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Abstract From KAM theory it follows that the measure of phase points which do not lie
on Diophantine, Lagrangian, “primary” tori in a nearly integrable, real-analytic Hamiltonian
system is O(

√
ε), if ε is the size of the perturbation. In this paper we discuss how the constant

in front of
√

ε depends on the unperturbed system and in particular on the phase-space domain.
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1 Introduction

According to classical KAM theory, the majority of the Lagrangian, nonresonant invariant
tori of a “general” completely integrable Hamiltonian system persists under the effect of
a small enough perturbations ([1,17,20]; see, also, [2, § 6.3] for a review and [15] for a
divulgative exposition).

Indeed, in bounded regions of the phase space R
n × T

n (action-angle) such tori—which
are also called “primari” tori—form a set of positive Liouville (Lebesgue) measure, whose
complement has a measure proportional to

√
ε, if ε measures the size of the perturbing

function [21,22].
The square root behavior, in such measure estimates, is optimal in the sense that, in

general, at simple resonances, for ε �= 0, there appear regions of size proportional to
√

ε free
of primary invariant tori as trivially shows the example of the simple pendulum with gravity1

ε.
It is therefore natural to look for explicit evaluations of the constant in front of

√
ε in the

KAM measure estimates of the complement of invariant primary tori.
In [21,22] such constant, which depends on analytic properties of the integrable limit, is

left implicit, and, somewhat surprisingly, to the best of our knowledge, there are no explicit
evaluations of it in the vast literature on classical KAM theory. On the other hand, KAM is a
constructive technique and discussions about “KAM constants” are clearly relevant, as also
testified by the large literature on them; compare, e.g., [5–14,16,19].

We also point out that an explicit dependence upon the domain in the above measure
estimate is crucial in investigating the more complicate problem of the existence and abun-
dance of secondary tori, i.e., of those tori which arise by effect of the perturbation around
simple resonances. In [2] it is conjectured that “in a generic system with three or more
degrees of freedom the measure of the nontorus set has order ε,” while in [4] it is given a
sketchy proof2 that the union of primary and secondary tori leave out (for general mechanical
systems) a region of measure ε| log ε|a (for a suitable a > 0). To achieve such result one
needs to control simultaneously a large number of regions around simple resonances and to
apply KAM measure estimates taking into account different (local) phase-space domains,
including neighborhoods of separatrices: To carry out such strategy simple explicit measure
estimates—such as the above—are necessary.

In this paper we compute explicitly the constant in front of
√

ε up to a constant depending
only on n (the number of degrees of freedom) and τ > n − 1 (the uniform “Diophantine
exponent”).

More precisely, we consider a real-analytic, nearly integrable Hamiltonian

H : (p, q) ∈ D× T
n �→ H(p, q) = h(p)+ f (p, q) ∈ R

1 Just look at the phase portrait of the simple pendulum 1
2 p2 + ε cos q, (p, q) ∈ R×T, and observe that the

region enclosed by the separatrix 1
2 p2 + ε cos q = ε has measure 4

√
2 · √ε.

2 A complete proof will appear elsewhere.
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where D is an arbitrary bounded domain in R
n and T

n is the standard flat n-torus (with
periods 2π); f is a small perturbation function and the integrable limit h is Kolmogorov
nondegenerate on D, i.e., its hessian is invertible on D.

The main result—Theorem 1—will be formulated in terms of a few (five) parameters,
which we now describe briefly (precise definitions will be given in § 2):

• The Hamiltonian H is assumed to be real-analytic on D × T
n : Therefore there exists

r0 > 0 and 0 < s ≤ 1 such that H is holomorphic on a complex r0-neighborhood of D
and a s-complex neighborhood of Tn .

• The smallness of the perturbation f will be measured by ε := ε

Mr2
0

where: ε = ‖ f ‖r0,s

denotes the sup-norm on the above complex neighborhood of f and M := ‖h pp‖r0 the
sup-norm of the Hessian matrix of h.

• The “torsion” associated to h will be measured by μ := inf D | det h pp|
Mn

; note that 0 <

μ ≤ 1 (compare (5)).
• Last “independent parameter” will be the number λ := LM, where L denotes a suitable

uniform Lipschitz constant of the local complex inverse of the “frequency map” p �→
ω = h p(p) (compare (9)); indeed one can show that 1 ≤ λ ≤ 2 · n!μ−1 (see (14)).

Notice that the parameters ε, μ and λ are dimensionless parameters (i.e., do not have
physical dimensions).

Then, fixed ν := τ + 2 > n + 1, we will show that there exist a positive constants c < 1
depending only on n and ν such that if the perturbation is so small that

ε ≤ c
μ6

λ2 s4ν,

then one can construct a family Tα of H-invariant primary tori. Such tori live in Dr0 × T
n

(where Dr0 is a real r0-neighborhood of D), and the H-flow on them is analytically conjugated
to the Kronecker flow x ∈ T

n �→ x+ωt for a frequency ω ∈ R
n which is (α, τ )-Diophantine3

with τ = ν − 2 and α proportional to
√

ε:

α := λ

ĉμ s3ν
(Mr0)

√
ε,

where ĉ < 1 is a suitable constant depending only on n and ν.
The upshot is, then, the following measure estimate (where “ meas ” denotes outer

Lebesgue measure):

meas
(
(D× T

n)\Tα

) ≤ C
√

ε

where the constant C is given by

C := κ
(

max
{
μ2r0 , diam D

})n · λn+2

μ3 s3ν
,

where κ > 0 is a suitable constant depending only on n and ν.

Remarks (i) In fact, we shall prove a stronger statement, which is non trivial even in case
of D of measure zero or even finite (compare (20)).

(ii) Of course, more refined estimates are possible if one adds extra hypotheses on the
domain D (e.g., smooth boundary) and it would be interesting to give bounds which
take into account geometrical properties of D.

3 I.e., |ω · k| ≥ α/|k|τ
1

for all k ∈ Z
n\{0}; compare (1).
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(iii) We do not compute explicitly the dependence upon n (and ν): Indeed it is well known
that in such generality explicit bounds on c tend to be quite “pessimistic,” however, in
concrete example, such as a forced pendulum, the standard map or particular three body
problems computer-assisted (rigorous) upper bounds on ε are in excellent agreement
with experimental data (see, e.g., [5,6,8,13] and references therein).

