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Abstract

We prove that KAM tori smoothly bifurcate into quasi-periodic attractors in
dissipative mechanical models, provided external parameters are tuned with the fre-
quency of the motion. An application to the dissipative spin–orbit model of celestial
mechanics (which actually motivated the analysis in this paper) is presented.
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1. Introduction and results

In physical examples, Hamiltonian dynamics typically arise through dissipative
systems with very small dissipation. It is therefore natural to ask which part of
the Hamiltonian dynamics smoothly persists when the dissipation is turned on. In
particular, if the reference Hamiltonian system is nearly integrable, a basic question
is to discuss the fate of quasi-periodic trajectories, which, as KAM theory shows
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(see, for example, [1]), are common in the purely Hamiltonian nearly integrable
regime.

In this paper we show that—under suitable assumptions relating external (phy-
sical) parameters with the motion frequencies—KAM tori smoothly bifurcate into
quasi-periodic attractors when dissipative effects are taken into account.

1.1. Dissipative nearly integrable flows on R × T
2

Motivated by the “dissipative spin–orbit model” of celestial mechanics (see
Sect. 1.2 below), we first consider dissipative nearly integrable flows on R × T

2,
where T

2 denotes the standard flat two-torus R
2/(2πZ

2). Namely, we consider the
differential equation

ẍ + η(ẋ − υ) + ε fx (x, t) = 0, (1.1)

where

• Dot stands for time derivative and x = x(t).
• x and t are periodic variables: (x, t) ∈ T

2, while the velocity ẋ ∈ R.
• η is the “dissipation parameter”: for η > 0 the system is dissipative, while for

η = 0 the system is conservative (Hamiltonian); values η < 0 are also allowed.
• υ is an “external parameter” (in the spin–orbit problem it will be related to the

eccentricity of the reference Keplerian orbit).
• ε measures the size of the perturbation (for ε = 0 the system is integrable).
• The potential f is a given real-analytic function1 on T

2.

As mentioned above, for η = 0, (1.1) is the Lagrange equation for the nearly
integrable Lagrangian

Lε(ẋ, x, t) := ẋ2

2
− ε f (x, t), (ẋ, x, t) ∈ R × T

2,

or, equivalently, corresponds to the Hamiltonian equation

ẏ = −∂x Hε, ẋ = ∂y Hε,

for the nearly integrable Hamiltonian Hε(y, x, t) := y2

2 + ε f (x, t) defined on
R × T

2.
In the conservative case η = 0, standard KAM theory (see for example, [1])

implies that2 if ε is small enough, (1.1) admits many quasi-periodic solutions, that
is, solutions of the form

x(t) = ωt + u(ωt, t) (1.2)

with u(θ) = u(θ1, θ2) real-analytic on T
2 and ω Diophantine:

|ωn1 + n2| � κ

|n1|τ , ∀ (n1, n2) ∈ Z
2, n1 �= 0, (1.3)

1 “Finitely differentiable function” suffices, but we focus on the real-analytic case in view
of our application to celestial mechanics (and for simplicity).

2 Note that for ε = 0, the Hamiltonian H0 = y2

2 is non-degenerate in the sense of KAM
theory; compare [1].
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for some κ, τ > 0. Furthermore, such solutions are analytic in ε and are Whitney
smooth in3 ω. In the following, Dκ,τ denotes the set of Diophantine numbers in R

satisfying4 (1.3).
On the other hand, when η �= 0 and ε = 0, the general solution of (1.1) is given

by

x(t) = x0 + υ t + 1 − exp(−ηt)

η
(v0 − υ),

showing that the periodic solution (remember that x is an angle) x = k + υt (with
k constant) and ẋ ≡ υ is a global attractor for the dynamics.

The leitmotif is that KAM quasi-periodic solutions for η �= 0, smoothly bifur-
cate into quasi-periodic attractors5 provided the “external frequency” υ is tuned
with the “internal frequency” ω in (1.2). This is the content of the first result:

Theorem 1. Fix 0 < κ < 1 � τ and η0 > 0. Then there exists 0 < ε0 < 1 such
that for any ε ∈ [0, ε0], any η ∈ I0 := [−η0, η0] and any ω ∈ Dκ,τ there exists a
unique function6

u = uε(θ; η, ω) = O(ε), 〈u〉 :=
∫

T2
u

dθ

(2π)2 = 0,

such that x(t) in (1.2) solves (1.1) with

υ = ω
(

1 +
〈
(uθ1

)2
〉)

. (1.4)

Furthermore, the function uε is smooth in the sense of Whitney in all its variables,
is real-analytic in θ ∈ T

2 and ε, C∞ in η and Whitney C∞ in ω.

Remark 1. (i) Uniqueness has to be understood in the following sense: if one
is given a second solution x̃(t) = ωt + ũ(ωt, t) of (1.1) for some υ ∈ R,
with ũ = ũε(θ; η, ω) = O(ε) real-analytic in (θ, ε) and having vanishing
average over T

2, then ũ ≡ u and υ is as in (1.4).

3 A function f : A ⊂ R
n → R

m is Whitney Ck or Ck
W if it is the restriction on

A of a Ck(Rn) function; for the original definition by H. Whitney and for relevance in
dynamical system, see for example, [2]. Incidentally, we mention that Whitney smoothness
was discussed for the first time in the framework of conservative dynamical systems in [9]
and later in [7] and independently in [12].

4 Observe that if (1.3) holds, then 0 < κ < 1 and τ � 1. In fact, taking n1 = 1 and
n2 = −[ω] ([x] = integer part of x) in (1.3) shows that κ < 1, while the fact that τ � 1
comes from Liouville’s theorem on rational approximations (“For any ω ∈ R\Q and for any
N � 1 there exist integers p and q with |q| � N such that |ωq − p| < 1/N”). Finally, we
recall that when τ > 1,

⋃
κ>0 Dκ,τ is a set of full Lebesgue measure.

5 In general, in the non-integrable regime, such attractors will be only local attractors.
6 As usual, f = O(xk) means that f is a smooth function of x having equal to zero

the first k derivatives at x = 0; here θ ∈ T
2 corresponds to the variables (x, t), or more

precisely, θ denotes the variables in which the (x, t) motion linearizes.
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(ii) The time-derivative for x(t) corresponds to the directional derivative

∂ω := ω
∂

∂θ1
+ ∂

∂θ2
, (1.5)

for the function u(θ), so that being the flow θ ∈ T
2 → θ + (ωt, t) dense in

T
2, one sees that x(t) as in (1.2) is a quasi-periodic solution of (1.1) if and

only if u solves the following PDE on T
2:

∂2
ωu + η ∂ωu + ε fx (θ1 + u, θ2) + γ = 0, γ = η(ω − υ). (1.6)

This equation will actually be the main object of investigation of this paper.
(iii) Theorem 1 implies that the two-torus

Tε,η(ω) := {(x, t) = (θ1 + uε(θ; η, ω), θ2) : θ ∈ T
2}, (1.7)

is a quasi-periodic attractor for the dynamics associated to (1.1) with υ as
in (1.4) and that the dynamics on Tε,η(ω) is analytically conjugated to the
linear flow θ → θ + (ωt, t); compare also point (i) of Remark 3 below.

(iv) The result is perturbative in ε but it is uniform in η. It is particularly noticeable
the smooth dependence of uε on η as η → 0, which shows that the invariant
KAM torus Tε,0(ω) smoothly bifurcates into the attractor (1.7) as η �= 0.

(v) Theorem 1 will be obtained as a corollary of a “dissipative Nash–Moser”
theorem (see Section 1.3 below), after having rewritten Equation (1.6) as a
functional equation. Indeed, the method of proof is rather robust and general
and could be easily adapted to cover dissipative maps such as the “fattened
Arnold family” studied in [3] or it could be extended to systems with more
degrees of freedom. In this second case however, it would be important, in
our opinion, to motivate physically the form of the dissipation, a problem in
itself difficult and intriguing.

