled, one easily finds

On the other hand, from the theory of the Hill’s equation
( see refs. [ 1 ], [23]), one knows that there exist gaps in the spectrum at
arbitrarily high energy; more precisely, for any natural number n there is
a gap around n2, having length D ~ (C3 n~ - 2 " ~ (C4 JE) - 2 The

comparison between d and D shows that a cannot exceed 2; as a remark-
able fact, this is exactly the same value obtained numerically in the case
of scattering, i. e. with a substantially different potential. As before, this
value must be compared with our limit value a=2/~.
These results suggest that a = 2 is perhaps a kind of universal constant

in the theory of the one-dimensional analytic Schroedinger equation.
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Concerning the question posed at the beginning of this Section, one can
say that, although the estimate for a coming from perturbation theory is
not optimal, the error is nevertheless rather small, namely within a factor e.
We are rather confident that this result could be improved by a more
careful perturbative construction.
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