2 Notations and setup

Given r > 0, p0 a point of Rn or Cn and D a subset of Rn or Cn , we denote:

Br (p0) := {p ∈ R
n
∣
∣ |p − p0| < r}, (p0 ∈ R

n),

Br (p0) := {p ∈ C
n
∣
∣ |p − p0| < r}, (p0 ∈ C

n),

Br (D) := ⋃
p0∈D Br (p0), (D ⊆ R

n),

Br (D) := ⋃
p0∈D Br (p0), (D ⊆ C

n),

where in R
n and C

n , |x | = |(x1, . . ., xn)| will denote the sup-norm maxi |xi |.
For a matrix (or a tensor) A, ‖A‖ denotes the standard operator norm sup|x |=1 |Ax |.
The standard flat n-torus R

n/(2πZn) is denoted by T
n and, for s > 0, Tn

s denotes
its complex neighborhood of points q with norm of the imaginary part | Im q| =
|( Im q1, . . ., Im qn)| < s:

T
n
s := {y ∈ C

n
∣∣ | Im q| < s}/(2πZn).

If D is an arbitrary bounded set in R
n and h, respectively, f , a real-analytic function (with

values in R
m or in matrix spaces) with bounded holomorphic extension on Br (D) for some

r > 0, respectively, on Br (D) × T
n
s for some r, s > 0, we define its analytic sup-norm as,

respectively,

‖h‖D,r := sup
y∈Br (D)

|h(p)|, ‖ f ‖D,r,s := sup
(p,q)∈Br (D)×Tn

s

| f (p, q)|.

The Lipschitz semi-norm of a function f : � → R
m, will be denoted by

| f |Lip,� := sup
ω1,ω2∈�, ω1 �=ω2

| f (ω1)− f (ω2)|
|ω1 − ω2| .

If D is an open set and H : D×T
n → R is a C2 function, φt

H denotes its Hamiltonian flow,
namely,

(
p(t), q(t)

) = φt
H (p, q) solves the standard Hamilton equations4

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṗ(t) := dp

dt
(t) = −∂q H(p(t), q(t))

q̇(t) := dq

dt
(t) = ∂pH(p(t), q(t))

, (p(0), q(0)) = (p, q).

For example, if H(p, q) = h(p), then the flow φt
h is linear with frequency ω := ∂ph(p),

namely, φt
h(p, q) = (p, q + ωt).

4 Equivalently,φt
H denotes the Hamiltonian associated to the standard symplectic formdp∧dq = ∑n

i=1 dpi∧
dqi .
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Given α, τ > 0, a vector ω ∈ R
n is said to be (α, τ )-Diophantine if

|ω · k| :=
∣
∣
∣∣
∣
∣

n∑

j=1

ω j k j

∣
∣
∣∣
∣
∣
≥ α

|k|τ
1

, ∀ k ∈ Z
n\{0}, (1)

where |k|1 :=
∑ |k j | denotes the 1-norm. It is well known that, fixed τ > n − 1, almost all

(in the sense of Lebesgue measure) ω ∈ R
n are (α, τ )-Diophantine for some α > 0. Indeed

such statement follows immediately observing that5

meas
{
ω ∈ BR(0)

∣
∣ ω is not (α, τ )-Diophantine

} ≤ c Rn−1α,

with a constant c depending only on n and τ .
Finally, given a 2n-vector (y, x), π1 and π2 denote, respectively, the projections on the

first and second n components:

π1(y, x) = y and π2(y, x) = x . (2)

3 Assumptions

Fix n � 2 and τ > n − 1. Let D be any nonempty, bounded subset of Rn . Let

H := h + f

with h and f real-analytic functions with holomorphic extensions on, respectively, Br0(D)

and Br0(D)× T
n
s for some r0 > 0 and 0 < s ≤ 1, and having finite norms:

M := ‖h pp‖D,r0 , ε := ‖ f ‖D,r0,s . (3)

Assume that the frequency map p ∈ D → ω = h p is a local diffeomorphism, namely,
assume:

d := inf
D
| det h pp| > 0 . (4)

4 The local frequency map

Under assumption (4) the frequency map is a local real-analytic diffeomorphism in the
neighborhood of any point of D. More precisely, the following lemma holds. Define6

μ := d

Mn
≤ 1. (5)

Lemma 1 Let

c0 = 1

8n · n!2 , ĉ0 = 1

4n · n! . (6)

and define
r� := ĉ0μ r0, ρ� := c0μ

2 M r0. (7)

5 “meas” stands for Lebesgue measure, or, in general, for outer Lebesgue measure.
6 Since any eigenvalue of h pp is bounded in absolute value by ‖h pp‖ ≤ M, d ≤ supD | det h pp | ≤ Mn .
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Then, for every p0 ∈ D the frequency map p → ω = h p has a real-analytic inverse map,
ω → p(ω; p0), defined in a neighborhood of ω0 := h p(p0)

p = h−1
p : ω ∈ Bρ�(ω0) �→ p(ω; p0) ∈ Br� (p0), (8)

with uniform Lipschitz constant7

L := sup
p0∈D

|p(·; p0)|Lip,Bρ� (ω0) = sup
p0∈D

sup
Bρ� (ω0)

‖pω(·; p0)‖ (9)

satisfying

L ≤ M−1

2n ĉ0 μ
, (10)

and
sup
p0∈D

sup
B 3

4 ρ�
(ω0)

‖pωω(·; p0)‖ ≤ L
c0
4 μ2 Mr0

. (11)

Proof Writing out the inverse of the matrix h pp (Cramer’s rule), by Leibniz formula for the
j i-minor of h pp , one has, uniformly on8 D:

|(h−1
pp )i j | ≤ 1

d
(n − 1)! Mn−1,

which implies

sup
D
‖(h pp)

−1‖ ≤ n!
μ

M−1. (12)

Let T := h−1
pp (p0). Then, by standard Cauchy estimates9, it follows that for any p ∈ C

n such
that |p − p0| ≤ r� one has

‖I − Th pp(p)‖ ≤ ‖T ‖ ‖h pp(p)− h pp(p0)‖ ≤ ‖T ‖ n M

r0 − r�
r�

(12)≤ n · n!
μ

r�
r0 − r�

(6)≤ 1

2
.

Thus, by the standard inverse function theorem (see “Appendix A,” Eqs. (75), (76), (77)) and
Cauchy estimates, relations (8), (9), (10) and (11) follow immediately with the constants in
(6). 
�

For later use, we point out that10

λ := LM ≥ 1, (13)

and that, by (10),

λ ≤ 1

2nĉ0

1

μ
= 2 · n! 1

μ
. (14)

7 Notice that on convex domains the Lipschitz semi-norm of a differentiable function coincides with the
sup-norm of its Jacobian.
8 Note that supi, j supD |h pi p j | ≤ M := supD supi

∑
j |h pi p j |.