1.2. The dissipative spin–orbit model

We turn now to the mechanical problem that motivated this paper, namely, the
dissipative spin–orbit problem. Such a problem consists of studying the rotations of
a triaxial non-rigid body (satellite), having the satellite’s center of mass revolving
on a given Keplerian ellipse, and subject to the gravitational attraction of a major
body sitting on a focus of the ellipse.

To simplify the analysis, we assume that the satellite is symmetric with respect
to an “equatorial plane” and study motions having the equatorial plane coinciding
with the Keplerian orbit plane. Because of the assumed symmetry of the satellite,
such motions belong to an invariant submanifold of the phase space. Furthermore,
following Correia and Laskar [8], we consider a “viscous tidal model, with a linear
dependence on the tidal frequency”. The dissipation in such model is meant to
reflect the averaged effect of tides on the motion (see also, Remark 2 (i) below).
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Under such hypotheses, the motions of the satellite are described by the angle
x formed by, for example, the direction of the major physical axis of the satellite
(assumed to lie in the equatorial plane) with a fixed axis of the Keplerian orbit plane
(for example the direction of the semimajor axis of the ellipse),

and the differential equation governing the motion of the satellite in suitable units
is given by (1.1) with

⎧⎪⎪⎨
⎪⎪⎩

η = KΩe, υ = υe, ε = 3
2

B−A
C ,

f = f (x, t; e) := − 1

2 ρe(t)3 cos (2x − 2 fe(t)) ,

(1.8)

where

• e ∈ [0, 1) is the eccentricity of the Keplerian orbit on which the center of mass
of the satellite is revolving;

• K � 0 is a physical constant depending on the internal (non-rigid) structure of
the satellite;

• Ωe > 0, Ne > 0 and υe > 1 are known functions of the eccentricity e ∈ [0, 1)

and are given by:

Ωe :=
(

1 + 3e2 + 3

8
e4
)

1

(1 − e2)9/2 , (1.9)

Ne :=
(

1 + 15

2
e2 + 45

8
e4 + 5

16
e6
)

1

(1 − e2)6 ;

υe := Ne

Ωe
= 1 + 6e2 + 3

8
e4 + O(e6). (1.10)

• 0 < A < B < C are the principal moments of inertia of the satellite;
• ρe(t) and fe(t) are, respectively, the (normalized) orbital radius and the true ano-

maly of the Keplerian motion, which (because of the assumed normalizations)
are 2π -periodic functions of time t . The explicit expression for ρe and fe may
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be described as follows. Let u = ue(t) be the 2π -periodic function obtained by
inverting

t = u − e sin u, (“Kepler’s equation”); (1.11)

then

ρe(t) = 1 − e cos ue(t)

fe(t) = 2 arctan

(√
1 + e

1 − e
tan

ue(t)

2

)
. (1.12)

Remark 2. (i) The derivation of the conservative spin–orbit model (that is,
Equations (1.1) & (1.8) with K = 0) is classical and can be found, for
example, in [4]: compare Equation (2.2) of [4] with the normalization n :=√

(Gm)/a3 = 1.
The derivation of the dissipative contribution is less straightforward and, as
mentioned above, we follow Correia and Laskar [8]: compare (3) and (4) in
[8], where Ωe and Ne are denoted, respectively, Ω(e) and N (e). Essentially,
the dissipative term is given by the average over one revolution period (that
is, 2π with our normalization) of the so-called MacDonald’s torque [10];
compare [11], where the functions Ωe and Ne are denoted, respectively, by
f1(e) and f2(e).

(ii) For K = 0, equations (1.1) & (1.8) correspond to the Hamiltonian flow
associated to the one-and-a-half degree-of-freedom Hamiltonian

H(y, x, t) := 1

2
y2 − ε

2 ρe(t)3 cos (2x − 2 fe(t)) ,

(y, x) being standard symplectic variables. The associated “spin–orbit”
Hamiltonian system is non-integrable if ε > 0 and7 e > 0.

(iii) The external frequency υe is a real-analytic invertible function of e mapping
(0, 1) onto (1,∞); we denote by υ−1 : (1,∞) → (0, 1) the inverse map
(which is also real-analytic). The invertibility of the frequency map υe will
play the rôle of a nondegeneracy condition, allowing us to fix the eccentricities
for which quasi-periodic attractors exist in the full dynamics.

(iv) In many examples taken from the Solar system, both ε and K are small. For
example, for the Earth–Moon system and for the Sun–Mercury system ε is
of the order of 10−4, while K is of the order of 10−8.

(v) Mercury is observed in a nearly 3:2 spin–orbit resonance (that is, it rotates
three times on its spin axis, while making two orbital revolutions around the
Sun) and is moving on a nearly Keplerian orbit with eccentricity e 
 0.2.
However, Correia and Laskar’s numerical investigations [8] show that “the
chaotic evolution of Mercury’s orbit can drive its eccentricity beyond 0.325
during the planet’s history”. Now, if υ−1 is the function introduced in point

7 When e = 0, u0(t) = t = f0(t), ρ0 = 1 so that H = 1
2 y2 − ε

2 cos(2x − 2t), which is
easily seen to be integrable.
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(iii) above, υ−1(3/2) = 0.284 . . . . Thus, Theorem 1 for the dissipative spin–
orbit model (spelled out in Theorem 2 below) might give new mathematical
insight into the question of the so-called “capture in the 3:2 resonance” of
Mercury (see [8]) suggesting that such capture is related to the existence of
an underlying attractor with Diophantine frequency close to 3/2. For more
information about this point, see [6].

(vi) As mentioned in point (ii), Remark 1, quasi-periodic trajectories for (1.1) &
(1.8) correspond to solutions of the PDE

∂2
ωu + KΩe ∂ωu + ε

ρe(θ2)3 sin (2(θ1 + u(θ)) − 2 fe(θ2)) = K Ne − KΩeω.

(1.13)

The next result translates Theorem 1 in the case of the dissipative spin–orbit
model.

Theorem 2. Fix κ, r ∈ (0, 1) and τ � 1. There exists ε0 > 0 such that for any
ε ∈ [0, ε0], any K ∈ [0, 1] and any ω ∈ Dκ,τ ∩ [1 + r, 1/r ], there exist unique
functions8

eε = eε(K , ω) = υ−1(ω) + O(ε2), u = uε(θ; K , ω) = O(ε),

with
∫
T2 u dθ = 0, satisfying (1.13) with e = eε. The functions eε and uε are smooth

in the sense of Whitney in all their variables and are real-analytic in θ ∈ T
2 and

ε, C∞ in K and Whitney C∞ in ω.

1.3. A dissipative Nash–Moser theorem

We, now, state the main technical result, namely, an existence and uniqueness9

Nash–Moser (or KAM) theorem for dissipative/conservative flows on a two-torus.
In this theorem the potential is not assumed to be small but rather, we assume
to start with a good enough approximate solution. Special care is devoted to the
dependence of solutions upon the dissipative parameter which appears explicitly
in the small divisor problems involved.

More specifically, Theorem 3 below deals with finding real-analytic “local”
solutions u : T

2 → R and a number γ such that10

⎧⎨
⎩

∂2
ωu + η ∂ωu + gx (θ1 + u, θ2) + γ = 0,

〈u〉 = 0, 1 + uθ1
�= 0.

(1.14)

8 The map υ−1 is the inverse map of e → υe defined in (1.10).
9 While KAM procedures are abundant in literature, local uniqueness is seldom discussed.