9 If f : Br (D) → C
m is holomorphic, ∂α is a partial derivative of order k = α1 + · · · + αn and 0 < r ′ < r ,

then

sup
Br ′ (D)

|∂α f | ≤ supBr (D) | f |
(r − r ′)k .

10 Indeed: 1 = ‖I‖ = ‖h pp(p)h−1
pp (p)‖ = ‖h pp(p)pω(h p(p))‖ ≤ ‖h pp(p)‖ ‖pω(h p(p))‖ ≤ ML.
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5 The classical analytic KAM theorem

Theorem 1 Let the assumptions in Sect. 3 hold and let λ, μ and c0 be as in Sect. 4 and let
ν = τ + 2.

There exist positive constants c� < 1/(8 ·n!) and κ , depending only on n and τ , such that,
if

c := c2
�

217 · n2 (n!)6 , ĉ := c�

24 , (15)

and if ε is such that

ε := ε

Mr2
0

≤ c
μ6

λ2 s4ν, (16)

then the following holds. Define

α := λ

ĉμ s3ν
(Mr0)

√
ε, r̂ := c0

2
μ2r0, rε := λ

c�

√
ε r0. (17)

Then, there exists a positive measure set Tα ⊆ B2r̂ (D) × T
n formed by “primary” Kol-

mogorov’s tori; more precisely, for any point (p, q) ∈ Tα , φt
H(p, q) covers densely an

H-invariant, analytic, Lagrangian torus, with H-flow analytically conjugated to a linear
flow with (α, τ )-Diophantine frequencies ω = h p(p0), for a suitable p0 ∈ D; each of such
tori is a graph over Tn rε-close to the unperturbed trivial graph {(p, θ) = (p0, θ)| θ ∈ T

n}.
Finally, the Lebesgue outer measure of (D× T

n)\Tα is bounded by:

meas
(
(D× T

n)\Tα

) ≤ C
√

ε (18)

with

C := κ
(

max
{
μ2r0 , diam D

})n · λn+2

μ3 s3ν
; (19)

indeed, there exist N and, for 1 ≤ i ≤ N, pi ∈ D, such that D ⊆ ⋃N
i=1 Br̂ (pi ) and

meas
(( N⋃

i=1

Br̂ (pi )× T
n)\Tα

)
≤ C

√
ε. (20)

6 Remarks

(i) The constant c� is, essentially, the “smallness” constant appearing in a local KAM
normal form (see Theorem 2). The constant κ is given in (74).

(ii) Notice that the set Tα of persistent primary Kolmogorov’s tori leaves in B2r̂ (D) ×
T
n , where B2r̂ (D) is the 2r̂ -neighborhood of D, which contains the finite r̂ -covering

appearing in (20). Thus, estimate (20) implies at once (18).
Observe that (20) is meaningful also in the case of sets D of measure zero (such as a
singleton).

(iii) To obtain (20), we first prove a covering lemma for D through N balls Br̂ (pi ) (with
suitable pi ∈ D) giving an explicit bound on N in terms of the ratio between the
diameter of D and r̂ (compare § 6.1); then, we prove the theorem for the special case
of a ball. With this strategy the geometric properties of D enter only in a very primitive
(but general) way through its diameter (needed to estimate N ) and explains the term
(max

{
μ2r0 , diam D

})n appearing in the constant C in (19).
Such strategy reflects our main purpose, which is to give a simple expression forC valid
for completely arbitrary domain D.
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Clearly, sharper estimates can be obtained taking into account the geometry of D under
suitable regularity assumptions. For example, if D has a piecewise C1 boundary (and
r̂ is small enough), it would not be difficult—adapting the covering lemma—to get an
estimate in terms of the measure of D and the (n − 1)-dimensional measure of the
boundary of D times r̂ .

6 Proof of KAM theorem 1

The proof of Theorem 1 is divided into six steps.

6.1 Local reduction

The first step consists in covering D with N balls centered at points of D (with an explicit
upper bound on N ), thus reducing the theorem to the special case in which the domain is a
ball. Indeed, the following simple result holds.

Lemma 2 (Covering lemma) Let E ⊆ R
n be a nonempty set of finite diameter. Then, for

any r > 0 there exists an integer N, with11

1 ≤ N ≤
([

diam E

r

]
+ 1

)n

, (21)

and N points pi ∈ E such that

E ⊆
N⋃

i=1

Br (pi ). (22)

Proof Let δ := diam E and let zi = inf{xi | x ∈ E}. Then E ⊆ K := z + [0, δ]n . Let
0 < r ′ < r close enough to r so that �δ/r ′� = [δ/r ] + 1 =: M . Then, one can cover K with
Mn closed, contiguous cubes K j , 1 ≤ j ≤ Mn , with edge of length r ′. Let ji be the indices
such that K ji ∩ E �= ∅ and pick a pi ∈ K ji ∩ E ; let 1 ≤ N ≤ Mn be the number of such
cubes. Observe that, since we have chosen the sup-norm in R

n , one has K ji ⊆ Br (pi ) and,
therefore, (22) follows with N as in (21). 
�

We now apply the lemma with E = D and r = r̂ defined by12

r̂ := ρ�

2M
= c0

2
μ2r0 ≤ r0

128
<

r0

2
. (23)

Thus, Lemma 2 yields that:
For suitable N points pi ∈ D, one has

D ⊆
N⋃

i=1

Br̂ (pi ), 1 ≤ N ≤
([

diam D
c0
2 μ2r0

]
+ 1

)n

. (24)

Notice that, by (23), H is holomorphic and bounded on Br0/2
(
Br̂ (pi )

)×T
n
s , for every i ≤ N .

Next we shall prove a “local” version of Theorem 1

11 [x] denotes the integer part (or “floor”) function max{n ∈ Z| n ≤ x}, while �x� denotes the “ceiling
function” min{n ∈ Z| n ≥ x}.
12 Recall (5), (6) and (7).
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6.2 A KAM local normal form après [23]

Fix one of the balls Br̂ (pi ) in the covering (24). We first prove Theorem 1 with D and r0

replaced, respectively, by

Di := Br̂ (pi ) and
r0

2
.

We shall use a “KAM normal form with parameters”; more specifically, we shall use Theo-
rem B of [23], whose statement we recall here for convenience of the reader.

Let r, α, h > 0, 0 < s ≤ 1, τ > n − 1 and let � ⊂ R
n be a bounded open set with

piecewise smooth boundary; let

�α :=
{
ω ∈ �, s.t. dist(ω, ∂�) ≥ α and ω is (α, τ )− Diophantine

} ;
let ω → e(ω) and (I, θ, ω) → P(I, θ, ω) be real-analytic functions with holomorphic
extension on, respectively, Bh(�α) and Br (0)×T

n
s × Bh(�α). Finally, if a > 0, we define

the “action rescaling map”:
Ra(I, θ) := (I/a, θ). (25)

Consider the Hamiltonian function, parameterized by ω,

H(I, θ, ω) := N (I, ω)+ P(I, θ, ω) , where N := e(ω)+ ω · I ,

with respect to the standard symplectic form d I ∧ dθ ; in particular, the integrable flow φt
N

is given by φt
N (I, θ) = (I, θ + ωt).

In [23] the following result is proven.13

Theorem 2 Under the above definitions and assumptions, there exist constants

0 < c� <
ĉ�

4 · n! <
1

8 · n! , (26)

depending only on n and τ , such that if

|P|r,s,h := sup
Br (0)×Tn

s×Bh(�α)

|P| ≤ c�αrs
ν, αsν ≤ h, (ν := τ + 2), (27)

then, there exist a Lipschitz homeomorphism ϕ : � ý and a family of torus embeddings

� : Tn ×� → Br (0)× T
n ⊆ R

n × T
n

such the following holds. For every ω ∈ �α , �(Tn, ω) is an invariant torus for H |ϕ(ω) :=
H(I, θ, ϕ(ω)) and

(φt
H |ϕ(ω)

◦�)(θ, ω) = �(θ + ωt, ω).

Moreover, for each ω ∈ �, θ → �(θ, ω) is real-analytic on T
n
s/2 and if

(θ, ω) → �0(θ, ω) := (0, θ)

denotes the trivial torus embedding, one has, uniformly on, respectively, Tn
s/2 × � and �,

the following estimates:

|Rr (�−�0)| , αsν |Rr (�−�0)|Lip,� ≤ |P|
ĉ�αrsν

, (28)

13 For a detailed discussion and proof of such KAM normal form theorem see, also, [18].
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|ϕ − id| , αsν |ϕ − id|Lip,� ≤ |P|
ĉ�r

. (29)

Remarks (i) The constants c� and ĉ� can be taken equal to, respectively, γ /2 and 1/c where
γ and c are the constants appearing in Theorem A of [23], where are not explicitly
evaluated.
In [3] an infinite dimensional KAM Theorem14 (implying Theorem 2) is proved,
substituting (27) with the stronger (for s small) condition |P|r,s,h ≤ καr , where
κ = κ(s, n, τ ) := κ

−cκ∗∗ with κ∗ = (n + τ) ln((n + τ)/s) and where c > 0 is an
absolute constant.
The numerical relations between c� and ĉ� in (26) are assumed for later convenience
(and, obviously, are compatible with [23]).

(ii) For simplicity—and because it would play no rôle—in (28) we reported slightly weaker
estimates with respect to those appearing in Theorem A, where in place of Rr there
appears the rescaling W (I, θ) := (I/r, θ/s) (which means that the estimates on the
angle components in [23] are better by a factor s < 1 than those in (28)).

(iii) Actually, the above Theorem is a synthesis of Theorem A and Theorem B in [23]. In
particular, the final measure estimate in Theorem B is not reported since the constant
(and its dependence upon �) is left implicit.

(iv) We point out that from the estimates (28) does not follows that � is Lipschitz close to
the trivial embedding �0. Indeed, if π2 denotes the projection over the θ -component,
taking into account that α = O(

√
ε) (compare (17)) , from (27) and (28) it follows that

|π2 ◦�− π2 ◦�0|Lip ≤ c�

ĉ�

· 1

αsν
= O

( 1√
ε

)
.

To overcome this fact one needs suitable asymmetric rescalings of action and angle
variables.

(v) As well known [12,22], maps constructed via KAM methods are smooth in the sense
of Whitney, or, what is the same, have C∞ extensions: Indeed, ϕ and � are C∞(�).

6.3 Applying the KAM normal form to H|Br̂ ( pi )×Tn

We now apply Theorem 2 to H restricted to

Di × T
n := Br̂ (pi )× T

n

where r̂ is defined in (23) and pi is one of the points introduced in Lemma 2. Recall that, by
(23), r̂ < r0/2 so that H has holomorphic extension to Br0/2(Di )× T

n
s .

Let

�(i) := h p(Di ) = h p
(
Br̂ (pi )

)
, h := ρ�

4
= Mr̂

2
, (30)

and notice that, by (23),

�(i)⊆BMr̂ (h p(pi ))⊆Bρ�/2(h p(pi )) = B2h(h p(pi )) �⇒ Bh(�
(i)) ⊆ B 3

4 ρ�
(h p(pi )),

which, by Lemma 1, shows that h p has an inverse15 p = h−1
p with holomorphic extension

p = p(·; pi ) : Bh(�
(i)) → Br� (pi ) . (31)

14 More precisely, compare Theorem 5.1 in [3], case (H3), p. 755 and Remark 5.3, p. 758.
15 Recall that p = p(·; pi ) and therefore depends upon i ; however for ease of notation we do not indicate
explicitly the dependence upon i .

123



Explicit estimates on the measure of primary KAM tori

Following [23], we introduce ω ∈ Bh(�
(i)) as parameter, and let16

p = p(ω)+ I, with ω ∈ Bh(�
(i)), |I | < r :=

√
ε

M
= √

ε · r0 <
r0

4
, (32)

and define
⎧
⎨

⎩

N (I, ω) := e(ω)+ ω · I := h(p(ω))+ ω · I
P(I, θ, ω) :=

∫ 1

0
(1− t)h pp(p(ω)+ t I )I · Idt + f

(
p(ω)+ I, θ),

(33)

so that

H(p(ω)+I, θ) = h(p(ω)+ I )+ f (p(ω)+ I, θ) = N (I, ω)+ P(I, θ, ω) =: H(I, θ, ω).