10 ∂ω is defined in (1.5) and 〈u〉 := ∫
T2 u(θ) dθ

(2π)2 .
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Remark 3. (i) While the first condition in the second line of (1.14) is just a
normalization condition needed for uniqueness, the second one implies that
the map

θ ∈ T
2 → (θ1 + u(θ), θ2) ∈ T

2

is a diffeomorphism and therefore, if u solves (1.14), the set

{(y, (x, t)) = (ω + ∂ωu, (θ1 + u, θ2)) : θ ∈ T
2}

is a two-dimensional torus embedded in the three-dimensional phase space
R × T

2 which is invariant for the dynamics generated by the differential
equation

ẍ + η (ẋ − ω) + gx (x, t) + γ = 0, (1.15)

meaning that for each θ ∈ T
2,

t → x(t; θ) := θ1 + ωt + u(θ1 + ωt, θ2 + t)

is a solution of (1.15).
(ii) As mentioned above, the unknowns of (1.14) are u and γ ∈ R. Indeed, we

shall see below that u and γ are not independent as they satisfy the relation

η ω

〈(
uθ1

)2
〉
+ γ = 0. (1.16)

On the other hand, ω and η are regarded as external parameters taken, respec-
tively in Dκ,τ (for some prefixed 0 < κ < 1 � τ ) and in a compact interval
[−η0, η0] (for some prefixed η0 > 0).

It will be useful to rewrite the differential equation in (1.14) as a functional
equation involving parameters. For η ∈ R we define

Dη : v ∈ C1(T2) → Dηv = ∂ωv + ηv,

�η := Dη∂ω = ∂ω Dη,

Fη : (v, γ ) ∈ C2(T2) × R → Fη(v; γ )

:= �ηv + gx (θ1 + v, θ2) + γ (1.17)

(notice that D0 = ∂ω). Then problem (1.14) may be rewritten as

⎧⎨
⎩

Fη(u; γ ) = 0,

〈u〉 = 0, 1 + uθ1
�= 0.

(1.18)

In order to state existence and uniqueness theorems for (1.18), we need to
introduce suitable function spaces which, because of our motivating model, will be
spaces of real-analytic functions.
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Let us denote by Hξ the Banach space of continuous functions u : T
2 → R

with finite norm11

‖u‖ξ :=
∑
n∈Z2

|un| e|n|ξ ,

where un denotes the nth Fourier coefficient and |n| = |n1| + |n2|.
Let us also denote by Hξ

0 the closed subspace of Hξ formed by functions with
zero average:

Hξ
0 := {u ∈ Hξ s.t. u0 = 〈u〉 = 0}.

Remark 4. (i) The spaces {Hξ : ξ � 0} form a nested family of Banach spaces
as

0 � ξ ′ < ξ �⇒ Hξ
� Hξ ′

and ‖u‖ξ ′ � ‖u‖ξ .

(ii) Clearly, functions in Hξ can be analytically extended to the complex multi-
strip

T
2
ξ := {θ ∈ C

2 : | Im θi | < ξ, i = 1, 2}
and

sup
T

2
ξ

|u| � ‖u‖ξ .

Conversely, if u is a real-analytic function on T
2, then its Fourier coefficients

decay exponentially fast and therefore there exists ξ > 0 such that u ∈ Hξ .
(iii) From the definition of the norm ‖ · ‖ξ , it follows that if u ∈ Hξ

0 then12

‖∂h
θ u‖ξ � ‖∂k

θ u‖ξ , ∀ h, k ∈ N
2 : hi � ki ;

the same inequalities hold also for u ∈ Hξ when h �= 0.
(iv) Dη is a “diagonal” operator on Fourier spaces mapping Hξ into Hξ ′

for any13

0 � ξ ′ < ξ :

Dηu = Dη

⎛
⎝∑

n∈Z2

un ein·θ
⎞
⎠ =

∑
n∈Z2

λη,n un ein·θ ,

where

λη,n := i(ωn1 + n2) + η. (1.19)

11 The letter e denotes the Neper number exp(1) = 2.71828 . . . ; do not get confused with
the letter e used for eccentricity and the letter e, which will be used below for the “error”
function e(θ).
12 As usual, if h ∈ N

2, ∂h
θ := ∂

h1
θ1

∂
h2
θ2

.
13 As usual n · θ denotes the usual inner product n1θ1 + n2θ2.
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If η �= 0, Dη is bounded (since |λη,n| � |η|), invertible and its inverse, D−1
η ,

maps Hξ onto itself:

D−1
η : Hξ → Hξ , ∀ η �= 0, ξ � 0

D−1
η u =

∑
n∈Z2

λ−1
η,n un ein·θ .

Notice, however, that the limit η → 0, which is of particular interest to us, is
singular (compare also, the next point).

(v) If η = 0, then

D0 = ∂ω : Hξ → Hξ ′
0 , (0 ≤ ξ ′ < ξ);

since ω ∈ Dκ,τ , D0 is invertible on Hξ
0:

D−1
0 : u ∈ Hξ

0 −→
∑

n∈Z2\{0}
λ−1

0,nun ein·θ ∈ Hξ ′
0 , (0 ≤ ξ ′ < ξ).

(vi) We finally recall two elementary properties concerning the product and the
composition of functions in Hξ . If u, v ∈ Hξ , then uv ∈ Hξ and

‖uv‖ξ � ‖u‖ξ ‖v‖ξ .

As for composition, if 0 � ξ < ξ̄ and f ∈ Hξ̄ , v ∈ Hξ with ‖v‖ξ � ξ̄ − ξ ,
then one has θ → F(θ) := f (θ1 + v(θ), θ2) ∈ Hξ and

‖F‖ξ � ‖ f ‖ξ̄ .

For the proof, see for example, [5], p. 426, 427.

We are now ready to formulate the main technical result.

Theorem 3. Let 0 < ξ∗ < ξ < ξ̄ � 1; let 0 < κ < 1 � τ ; let I0 := [−η0, η0] for

some η0 > 0; let ω ∈ Dκ,τ and (x, t) ∈ T
2 → g(x, t) ∈ Hξ̄ ; let M > 0 be such

that

‖∂3
x g‖ξ̄ � M; (1.20)

let, also, 0 < ν < ξ̄ − ξ , 0 < α < 1 and 0 < σ < 1.
Then there exist a constant k = k(ξ, ξ∗, κ, τ, η0, M, ν, α, σ ) > 1 such that the

following holds.
Assume that there exist functions v = v(θ; η) ∈ C∞(T2 × I0) and β = β(η) ∈

C∞(I0) (“initial approximate solution”) satisfying the following hypotheses:



Quasi-Periodic Attractors in Celestial Mechanics 321

(H1) for each η ∈ I0, the function θ → v(θ; η) belongs to Hξ
0;

(H2) ‖vθ1
‖ξ � σν for any η ∈ I0;

(H3) define14

V := 1 + vθ1
, W := V 2, ρ := η

〈
W −1 D−1

η vθ1

〉
〈
W −1

〉 , (1.21)

and assume that for any η ∈ I0,

|ρ| � σα; (1.22)

(H4) assume that for any η ∈ I0, the “error function15”

e = e(θ; η) := Fη(v;β), (1.23)

satisfies the smallness condition

k ‖e‖ξ � 1. (1.24)

Under the hypotheses (H1)–(H4), there exist functions u = u(θ; η) ∈ C∞(T2 × I0)

and γ = γ (η) ∈ C∞(I0) such that (1.18) holds. Furthermore, for each η ∈ I0,
u(·; η) ∈ Hξ∗

0 and, if V∗, W∗ and ρ∗ are defined as in (1.21) with v replaced by u,
then for each η ∈ I0, one has

‖uθ1
‖ξ∗ � ν, |ρ∗| � α, (1.25)

|γ − β| , ‖uθ1
− vθ1

‖ξ∗ , |ρ − ρ∗| , ‖W − W∗‖ξ∗ � k ‖e‖ξ , (1.26)

The functions u andγ are unique in the following sense. If u′ = u′(θ; η) ∈ C∞(T2×
I0) and γ ′ = γ ′(η) ∈ C∞(I0) are also solutions of (1.18), that is, Fη(u′; γ ′) = 0
and u′ is such that for any η ∈ I0,

θ → u′(θ; η) ∈ Hξ∗
0 ,

‖u′
θ1
‖ξ∗ � ν,

k ‖u′ − v‖ξ∗ � 1 (1.27)

then u′ = u and γ ′ = γ .

Remark 5. (i) The proof of this theorem is fully constructive: the solution is
obtained as a limit (u, γ ) = lim(v j , β j ) where (v0, β0) = (v, β) is the
starting approximate solution and (v j , β j ) are quadratically better and better
approximations to the solution (u, γ ). Details on how to evaluate the constant
k are given along the proof.

(ii) The assumptions that all the ξ ’s are smaller than one and that ν < 1 are
not needed and are made only to simplify the exposition. It would suffice to
assume that 1 + vθ1

never vanishes.

14 Since σν < 1, hypothesis (H2) implies that V > 0 (and hence W > 0) for all θ and η.
15 Recall the definitions given in (1.17).
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(iii) The smooth dependence upon η around η = 0 (the conservative case) is one
of the main points of the theorem: it shows that KAM tori in the conserva-
tive case bifurcate smoothly into dissipative attractors, keeping the dynamics
conjugated to the linear flow θ → θ + (ωt, t). Indeed, also the dependence
upon the frequencies ω ∈ Dγ,τ is smooth, as explained briefly in Remark 7
below. The rôle of the bifurcation parameter is played by γ and in the applica-
tion to the spin–orbit problem by the eccentricity e of the reference Keplerian
orbit.

2. Proofs

2.1. Preliminaries

Here we discuss some more properties of the small divisor operators Dη and
�η and prove the compatibility condition (1.16).

Lemma 1. (i) If u ∈ C2(T2), then

〈
Dηu

〉 = η〈u〉, (2.28)〈
uθ1

�ηu
〉
= ηω

〈(
uθ1

)2
〉
. (2.29)

(ii) If v, V ∈ C2(T2) and V (θ) �= 0 ∀ θ ∈ T
2 then

V �ηv − v�ηV = Dη

(
V 2 D0(

v

V
)
)

. (2.30)

(iii) Let ω ∈ Dκ,τ ; let ξ > ξ ′ � 0; let η ∈ R and let p and s be non negative
integers. Then, for any u ∈ Hξ

0 ,

D−1
η : u ∈ Hξ

0 −→
∑

n∈Z2\{0}
λ−1

η,nun ein·θ ∈ Hξ ′
0 ,

‖D−s
η ∂ p

θ1
u‖ξ ′ � σp,s(ξ − ξ ′) ‖u‖ξ , (2.31)

where λη,n = i(ωn1 + n2) + η (compare (1.19)) and

σp,s(δ) := σp,s(δ;ω, η) := sup
n∈Z2\{0}

(
|i(ωn1 + n2) + η|−s |n1|p e−δ|n|) .

Furthermore,

σp,s(δ) � 1

κs δsτ+p

(
sτ + p

e

)sτ+p

. (2.32)

Finally, if p > 0, (2.31) holds for any u ∈ Hξ .
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(iv) Let B := T
2 × I0. Let (θ, η) ∈ B → u(θ; η) belong to C∞(B) and θ →

u(θ; η) belong to Hξ for some ξ > 0 and any η ∈ I0. Assume that

u0(0) := 〈u(·; 0)〉 = 0,

and let ω ∈ Dκ,τ . Then, D−1
η u ∈ C∞(B); θ → D−1

η u(θ; η) belongs to Hξ ′

for any 0 � ξ ′ < ξ and any η ∈ I0. Furthermore,

D−1
η u = u0

η
+ D−1

η (u − u0),

D−1
η u(θ; 0) = −∂ηu0(0) + D−1

0 u(θ; 0), (2.33)

‖D−1
η u(·; η)‖ξ ′ �

∣∣∣u0(η)

η

∣∣∣+ σ0,1(ξ − ξ ′)
∥∥u(·, ·; η) − u0(η)

∥∥
ξ
.

Proof. Equality (2.28) is obvious.
The operator D2

0∂θ1
is skew-symmetric, hence, by integration by parts,〈
uθ1

�ηu
〉
=
〈
uθ1

D2
0u
〉
+ η

〈
uθ1

D0u
〉

=
〈
D2

0uθ1
u
〉
+ η

〈
uθ1

D0u
〉

= η
〈
uθ1

D0u
〉

= ηω
〈
(uθ1

)2
〉
,

which is (2.29).

(ii) Relation (2.30) follows from the definitions of Dη and �η:

V �ηv − v�ηV = V Dη D0v − vDη D0V

= V D2
0v − vD2

0 V + η(V D0v − vD0V );
on the other hand one has

Dη

(
V 2 D0

( v

V

))
= Dη(V D0v − vD0V )

= V D2
0v − vD2

0 V + η(V D0v − vD0V ),

from which (2.30) follows.

(iii) (2.31) follows immediately from the definitions of D−1
η and of σp,s :

‖∂ p
θ1

D−s
η u‖ξ ′ =

∑
n∈Z2\{0}

(
|n1|p |i(ωn1 + n2) + η|−s e−|n|(ξ−ξ ′)

)
|un| e|n|ξ

� σp,s(ξ − ξ ′) ‖u‖ξ .

Since

|i(ωn1 + n2) + η| � |ωn1 + n2|,
(2.32) follows at once from the Diophantine estimate (1.3) and from the evaluation

sup
x>0

(
xa e−x) =

( a

e

)a
,

valid for any a � 0.
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(iv): The Fourier coefficients

un(η) = 1

(2π)2

∫
T2

u(θ; η) e−in·θ dθ

are C∞ (I0) and by assumption,

∥∥u(·; η)
∥∥

ξ
:=

∑
n∈Z2

|un(η)| e|n|ξ < ∞, ∀η ∈ I0.

Therefore, by the assumption on ω, it follows immediately that D−1
η u belongs to

C∞(B) and that D−1
η u(·, ·) belongs to Hξ ′

for any η �= 0 and ξ ′ < ξ ; the evaluations
in the first two lines of (2.33) show that the same is true for any η ∈ I0 (and any
ξ ′ < ξ ). Last estimate in (2.33) follows at once from point (iii). ��

Corollary 1. Let Fη be as in (1.17). If u ∈ C2(T2) and η ∈ R, then

〈(
1 + uθ1

)
Fη(u; γ )

〉
= ηω

〈(
uθ1

)2
〉
+ γ. (2.34)

In particular, if Fη(u; γ ) = 0, then (1.16) holds.

Proof. First observe that by (2.28)

〈
�ηu

〉 = 〈
D0(Dηu)

〉 = 0.

Observe also that

〈
(1 + uθ1

)gx (θ1 + u, θ2)
〉
=
〈
∂θ1

· g(θ1 + u, θ2)
〉
= 0.

By these observations and (2.29),

〈(
1 + uθ1

)
Fη(u; γ )

〉
=
〈(

1 + uθ1

)
�ηu +

(
1 + uθ1

)
gx (θ1 + u, θ2) +

(
1 + uθ1

)
γ
〉

=
〈
uθ1

�ηu + ∂θ1
· g (θ1 + u, θ2)

〉
+ γ

=
〈
uθ1

�ηu
〉
+ γ

= ηω

〈(
uθ1

)2
〉
+ γ,

proving the claims. ��
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2.2. Newton scheme

We describe now the Newton (KAM) scheme, on which the proof of Theorem 3
is based.

We start with a simple lemma on the differential dF of the operator

Fη(v;β) = �ηv + gx (θ1 + v, θ2) + β,

which is given by16

dFη,v = �η + gxx (θ1 + v, θ2). (2.35)

Lemma 2. Let v ∈ C2(T2) and β ∈ R. Assume that

V := 1 + vθ1
�= 0, ∀ θ ∈ T

2, (2.36)

and define

e := e(θ; η) := Fη(v;β),

W := V 2, (2.37)

Aη,v : w ∈ C2(T2) → Aη,vw := V −1 Dη

(
W D0 (V −1w)

)
∈ C(T2). (2.38)

Then for every w ∈ C2(T2) and any η ∈ R,

dFη,v(w) = Aη,vw + V −1eθ1
w. (2.39)

Notice that from (2.30) it follows that

Aη,vw = �ηw − V −1�ηV w. (2.40)

Proof of Lemma 2. From the definition of e(θ) it follows that

eθ1
= �ηV + gxx (θ1 + v, θ2)V . (2.41)

Then by (2.35), (2.40) and (2.41) one sees that

dFη,v(w) = �ηw + gxx (θ1 + v, θ2)w

= Aη,vw + V −1 (�ηV + gxx (θ1 + v, θ2)V
)
w

= Aη,vw + V −1eθ1
w.