By (6), (7), (31), (32), one has that if ω ∈ Bh(�
(i)) and I ∈ Br (0), then

|p(ω)+ I − pi | ≤ |p(ω)− pi | + |I | < r� + r = ĉ0μr0 +√
εr0 <

r0

4
+ r0

4
= r0

2
, (34)

so that p(ω)+ I ∈ Br0/2(pi ). Thus, by (3), (32) and (33), H is real-analytic with holomorphic
extension to Br (0)× T

n
s × Bh(�

(i)) with

|P|r,s,h ≤ 2ε . (35)

Thus, if α is as in (17) and r as in (32), then,

|P|r,s,h
c�αrsν

≤ 2ε

c�αrsν
= 2ĉ

c�

μs2ν

λ

(15)= 1

8

μs2ν

λ
≤ 1

8
, (36)

and the first condition in (27) is satisfied. Observe that,

αsν = λ

ĉμs2ν
(Mr0)

√
ε

(16)≤
√
c

ĉ
μ2 Mr0,

and, if h is as in (30), one has, in view of (15),

αsν

h

(16)≤ 4
√
c

ĉ c0
≤ 1.

Thus, also the second condition in (27) is satisfied and we can apply Theorem 2, obtaining
the family of torus embedding17

� : Tn ×�(i) → Br (0)× T
n (r = √

ε r0)

as described in Theorem 2.

6.4 Kolmogorov’s tori: the sets T (i)
α and Tα

The tori we obtained in the preceding section live in the “local” phase space {(I, θ)| (I, θ) ∈
Br (0) × T

n}. To translate the invariant tori into the original phase space {(p, q)| (p, q) ∈
Br0/2(Di )× T

n}, we define the ω-family of torus embeddings18

θ �→ �(θ, ω) := (
p ◦ ϕ(ω), 0

)+�(θ, ω), ω ∈ �(i), (37)

16 In general, I is complex. Notice that by (5), (13), (16) (and the assumption s ≤ 1), ε < 1/16 since
c < 1/16.
17 Obviously, also � depends on i but, as above (compare footnote 15), for ease of notation we do not indicate
explicitly the dependence upon i .
18 Recall (34) and footnote 17.
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which, as function of θ , is real-analytic on T
n
s/2. Then, from Sect. 6.3 it follows that for

ω ∈ �
(i)
α the torus �(Tn, ω) is invariant for the flow of H and, furthermore:

(φt
H ◦�)(θ, ω) = �(θ + ωt, ω).

We therefore obtain the following family of “Kolmogorov’s tori” (recall, (23), that r̂ <

r0/2):

T (i)
α := �(Tn ×�(i)

α ) ⊆ Br0/2(Di )× T
n, Tα :=

N⋃

i=1

T (i)
α ⊆ Br0(D)× T

n,

Below, we shall show that actually Tα lives in a smaller neighborhood of D.
Analytic quantitative properties of the torus embedding �, and hence of the family of

Kolmogorov’s tori, will be described in detailed in the following section.

6.5 Properties of the torus embedding

Lemma 3 Let � be defined as in (37) and let �0 denote the “trivial embedding”

�0 : (θ, ω) ∈ T
n
s × Bh(�

(i)) �→ (p(ω), θ) ∈ Br� (pi )× T
n
s . (38)

Then19,

sup
�(i)

sup
Tn
|π1

(
� −�0

)| ≤ rε
(17):= λ

√
ε

c�

r0 , (39)

and, hence,

T (i)
α ⊆ Brε (Di )× T

n = Br̂+rε (pi )× T
n, (40)

Tα ⊆
N⋃

i=1

Br̂+rε (pi )× T
n ⊆ B2r̂ (D)× T

n . (41)

Proof By definitions (38) and (37), one has

� = �0 +
(
p ◦ ϕ − p, 0

)+�−�0 . (42)

Notice that, since h = ρ�/4, from (9) and (11), one has

sup
Bh(�(i))

‖pω‖ ≤ L , sup
Bh(�(i))

‖pωω‖ ≤ 4

c0

L

μ2 Mr0
. (43)

Thus, (29), (35), (43), one gets

sup
�(i)

|p ◦ ϕ − p| ≤ L
2ε

ĉ�r
(32)= 2

ĉ�

λr. (44)

Then, by (15), (26), (28) and (36), one gets (39).
Since (recall (38))

�0(T
n ×�(i)

α ) = p(�(i)
α )× T

n ⊆ Di × T
n = Br̂ (pi )× T

n,

(40) follows from (39); (41) follows since rε ≤ r̂ . 
�
19 Recall, (2), that π1 denotes projection onto the first n components.
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To control Lipschitz norm we introduce suitable partial rescalings. Let

1 < β := λ

čμsν
, with č := nĉ0ĉ�

16
= ĉ�

26 · n! . (45)

Define, for any a > 0, the following rescaling

Sa : (θ, x) ∈ T
n × R

n �→ (θ, ω) := (θ, ax).

Now, recall (25) and let

{
�̃ := Rβr ◦� ◦ Sα

�̃0 := Rβr ◦�0 ◦ Sα
,

{
�̃ := Rβr ◦� ◦ Sα

�̃0 := Rβr ◦�0 ◦ Sα
(46)

which are defined on the domain T
n
s/2 × 1

α
�(i). The rescaled version of (42) then becomes:

�̃ − �̃0 =
( 1

βr
(p ◦ ϕ − p) ◦ Sα, 0

)
+ �̃− �̃0. (47)

Finally, let
�∗ := (�̃ − �̃0) ◦ �̃−1

0 , (48)

which is defined on 1
βr Di × T

n
s/2.

The above rescaled embeddings may, now, be shown to be close, in Lipschitz norm, to
the unperturbed rescaled embeddings:

Lemma 4 The following bounds hold:

sup
T
n
s/2× 1

α
�(i)

|�̃− �̃0| ≤ sν

8
, sup

T
n
s/2

|�̃− �̃0|Lip, 1
α
�(i) ≤ sν

8
, (49)

sup
T
n
s/2× 1

α
�(i)

|�̃ − �̃0| ≤ sν

4
, sup

T
n
s/2

|�̃ − �̃0|Lip, 1
α
�(i) ≤ 1

4
, (50)

sup
1
βr Di×Tn

s/2

|�∗| ≤ sν

4
, sup

T
n
s/2

|�∗|Lip, 1
βr Di

≤ 1

4
, (51)

sup
1
βr Di×Tn

‖∂θ�∗‖ ≤ sν−1

2
. (52)

Proof Since β > 1, by (28) and (36) we have that

sup
T
n
s/2× 1

α
�(i)

|�̃−�̃0| ≤ sup
T
n
s/2× 1

α
�(i)

|R−1
β (�̃−�̃0)| = sup

T
n
s/2×�(i)

|Rr (�−�0)| ≤ 2ĉ

ĉ�

μs2ν

λ
≤ sν

8
,

(53)
last inequality holding because of the definition of ĉ in (15).