��
The idea of a Newton scheme is to start with an approximate solution of the

equation Fη(u; γ ) = 0, namely, a function v : T
2 → R and a number β such that

e := Fη(v;β) := �ηv + gx (θ1 + v, θ2) + β

is small, and then to find a “quadratically better approximation”

v′ = v + w and β ′ = β + β̂

16 By definition dFη,v(w) := lim
τ→0

Fη(v + τw;β) − Fη(v;β)

τ
; notice that since β ap-

pears as an additive constant in the expression for Fη, the differential of Fη is independent
of β.



326 Alessandra Celletti & Luigi Chierchia

satisfying

w = O1 = β̂ and Fη(v
′;β ′) = O2 where Ok = O(‖e‖k).

To find w and β̂, we define

Q1 := gx (θ1 +v+w, θ2)−gx (θ1 +v, θ2)−gxx (θ1 +v, θ2)w, Q2 := V −1eθ1
w;

(2.42)
notice that the Qi ’s are quadratic in w and e. Then, by Lemma 2, one has

Fη(v
′;β ′) := Fη(v + w;β + β̂)

= Fη(v;β) + β̂ + dFη,v(w) + Q1

= e + β̂ + Aη,vw + Q1 + Q2. (2.43)

The next result shows how to solve the equation

e + β̂ + Aη,vw = 0

under suitable conditions upon the function v; in this equation, v and, hence, e are
given, while w and β̂ are unknowns.

Proposition 1. Let g, ω and I0 be as in Theorem 3; let B := T
2×I0. Let v ∈ C∞(B)

and let θ → v(θ; b) belong to Hξ
0 for some ξ > 0 and any η ∈ I0; let β ∈ C∞(I0).

Finally, let V and W be defined, respectively, as in (2.36) and (2.37) and assume
that V (θ) �= 0 for any θ ∈ T

2,
〈
W −1

〉 �= 0 and that

ξ + ‖vθ1
‖ξ < ξ̄ , (2.44)

∣∣∣η
〈
W −1 D−1

η vθ1

〉∣∣∣ <

∣∣∣
〈
W −1

〉∣∣∣ . (2.45)

Define:

E(θ) := E(θ; η) := V e := V Fη(v;β),

E := E(η) := 〈E〉,
Ẽ(θ) := Ẽ(θ; η) := E − E,

a := a(η) :=
〈
W −1 D−1

η Ẽ
〉
− E

〈
W −1 D−1

η vθ1

〉
〈
W −1

〉+ η
〈
W −1 D−1

η vθ1

〉 ,

β̂ := β̂(η) := −(E + η) a = −
〈
W −1

〉
E + η

〈
W −1 D−1

η Ẽ
〉

〈
W −1

〉+ η
〈
W −1 D−1

η vθ1

〉 ,

E1(θ) := E1(θ;β) := D−1
η Ẽ − a

(
1 + ηD−1

η vθ1

)
− E D−1

η vθ1
. (2.46)

Then:

(i) All functions in (2.46) are C∞(B) (or C∞(I0) if do not depend on θ explicitly)
and, for any ξ ′ < ξ , they belong to Hξ ′

, for all η ∈ I0;
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(ii) The following equalities hold:

Dη E1 = E + β̂V, (2.47)〈
W −1 E1

〉
= 0. (2.48)

(iii) If we define

ŵ(θ; η) := −V D−1
0 (W −1 E1), w := ŵ − V

〈
ŵ
〉

(2.49)

then these functions are C∞(B) (or C∞(I0) if they do not depend on θ

explicitly) and for any ξ ′ < ξ , they belong to Hξ ′
, for all η ∈ I0. Furthermore,

the following identities hold:

〈w〉 = 0, (2.50)

e + β̂ + Aη,vw = 0. (2.51)

From this statement,17 the definitions in (2.42) and from (2.43), there follows
immediately the following:

Corollary 2. Under the assumptions of Proposition 1, if β̂ and w are defined as in
(2.46) and (2.49), then

e′ := Fη(v + w;β + β̂) = Q1 + Q2.

Proof of Proposition 1. (i) The regularity properties of the functions defined
in (2.46) follow from the assumption (2.45) and point (iv) of Lemma 1.
Notice that in view of point (vi) of Remark 4, assumption (2.44) implies that
θ → gx (θ1 + v(θ), θ2) belongs to Hξ (and hence, so does e(θ1)).

(ii) From the definitions of E1 and β̂ (and of the operator Dη), there follows

Dη E1 = Ẽ − Dη a − η a vθ1
− Evθ1

= E − (E + ηa)V

= E + β̂V,

proving (2.47). Again, from the definitions of E1 and a, there follows
〈
W−1 E1

〉
=
〈
W−1 D−1

η Ẽ
〉
−a

(〈
W−1

〉
+ η

〈
W−1 D−1

η vθ1

〉)
− E

〈
W−1 D−1

η vθ1

〉
=0,

proving (2.48).
(iii) The regularity claim is handled as above. Equation (2.50) follows at once

from the definition of w (noting that 〈V 〉 = 1). To check (2.51), first observe
that the definition of w implies that

D0(V −1w) = D0

(
−D−1

0 (W −1 E1) − 〈
ŵ
〉)

= −W −1 E1.

17 Compare, especially, (2.51).
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Recalling (2.38) and (2.47), we find

e + β̂ + Aη,vw = V −1[V e + β̂V + V Aη,vw]
= V −1[E + β̂V + Dη(W D0(V −1w))]
= V −1[E + β̂V − Dη E1]
= 0.

��
Remark 6. (i) Notice that a, β̂ = O(‖e‖) so that also, E1, w = O(‖e‖). Thus,

Qi , e′ = O(‖e‖2). Explicit estimates will be provided in the next paragraph.
(ii) From (2.34) it follows that

E := 〈V e〉 =
〈
(1 + vθ1

)Fη(v;β)
〉
= β + η ω

〈
(vθ1

)2
〉
. (2.52)

(iii) In the conservative case (η = 0) we have that E = β and

E = V F0(v;β) = E0 + βV

with (compare (2.52))

E0 := V F0(v; 0), 〈E0〉 = 0.

Thus, from the definitions given in (2.46) and (2.49), there follows that

Ẽ = E − β = E0 + βvθ1
,

a =
〈
W −1 D−1

0 E0

〉
〈
W −1

〉 ,

β̂ = −β,

E1 = D−1
0 E0 − a,

and w as in (2.49). Thus, w is independent of β and so is the new approximate
solution

e′ = F0(v + w; 0),

(recall that β ′ = β + β̂ = 0 in this case). This shows that in the conservative
case one can always take β = 0.

2.3. KAM estimates

Here we collect the main estimates for the KAM algorithm described in Pro-
position 1. We start with the following

Definition 1. Let ξ̄ > ξ > 0. Then,

• Vξ denotes the set of functions v ∈ C∞ (
T

2 × I0
)

such that for all η ∈ I0,

θ → v(θ; η) ∈ Hξ
0.
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• V ξ̄
ξ denotes the subset of v ∈ Vξ verifying that for all η ∈ I0, V (θ) := 1 +

vθ1
(θ) �= 0 for all θ ∈ T

2,
〈
W −1

〉 �= 0 where W := V 2 and

‖vθ1
‖ξ < ξ̄ − ξ,

∣∣η 〈W −1 D−1
η vθ1

〉∣∣ < |
〈
W −1

〉
|.

• Wξ denotes the set Vξ × C∞(I0).

• W ξ̄
ξ denotes the set V ξ̄

ξ × C∞(I0).

If (v, β) ∈ W ξ̄
ξ , we define

K(v, β) := (v′, β ′) := (v + w, β + β̂),

where w and β̂ are defined as in Proposition 1.

Thus, by Proposition 1,

K : W ξ̄
ξ → Wξ ′ , ∀ ξ̄ > ξ > ξ ′ > 0.