Analogously, (by (28), (36) and the definition of ĉ) we have that20

20 If f is a Lipschitz map defined on �(i), then f ◦ Sa is Lipchitz on 1
a �(i) and | f ◦ Sa |Lip, 1

a �(i) =
a| f |Lip,�(i) .
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sup
T
n
s/2

|�̃− �̃0|Lip, 1
α
�(i) ≤ sup

T
n
s/2

|R−1
β (�̃− �̃0)|Lip, 1

α
�(i) = α sup

T
n
s/2

|Rr (�−�0)|Lip,�(i)

≤ 2ĉ

ĉ�

μsν

λ
≤ sν

8
,

which, together with (53), proves (49).
Now, by (32), (44), (45), we get

sup
T
n
s/2× 1

α
�(i)

∣
∣
∣
∣

(
1

βr
(p ◦ ϕ − p) ◦ Sα, 0

)∣
∣
∣
∣ =

1

βr

(i)
sup
�

|p◦ϕ− p| ≤ 2λ

ĉ�β

(45)= μsν

25n! <
sν

8
. (54)

The first estimate in (50) now follows at once in view of (47), the first inequality in (49) and
(54).

In order to prove the second estimate in (50), in view of (47), we need to estimate the
Lipschitz semi-norm of (p ◦ ϕ − p). Fix ω,ω′ ∈ �(i) and set p = p(ω) and p′ = p(ω′).
Let also γ (t) := (p′ − p)t + p, for t ∈ [0, 1] and21 γ̃ := h p ◦ γ . Then,22

∣
∣
∣p

(
ϕ(ω′)

)− p(ω′)− p
(
ϕ(ω)

)+ p(ω)

∣
∣
∣

=
∣∣∣∣

[∫ 1

0

(
pω

(
ϕ
(
γ̃ (t)

))
ϕω

(
γ̃ (t)

)− pω

(
γ̃ (t)

))
h pp(γ (t)) dt

]
(p′ − p)

∣∣∣∣

≤ M|p′ − p|
∫ 1

0

∣∣pω

(
ϕ
(
γ̃ (t)

))
ϕω

(
γ̃ (t)

)− pω

(
γ̃ (t)

)∣∣ dt

= M|p′ − p|
∫ 1

0

∣∣∣pω

(
ϕ
(
γ̃ (t)

))(
∂ω(ϕ − id)

∣∣
γ̃ (t)

)+ pω

(
ϕ
(
γ̃ (t)

))− pω

(
γ̃ (t)

)∣∣∣ dt

(43)≤ λ|ω′ − ω|
(
L|ϕ − id|Lip + 4L

c0μ2 Mr0
|ϕ − id|

)

(29),(35)≤ λ|ω′ − ω|
(
L

2ε

ĉ�αrsν
+ 4L

c0μ2 Mr0

2ε

ĉ�r

)

(16),(32)= |ω′ − ω|2λ2r

ĉ�

(
1

αsν
+ 4

c0μ2 Mr0

)
.

Now, observe that, by (6), (15), (16) and (17) (which implies that c < ĉ2c2
0/4), one has

4

c0μ2 Mr0
<

1

αsν
.

Thus,

|p ◦ ϕ − p|Lip,�(i) <
4λ2r

ĉ�αsν
,

and, therefore (recalling footnote 20),

1

βr
|(p ◦ ϕ − p) ◦ Sα|Lip, 1

α
�(i) = α

βr
|p ◦ ϕ − p|Lip,�(i)

21 The introduction of the lifted curve γ̃ ⊆ �(i) to join ω and ω′ is due to the fact that, in general, �(i) is not
convex.
22 By Remark (v) in 7.2, ϕ is differentiable; the differentiability of ϕ almost everywhere also follows, inde-
pendently, from Rademacher’s theorem. Notice also that, if f is a function differentiable (a.e.) on �(i), then

sup(i)
� |∇ f | ≤ | f |Lip,�(i) (a.e.), the equality holding if �(i) is convex.
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<
4λ2

β ĉ�sν

(14)≤ 2λ

nĉ0μ ĉ�sν

1

β

(45),(15)= 1

8
,

which, together with the second estimate in (49), in view of (47), yields also the second
bound in (50).

To estimate �∗ (defined in (48)), observe that

�̃−1
0 (y, θ) = (

θ, α−1h p(βry)
)
, �̃−1

0 : 1

βr
Di × T

n
s/2

onto→ T
n
s/2 ×

1

α
�(i).

Thus, the first estimate in (51) follows immediately from the first bound in (50). As for the
Lipschitz semi-norm of �∗, by (15), (17), (26), (32) and (45) we have, for all θ ∈ T

n
s/2,

that23

|�̃−1
0 |Lip, 1

βr Di
= 1

α
|h p(βr ·)|Lip, 1

βr Di
= βr

α
|h p|Lip,Di ≤

βr M

α
= ĉs2ν

č
= c�

ĉ�

4 · n!s2ν<s2ν .

Thus, in view of the second estimate in (50), we have, for all θ ∈ T
n
s/2,

|�∗|Lip, 1
βr Di

≤ |�̃ − �̃0|Lip, 1
α
�(i) |�̃−1

0 |Lip, 1
βr Di

<
s3ν

4
.

By (51) and Cauchy estimates we get (52). 
�
We shall also need the following

Lemma 5 Let24

ρ := βsν

4
r. (55)

Then,

�̃ ◦ �̃−1
0

( 1

βr
Di × T

n
)
:= �̃ ◦ �̃−1

0

( 1

βr
Br̂ (pi )× T

n
)
⊇ 1

βr
Br̂−ρ(pi )× T

n . (56)

Proof Since25

1

βr
Br̂−ρ(pi ) = B r̂−ρ

βr

( pi
βr

)
(55)= B r̂

βr − sν
4

( pi
βr

)
,

one sees that (56) will hold if, for any given (y0, θ0) ∈ 1
βr Br̂−ρ(pi ) × T

n , there exists a

point26

(y1, θ1) ∈ Bsν/4(0)× T
n

23 |h p(βr ·)|Lip, 1
βr Di

denotes the Lipschitz norm of the function y → h p(βry) on the rescaled domain

(βr)−1Di .
24 Recall that r = √

ε r0 is defined in (32).
25 Notice that it is r̂ − ρ > 0: Indeed, by (32) and (45), we see that ρ = λ

√
εr0/(4čμ), so that (recalling

the definition of r̂ in (23)) ρ < r̂ is seen to be equivalent to ε < 4 č2 c2
0 μ6/λ2 (46),(6)= ĉ2

�μ6/(216n2n!6λ2),

which is guaranteed by (16), observing that, by (15), c < ĉ2
�/(216n2n!6).