Lemma 3. (i) Let (v, β) ∈ W ξ̄
ξ ; let (w, β̂) := K(v, β) − (v, β) (compare Defini-

tion 1) and define

V := 1 + vθ1
, W := V 2, ρ := η

〈
W −1 D−1

η vθ1

〉
〈
W −1

〉 . (2.53)

Assume that there exist ν, α such that for any η ∈ I0,

‖vθ1
‖ξ < ν < ξ̄ − ξ, (2.54)

|ρ| < α < 1. (2.55)

Then, there exists s := s(τ ) > 1 and18 c := c(κ, τ, M, ν, α, η0) > 1 such that for
any 0 < δ < ξ and any η ∈ I0, the following estimates hold:

|β̂|, ‖wθ1
‖ξ−δ, ‖D−1

η wθ1
‖ξ−δ � c δ−s ‖e‖ξ . (2.56)

(ii) Let W ′ and ρ′ be defined as, respectively, W and ρ with v replaced by
v′ := (v + w). If

‖wθ1
‖ξ−δ � ν − ‖vθ1

‖ξ , (2.57)

then
‖W ′ − W‖ξ−δ � c δ−s ‖e‖ξ ; (2.58)

e′ := Fη(v
′;β ′) := Fη(K(v, β)) belongs to Hξ−δ , for any η ∈ I0, and satisfies

‖e′‖ξ−δ � c δ−s ‖e‖2
ξ . (2.59)

18 Recall the definition of M in (1.20).
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Finally, if

|W ′ − W |T2 � 1

4

(1 − ν)4

(1 + ν)2 , (2.60)

then

inf
T2

W ′ >
(1 − ν)2

2
,
〈
(W ′)−1

〉
>

(1 + ν)2

2
(2.61)

and

sup
T2

|(W ′)−1 − W −1|, |ρ′ − ρ| � c δ−s ‖e‖ξ . (2.62)

Proof. The proof of this Lemma is (KAM) routine and it is based on a systematic
use of point (iii) of Lemma 1 and of point (vi) of Remark 4.

We begin by observing that (2.54) implies

µ0 := (1 + ν)−2 < |W −1(θ)| < µ1 := (1 − ν)−2, ∀ θ ∈ S
2
ξ ,

µ0 < W −1(θ) < µ1, ∀ θ ∈ T
2. (2.63)

Next, from the definitions in (2.46) and (2.54) it follows immediately that

|E |, ‖Ẽ‖ξ , ‖E‖ξ � (1 + ν) ‖e‖ξ < 2‖e‖ξ .

From (2.31) it follows

sup
T2

|D−1
η vθ1

| � ‖D−1
η vθ1

‖0 � σ0,1(ξ)‖vθ1
‖ξ < σ0,1(ξ) ν

sup
T2

|D−1
η Ẽ | � ‖D−1

η Ẽ‖0 � σ0,1(ξ)‖e‖ξ .

From (2.63) one has

inf
T2

W >
1

µ1
,
〈
W −1

〉
> µ0,

so that
〈
W −1

〉
+ η

〈
W −1 D−1

η vθ1

〉
�
〈
W −1

〉
(1 − |ρ|)

>
〈
W −1

〉
(1 − α)

> µ0 (1 − α).

We are now ready to estimate |β̂|: in view of (2.32) and the above estimates, we
get

|β̂| � c1 ξ−τ ‖e‖ξ < c1 δ−τ ‖e‖ξ

with

c1 := 1

1 − α

µ1

µ0

(
2 + η0

κ
(τ/ e)τ

)
= 1

1 − α

(1 + ν)2

(1 − ν)2

(
2 + η0

κ
(τ/ e)τ

)
.
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Analogously, we find

|a| ≤ c2 ξ−τ‖e‖ξ < c2 δ−τ‖e‖ξ ,

‖E1‖ξ− δ
3

≤ ‖D−1
η Ẽ‖ξ− δ

3
+ |a|

(
1 + |η|‖D−1

η vθ1
‖ξ− δ

3

)
+ |E | ‖D−1

η vθ1
‖ξ− δ

3

≤ σ0,1(δ/3)‖Ẽ‖ξ + |a| (1 + |η|σ0,1(δ/3)ν
)+ |E |σ0,1(δ/3)ν

� c3 δ−2τ‖e‖ξ , (2.64)

for suitable constants ci = ci (κ, τ, η0, ν, α) (since the ideas are clear, it is not
necessary to compute further); notice that ‖E1‖ has been estimated on an “interme-

diate” space Hξ− δ
3 so as to be able to control further applications of the operator

D−1
η or ∂θ1

.
Now, recalling the definition of w and ŵ in (2.49), by point (iii) of Lemma 1,

by (2.64), one gets

‖ŵ‖ξ− 2
3 δ ≤ (1 + ‖vθ1

‖ξ ) ‖D−1
0 (W −1 E1)‖ξ− 2

3 δ

≤ (1 + ν)σ0,1(δ/3) (1 − ν)−2 ‖E1‖ξ− δ
3

≤ c4 δ−3τ ‖e‖ξ .

Thus, since |〈ŵ〉| � ‖ŵ‖ξ− 2
3 δ , we find

‖w‖ξ− 2
3 δ � c5δ

−3τ‖e‖ξ , (2.65)

and

‖wθ1
‖ξ−δ � σ1,0(δ/3) ‖w‖ξ− 2

3 δ � c6 δ−(3τ+1) ‖e‖ξ ,

‖D−1
η wθ1

‖ξ−δ � σ0,1(δ/3) ‖wθ1
‖ξ− 2

3 δ � c7 δ−(4τ+1) ‖e‖ξ , (2.66)

which proves part (i) of the Lemma.
Now, by (2.57) and (2.66),

‖W ′ − W‖ξ−δ =
∥∥∥2wθ1

V + w2
θ1

∥∥∥
ξ−δ

� 2ν

∥∥∥wθ1

∥∥
ξ−δ+

∥∥wθ1

∥∥∥2

ξ−δ
� 3ν

∥∥∥wθ1

∥∥∥
ξ−δ

≤ c8δ
−(3τ+1) ‖e‖ξ . (2.67)

Inequality (2.57) also guarantees that e′ ∈ Hξ−δ; compare point (vi), Remark 4.
Then by Corollary 2 and (2.65), one gets (for a suitable c9 > 1)

‖e′‖ξ−δ ≤ ‖Q1‖ξ−δ + ‖Q2‖ξ−δ � M ‖w‖2
ξ−δ + (1 − ν)−1σ1,0(δ)‖e‖ξ‖w‖ξ−δ

≤ c9 δ−6τ ‖e‖2
ξ .

Let W̃ := W ′ − W . From (2.60) it follows that

sup
T2

|W̃ | � 1

4

(1 − ν)4

(1 + ν)2 = 1

4

µ0

µ2
1

<
1

2µ1
, (2.68)
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so that on T
2 one has (recall (2.63))

1

2
� 1 + W −1W̃ � 3

2
, W ′ = W + W̃ >

1

µ1
− 1

2µ1
= (1 − ν)2

2
> 0.

Let now Z := (W ′)−1 − W −1. Then by (2.67) and (2.68) one finds (on T
2)

|Z | = W̃

W 2(1 + W −1W̃ )
� 2µ2

1 |W̃ | � c10 min{δ−(3τ+1) ‖e‖ξ , 1} (2.69)

(for a suitable c10 > 1), proving also the first inequality in (2.62). Furthermore, by
the first inequality in (2.68),

〈
(W ′)−1

〉
=
〈
W −1

〉
+ 〈Z〉 �

〈
W −1

〉
− |〈Z〉| ≥ µ0 − 2µ2

1 |W̃ | � µ0

2
= 1

2(1 + ν)2 .

Finally, using (2.69), (2.66) and (2.57) (in order to estimate ‖wθ1
‖ in terms of

ν < 1), one obtains

|ρ′ − ρ| �

∣∣∣∣∣η
(W −1 + Z)(D−1

η vθ1
+ D−1

η wθ1
)〈

W −1
〉+ 〈Z〉 − η

W −1 D−1
η vθ1〈

W −1
〉

∣∣∣∣∣ � c11 δ−(4τ+1) ‖e‖ξ ,

proving also the second inequality in (2.62).
The theses of the Lemma follow now by taking c := maxi ci and s = 6τ . ��

2.4. Convergence of the Nash–Moser algorithm

Here we complete the quantitative description of the KAM procedure giving a
sufficient condition in order for the algorithm to converge.

For any i � 0 and for 0 < ξ∗ < ξ < ξ̄ , we let

ξi := ξ∗ + ξ − ξ∗
2i

, δi+1 := ξi − ξi+1 = ξ − ξ∗
2i+1 , (∀ i � 0);

as above (compare (2.63)) we let µ0 := (1 + ν)−2 and µ1 := (1 − ν)−2; we let

0 < µ0 < µ̄0 := inf
T2

W −1 � µ̄1 := sup
T2

W −1 < µ1; (2.70)

finally, we let (recall the definition of ρ in (1.21))

µ := min

{
ν − ‖vθ1

‖ξ ,
µ0

2µ2
1

, µ1 − µ̄1 , µ̄0 − µ0 , α − |ρ|
}

> 0. (2.71)

Proposition 2. Under the same assumptions and notations of part (i) of Lemma 3,
let 0 < ξ∗ < ξ and let ξi , µi , µ̄i and µ be as above; let C and m be positive
numbers such that

C � c 4s (ξ − ξ∗)−s, m � 2s−1 µ, (2.72)

and assume that
C ‖e‖ξ � e− 1

e m . (2.73)
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Then, (vi , βi ) := Ki (v, β) = (vi−1 + wi , βi−1 + β̂i ) ∈ W ξ̄
ξi

for all i � 1;

the sequences {vi } and {βi } converge uniformly on, respectively, S
2
ξ∗ × I0 and I0,

defining a limit

(u, γ ) := lim
j→∞(v j , β j ) =

(
v +

∞∑
i=1

wi , β +
∞∑

i=1

β̂i

)
∈ W ξ̄

ξ∗ ,

which is a solution of (1.18), that is, Fη(u; γ ) = 0 for all η ∈ I0. Furthermore, if
Wi and ρi are defined as, respectively, W and ρ in (1.21) with v replaced by vi ,

then W∗ := lim Wi ∈ W ξ̄
ξ∗ , ρ∗ := lim ρi ∈ C∞(I0), and (for all θ ∈ T

2 and any
η ∈ I0)

‖uθ1
‖ξ∗ � ν, |ρ∗| � α, (2.74)

|γ − β| , ‖uθ1
− vθ1

‖ξ∗ , |ρ − ρ∗| , ‖W − W∗‖ξ∗ � C∗ ‖e‖ξ , (2.75)

where

C∗ := C

2s

(
1 − e− 1

e m

)−1
.

Proof. We claim that (1.24) implies that for any i � 1,

(vi , βi ) := Ki (v, β) ∈ W ξ̄
ξi

(2.76)

max

{
|β̂i |, ‖∂θ1

wi‖ξi , |ρi − ρi−1|, sup
T2

|Wi − Wi−1|, sup
T2

∣∣∣W −1
i − W −1

i−1

∣∣∣
}

� (C‖e‖ξ )
2i−1

2s
(2.77)

θ → ei (θ) := Fη(vi ;βi ) ∈ Hξi and ‖ei‖ξi � (C‖e‖ξ )
2i

C 2s i
, (2.78)

where W0 := W , ρ0 := ρ. We prove the claim by induction. First of all, observe
that (1.24) implies immediately that19

2k(C‖e‖ξ )
2k � m, ∀ k � 0. (2.79)

Now, let us check (2.76)÷(2.78) for i = 1. By Lemma 3, part (i), with δ := δ1,
ξ − δ = ξ1, (v′, β ′) = (v1, β1) = K(v, β) = (v + w1, β + β̂1), by definition of C ,
δ1, m and µ and by (2.79) (with k = 0), we have

|β̂1|, ‖∂θ1
w1‖ξ1 � cδ−s

1 ‖e‖ξ = C‖e‖ξ

2s
� µ

2
. (2.80)

19 If x and y are positive numbers such that x � exp(−1/(ey)), then t xt � y for any
t > 0. In fact, let λ := log x−1 and observe that the hypothesis is equivalent to 1

e λ � y.

Then, t xt = 1
λ (λt) exp(−λt) � 1

eλ � y.
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In particular

‖∂θ1
w1‖ξ1 �

ν − ‖vθ1
‖ξ

2
,

which allows us to apply part (ii) of Lemma 3, with W ′ = W1, e′ = e1, ρ′ = ρ1,
and to obtain, as above,

‖W1 − W‖ξ1 � C‖e‖ξ

2s
� µ

2
, ‖e1‖ξ1 � C

2s
‖e‖2

ξ = (C‖e‖ξ )
2

C 2s
, (2.81)

and, since µ � µ0/(2µ2
1), by (2.62) (recall the identity in (2.68)), we have also

inf
T2

W1 >
1

2µ1
,
〈
W −1

1

〉
>

µ0

2

sup
T2

|W −1
1 − W −1|, |ρ1 − ρ| � C‖e‖ξ

2s
,

which, together with (2.80) and (2.81), prove (2.77) and (2.78) for i = 1. Finally,
from the above estimates and definitions, there follows

‖∂θ1
v1‖ξ1 � ‖vθ1

‖ξ + ‖∂θ1
w1‖ξ1 � ‖vθ1

‖ξ + ν − ‖vθ1
‖ξ

2
< ν < ξ̄ − ξ,

|ρ1| � |ρ| + |ρ1 − ρ| � |ρ| + µ

2
� |ρ| + α − |ρ|

2
< α < 1,

showing that (v1, β1) ∈ W ξ̄
ξ1

, proving also (2.76) for i = 1.
Let j � 1 and assume that (2.76)÷(2.78) hold true for 1 � i � j ; we want

to prove (2.76)–(2.78) for i = j + 1. Let 1 � i � j ; then, by definition of vi , by
(2.77) and (2.79), there follows

‖∂θ1
vi‖ξi =

∥∥∥∥∥vθ1
+

i∑
k=1

∂θ1
wk

∥∥∥∥∥
ξi

≤ ‖vθ1
‖ξ +

i∑
k=1

‖∂θ1
wk‖ξk

≤ ‖vθ1
‖ξ +

i∑
k=1

(C‖e‖ξ )
2k−1

2s

≤ ‖vθ1
‖ξ + m

2s−1

i∑
k=1

1

2k

= ‖vθ1
‖ξ + µ

i∑
k=1

1

2k

< ‖vθ1
‖ξ + µ < ν. (2.82)
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Analogously, for any 1 � i � j ,

|ρi | =
∣∣∣∣∣ρ +

i∑
k=1

ρk − ρk−1

∣∣∣∣∣

≤ |ρ| +
i∑

k=1

|ρk − ρk−1|

< |ρ| + µ < α. (2.83)

Thus, we can apply Lemma 3, part (i) (with δ := δ j+1, ξ = ξ j , v, β, ρ replaced
by v j , β j , ρ j , (v′, β ′) = (v j+1, β j+1) = K(v j , β j ) = (v j + w j+1, β j + β̂ j+1)),
which, in view of (2.56), the identity

c δ−s
i+1 = C

2s
2s i , (2.84)

and (2.78), yields

|β̂ j+1|, ‖∂θ1
w j+1‖ξ j+1 � c δ−s

j+1 ‖e j‖ξ j

= C

2s
2s j ‖e j‖ξ j

� (C‖e‖ξ )
2 j

2s
, (2.85)

which proves the first two bounds in (2.77) with i = j + 1. To apply part (ii) of
Lemma 3, we have to check (2.57) with w and v replaced, respectively, by w j+1
and v j . Since