26 As standard, the overline denotes closure and observe that y0 + y1 ∈ 1
βr Br̂ (pi ).
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such that

(y0, θ0) = �̃ ◦ �̃−1
0 (y0 + y1, θ0 + θ1)

(48)= (y0 + y1, θ0 + θ1)+�∗(y0 + y1, θ0 + θ1).

Such relation is, in turn, equivalent to the fixed point equation

(y1, θ1) = −�∗(y0 + y1, θ0 + θ1). (57)

We shall solve (57) in two steps: (i), We prove that there exists a unique function y∗(θ) such
that27

y∗(θ) = −π1�∗(y0 + y∗(θ), θ0 + θ), ∀ θ ∈ T
n, (58)

and, (ii), we show that the map

θ ∈ T
n �→ θ + π2�∗(y0 + y∗(θ), θ0 + θ) ∈ T

n, (59)

is onto, guaranteeing that there exists a θ1 ∈ T
n so that θ1+π2�∗(y0+ y∗(θ1), θ0+θ1) = 0.

These two facts will show that y1 := y∗(θ1) and θ1 are solutions of (57), proving the claim.
Proof of (i): Let

X := {θ �→y(θ)∈C(Tn,Rn)| sup
Tn
|y| ≤ sν/4}, F(y)(θ) := −π1�∗

(
y0 + y(θ), θ0 + θ

)
.

Then, by the first inequality in (51), F : X → X , and the second inequality in (51) shows that
F is a contraction from X into X . Hence, there exists a unique fixed point y∗ ∈ X satisfying
(58). Furthermore, since �∗ is real-analytic, so is y∗ and, in particular, its Jacobian ∂θ y∗
satisfies the equation

(
id+ π1∂y�∗

(
y0 + y(θ), θ0 + θ

))
∂θ y∗ = −π1∂θ�∗

(
y0 + y(θ), θ0 + θ

)
,

which, by Neumann series, by the second inequality28 in (51) and by (52), yields

sup
Tn
‖∂θ y∗‖ ≤ 1

1− 1
4

sν−1

2
= 2

3
sν−1. (60)

Proof of (ii): Observe that from the standard contraction lemma it follows easily that29:
If g is a C1(Tn,Tn) map such that λ := supTn ‖∂θg‖ < 1, then, the map G : θ ∈ T

n �→
θ + g(θ) ∈ T

n has a unique inverse G̃ : θ ∈ T
n �→ θ + g̃(θ) ∈ T

n with g̃ ∈ C1(Tn,Tn)

and supTn ‖∂θ g̃‖ ≤ λ/(1− λ).
Now, recalling (59), to finish the proof is enough to check that the Jacobian of the map

θ �→ π2�∗(y0 + y∗(θ), θ0 + θ)

has (operator) norm strictly smaller than one. But, by the second inequality in (51), (52) and
(60), one has, for any θ ∈ T

n ,

27 Recall, (2), that πi denotes projection: π1(y, θ) = y and π2(y, θ) = θ .
28 Recall footnote 7.
29 Indeed, G ◦ G̃ = id is equivalent to the fixed point equation g̃ = −g ◦ (id + g̃) and if we let X
denote C(Tn ,Tn) endowed with the standard metric d(h1, h2) := supTn dTn

(
h1(θ), h2(θ)

)
(where d

Tn
denotes the standard flat metric on T

n ), one sees immediately that the assumption implies that the map
h ∈ X �→ −g ◦ (id+ h) ∈ X is a contraction from X to X , whose unique fixed point yields g̃. Furthermore,
since g is C1, so is g̃ and the inequality on the Jacobian of g̃ follows by Neumann series after having
differentiated the identity g̃ = −g ◦ (id+ g̃).
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∥
∥∂θπ2�∗

(
y0 + y∗(θ), θ0 + θ

)∥∥ ≤ ∥
∥∂y�∗

(
y0 + y∗(θ), θ0 + θ

)∥∥
∥
∥∂θ y∗(θ)

∥
∥

+ ∥
∥∂θ�∗

(
y0 + y∗(θ), θ0 + θ

)∥∥

≤ 1

4
· 2

3
sν−1 + sν−1

2
= 2

3
sν−1 < 1.


�
6.6 Measure estimates

We first provide measure estimates on (Di × T
n)\T (i)

α = (Di × T
n)\�(Tn ×�

(i)
α ).

Clearly,30

(Di × T
n)\T (i)

α ⊆ (
(Di × T

n)\�(Tn ×�(i))
) ∪̇ �

(
T
n × (�(i)\�(i)

α )
)
. (61)

Now, the following estimates hold.

Lemma 6 (Measure estimates) Recall (6), (15) and (45) and define the following constants:

κ1 := (2π)n
ncn−1

0

2č
, κ2 :=

(5π

2

)n; (62)

κ ′3 := 2 n
n−1

2

( ∑

k �=0

1

|k|τ+1
1

)cn−1
0

ĉ
, κ ′′3 :=

2ncn−1
0

ĉ
, κ3 := κ ′3 + κ3.

′′ (63)

Then, one has

meas
(
(Di × T

n)\�(Tn ×�(i))
) ≤ κ1 μ2n−3rn0

√
ε , (64)

meas
(
�(Tn ×�(i)\�(i)

α )
) ≤ κ2 L

n meas (�(i)\�(i)
α ) , (65)

meas (�(i)\�(i)
α ) ≤ κ3

μ2n−3λ2

s3ν
(Mr0)

n √ε. (66)

Proof Observe that by (46)

Rβr ◦� = �̃ ◦ �̃−1
0 ◦ Rβr ◦�0. (67)

Thus, since �0(T
n ×�(i)) = Di × T

n , we have

Rβr ◦�(Tn ×�(i)) = �̃ ◦ �̃−1
0

( 1

βr
Di × T

n
)
. (68)

Therefore,31

meas
(
(Di × T

n)\�(Tn ×�(i))
)
= (βr)n meas

(
Rβr

(
(Di × T

n)
)\Rβr ◦�(Tn ×�(i))

)

(68)= (βr)n meas
(( 1

βr
Di × T

n)\�̃ ◦ �̃−1
0

( 1

βr
Di × T

n)
)

(56)≤ (βr)n meas
(( 1

βr
Di × T

n)\( 1

βr
Br̂−ρ(pi )× T

n)
)

= meas
((

Di\Br̂−ρ(pi )
)× T

n
)

30 The dot over union denotes “disjoint union.”
31 Recall that Di = Br̂ (pi ); in the last inequality use that for every 0 < x < 1 and for every integer n > 1,
one has 1− (1− x)n < nx and for the last equality recall (23), (32), (45), (55).
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= (2π)n
(
(2r̂)n − (

2(r̂ − ρ)
)n)

≤ (2π)nn2nr̂ n−1ρ

(62)= κ1λμ2n−3rn0
√

ε,

proving (64).
To prove (65), observe that if A ⊆ �(i), from (67) and the identity (recall (38))

Rβr ◦�0(T
n × A) = 1

βr
p(A)× T

n,

there follows, by (46),

�(Tn × A) = R−1
βr ◦ �̃ ◦ �̃−1

0

( 1

βr
p(A)× T

n
)
. (69)

Observe also that, since32

�̃ ◦ �̃−1
0 = id+�∗,

from (51) there follows

|�̃ ◦ �̃−1
0 |Lip, 1

βr Di×Tn ≤ 5/4.

Now, for every measurable set A ⊆ �(i), one has33

meas
(
�(Tn × A)

) (69)= (βr)nmeas
(
�̃ ◦ �̃−1

0

( 1

βr
p(A)× T

n)
)

≤ (2π)n
(|�̃ ◦ �̃−1

0 |Lip, 1
βr Di×Tn

)n
Ln meas(A)

≤ κ2 L
n meas (A),

and (65) follows.
To prove (66), observe that

�(i)\�(i)
α ⊆ {ω ∈ �(i)| ω is not (α, τ )-Diophantine} ∪�(i)(α) (70)

where

�(i)(α) :=
{
ω ∈ �(i), s.t. dist(ω, ∂�(i)) < α

}
.

Let us begin with estimating the measure of the first set in the r.h.s. of (70) keeping track of
constants. Notice that, if �̂(i) denotes the Euclidean ball of center h p(pi ) and radius

√
n Mr̂ ,

then

�(i) = h p
(
Br̂ (pi )

) ⊆ �̂(i).

Thus, denoting by ‖ · ‖ the Euclidean norm in R
n , we have

meas {ω ∈ �(i)| ω not (α, τ )− Dioph.}

≤ meas

{

ω ∈ �̂(i)| ∃ k ∈ Z
n, k �= 0 : |ω · k| < α

|k|τ
1

}

32 Recall the definition of �∗ in (48).
33 In the first inequality, we use (twice) the following fact: If A ⊆ is a measurable set and f : A → R

n is a
Lipschitz map, then meas f (A) ≤ | f |nLip,A meas A.
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≤ 2n
∑

k �=0

(
√
n Mr̂)n−1 α

|k|τ+1
1

(23),(17)= κ ′3
Mnλμ(2n−3)

s3ν
rn0
√

ε. (71)

As for the measure of the second set in (70), we observe that either r̂ ≤ Lα or r̂ > Lα. In
the first case we have

meas(�(i)(α)) ≤ meas(�(i)) ≤ Mnmeas(Br̂ (pi )) = 2n Mnr̂ n ≤ 2n Mn Lr̂ n−1α .

In the second case, let

ř := r̂ − Lα > 0 .

We claim that
h p

(
Br̂ (pi )\Bř (pi )

) ⊇ �(i)(α) . (72)

Indeed, by contradiction, assume that there exist ω = h p(p) ∈ �(i)(α), ω∗ = h p(p∗) ∈
∂�(i) (namely |p∗ − pi | = r̂ ) with |p − pi | < ř , and |ω − ω∗| < α. Then

Lα = r̂ − ř < |p∗ − p| ≤ L|ω∗ − ω| < Lα,

proving (72). Thus,34

meas(�(i)(α)) ≤ meas
(
h p

(
Br̂ (pi )\Bř (pi )

)) ≤ Mnmeas
(
Br̂ (pi )\Bř (pi )

) = 2n Mn(r̂ n − ř n)

< (2M)n nr̂n−1 Lα

Thus, in either case, by (17) and (23), we have

meas �(i)(α) ≤ (2M)n nr̂n−1 Lα = κ ′′3
Mnλ2μ(2n−3)

s3ν
rn0
√

ε (73)

By (70), (71) and (73), we have

meas (�(i)\�(i)
α ) ≤ κ3

Mnλ2μ(2n−3)

s3ν
rn0
√

ε.

Lemma 6 is proved. 
�
From (61) and Lemma 6 there follows

meas
(
(Di × T

n)\T (i)
α

)
≤ (κ1 + κ2κ3) μ2n rn0

λn+2

μ3s3ν

√
ε.

Now, since it is

(D× T
n)\Tα = (D× T

n)\
N⋃

i=1

T (i)
α

⊆
N⋃

i=1

(Di × T
n)\

N⋃

i=1

T (i)
α

34 Recall footnote 31.
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⊆
N⋃

i=1

(Di × T
n)\T (i)

α

=
N⋃

i=1

(Br̂ (pi )× T
n)\T (i)

α .

Now, in view of (24), one obtains (20) with

κ := 22n

cn0
(κ1 + κ2κ3), (74)

and (18) follows at once. 
�

A The standard quantitative inverse function theorem

The following is a standard inverse function theorem in C
n ; the bar over sets denotes closure.

Proposition Let f : Br (p0) → C
n be a holomorphic function with invertible Jacobian

f p(p0) and with r such that

sup
Br (p0)

‖I − f −1
p (p0) f p(p)‖ ≤ δ < 1. (75)

Then, there exists a unique holomorphic inverse g of f such that

g : Bρ(ω0) → Br (p0), with ρ := (1− δ)
r

‖ f −1
p (p0)‖

, ω0 := f (p0). (76)

Furthermore,

sup
Bρ(ω0)

‖gω‖ ≤ 1

1− δ
‖ f −1

p (p0)‖. (77)

If f is real-analytic, so is g.

The elementary proof follows by checking that the map h �→ �(h) := h + f −1
p (p0)

(
f ◦

h−id
)

is a contraction on the space of continuous functions from Bρ(ω0) in Br (p0). Then,
by the contraction lemma, g = lim �n(p0), which also shows, by Weierstrass theorem on
the uniform limit of holomorphic functions, that g is holomorphic (and real-analytic, if so
is f ). Bound (77) is a general fact following from Neumann series: Indeed, if A and B are
(n × n) matrices and ‖I − AB‖ ≤ δ < 1, then, by Neumann series, AB is invertible and so
are A and B, furthermore ‖B−1‖ ≤ ‖(AB)−1‖ ‖A‖ ≤ (1− δ)−1‖A‖. 
�
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