‖∂θ1
v j‖ξ j + ‖∂θ1

w j+1‖ξ j+1 ≤ ‖vθ1
‖ξ +

i+1∑
k=1

‖∂θ1
wk‖ξk ,

(2.85) shows that the inequalities in (2.82) hold also for i = j + 1 so that (2.57)
is satisfied. Thus, by (2.58) (with W ′ and W corresponding, respectively, to W j+1
and W j ), (2.84) and by (2.78) with i = j , we see that

‖W j+1 − W j‖ξ j+1 � c δ−s
i+1‖e j‖ξ j = C

2s
2s i‖e j‖ξ j � (C‖e‖ξ )

2 j

2s
, (2.86)

showing that (2.77) for ‖Wi − Wi−1‖ holds also with i = j + 1. Now, by (2.59),
(2.84) and (2.78) with i = j , we find

‖e j+1‖ξ j+1 � C

2s
2s j (C‖e‖ξ )

2 j+1

C2 22s j
= (C‖e‖ξ )

2 j+1

C 2s( j+1)
, (2.87)
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that is, (2.78) with i = j + 1. Next, from (2.86), (2.79), the fact that j � 1 and the
definition of the µ’s, there follows

‖W j+1 − W j‖ξ j+1 � (C‖e‖ξ )
2 j

2s

≤ m

2s 2 j
= µ

2 j+1

≤ µ

4
� µ0

4µ2
1

= 1

4

(1 − ν)4

(1 + ν)2 ,

showing that (2.60) holds in the present case. Therefore, by (2.61),

inf
T2

W j+1 >
(1 − ν)2

2
,
〈
W −1

j+1

〉
>

(1 + ν)2

2

and

sup
T2

|W −1
j+1 − W −1

j |, |ρ j+1 − ρ j | � c δ−s
j+1‖e j‖ξ j � (C‖e‖ξ )

2 j

2s
, (2.88)

showing that (2.77) holds for i = j + 1. Finally, by (2.88), one sees that (2.83)
holds also for i = j + 1, implying that

|ρ j+1| < α < 1,

which shows that (v j+1, β j+1) ∈ W ξ̄
ξ j+1

. The claim has been completely proven.

The (fast) decay of (C‖e‖)2 j
implies that (v j , β j ) converge uniformly to

(u, γ ) ∈ W ξ̄
ξ∗ and that, for any η ∈ I0,

Fη(u; γ ) = lim
j→∞ Fη(v j ;β j ) = lim

j→∞ e j = 0,

showing that (u, γ ) is a solution of (1.18) for any η ∈ I0. Furthermore, since

‖∂θ1
vi‖ξi < ν, |ρi | < α,

by taking limits, we see that (1.25) holds. As for the bounds in (1.26), we have, for
example, that

‖uθ1
− vθ1

‖ξ∗ �
∑
i�1

‖∂θ1
wi‖ξi

≤ 1

2s

∑
i�1

(C‖e‖ξ )
2i

≤ 1

2s

∑
i�1

(C‖e‖ξ )
i

≤ C∗ ‖e‖ξ

which implies the second inequality in (1.26); the other inequalities are obtained
in exactly the same way. ��
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2.5. Local uniqueness

Next, we prove a local uniqueness result for the solutions of (1.18). Such result
is based upon the following simple observation on analytic functions.

Lemma 4. Let w ∈ Hξ∗ and assume that there exist c, s > 0 such that

‖w‖ξ−δ � c ‖w‖2
ξ δ−s, ∀ 0 < δ < ξ � ξ∗, (2.89)

(
c 4s ξ−s∗

) ‖w‖ξ∗ � 1. (2.90)

Then w ≡ 0.

Proof. Let ξi := ξ∗/2i and δi := ξ∗/2i+1 for all i � 0. Then, by (2.89), one has

‖w‖ξi+1 � B0 Bi
1 ‖w‖2

ξi
, B0 := c 2sξ−s∗ , B1 := 2s .

Iterating this relation20 one gets

‖w‖0 � ‖w‖ξi �
(
C‖w‖ξ∗

)2i

C 2s i
, C := c 4s ξ−s∗ ,

for all i � 0 which, by (2.90), implies that ‖w‖0 := ∑ |wn| = 0 so that w ≡ 0.
��
Proposition 3. Let 0 < ξ∗ < ξ̄ and let (u, γ ) ∈ W ξ̄

ξ∗ be a solution of (1.18) (that
is, Fη(u; γ ) = 0), satisfying also

∥∥∥uθ1

∥∥∥
ξ∗

� ν � ξ̄ − ξ∗, |ρ| ≤ α < 1,

for someν, α∈(0, 1). Then, there exist ŝ := ŝ(τ ) > 1 and Ĉ = Ĉ(κ, τ, η0, M, ν, α)>

1 such that if (u′, γ ′) ∈ W ξ̄
ξ∗ is also a solution of (1.18) (that is Fη(u′; γ ′) = 0)

satisfying ∥∥∥u′
θ1

∥∥∥
ξ∗

� ν, Ĉ ξ−ŝ∗ ‖u′ − u‖ξ � 1 (2.91)

then u ≡ u′ and γ = γ ′.

20 If yi > 0 and {xi }i�0 is a sequence of positive numbers satisfying

xi+1 � y0 yi
1x2

i ,

then one also has xi � (y0 y1x0)2i
/(y0 yi+1

1 ), as it follows multiplying both sides of the

above inequality by y0 yi+2
1 so as to obtain zi+1 � z2

i with zi := y0 yi+1
1 xi .
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Proof. Let
w := u′ − u, γ̂ := γ ′ − γ,

and observe that, since e := Fη(u; γ ) = 0, then, by (2.35) and (2.39), one has the
following identities:

Aη,uw := V −1 Dη

(
W D0 (V −1w)

)
= dFη,u(w) = �ηw + gxx (θ1 + u, θ2)w,

(2.92)
where V := 1 + uθ1

and W := V 2. Thus, (since also Fη(u′; γ ′) = 0)

0 = Fη(u
′; γ ′) = Fη(u; γ ) + �ηw + gx (θ1 + u′, θ2) − gx (θ1 + u, θ2) + γ̂

= �ηw + gxx (θ1 + u, θ2) w + γ̂

+ (gx (θ1 + u + w, θ2) − gx (θ1 + u, θ2) − gxx (θ1 + u, θ2)w)

=: Aη,uw + γ̂ + Q1(w). (2.93)

We now claim that, if we define

E := V Q1, E := 〈E〉, Ẽ := E − E, (2.94)

then

γ̂ = −
〈
W −1

〉
E + η

〈
W −1 D−1

η Ẽ
〉

〈
W −1

〉+ η
〈
W −1 D−1

η uθ1

〉 . (2.95)

In fact, from (2.92) and (2.93), there follows

Dη

(
W D0(V −1w)

)
+ γ̂ + uθ1

γ̂ + Ẽ + E = 0. (2.96)

If η = 0, then taking the average in (2.96) yields γ̂ = −E , which is (2.95) when
η = 0. If η �= 0, then, observing that D−1

η 1 = 1
η

, from (2.96) one obtains

D0(V −1w) + W −1γ̂

η
+ γ̂ W −1 D−1

η uθ1
+ W −1 D−1

η Ẽ + W −1 E

η
= 0;

multiplying by η and taking the average in the latter relation, yields, upon solving
for γ̂ , (2.95).

Thus, w satisfies the equation

Aη,uw = Q, Q := −γ̂ − Q1, (2.97)

with Q “quadratic” in w. In fact, observing that

‖Q1‖ξ � M ‖w‖2
ξ , ∀ ξ � ξ∗,

(M being as in (1.20)), by the relations in (2.97), (2.95) and (2.94), one finds that

|γ̂ |, ‖Q‖ξ � c11 ξ−τ ‖w‖2
ξ , (2.98)
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for a suitable c11 = c11(κ, τ, η0, M, ν, α) > 1 and for any ξ ≤ ξ∗. Next, from the
definition of Aη,u , one finds the identity

D0(V −1w) = W −1 D−1
η (V Q), (2.99)

and since 〈w〉 = 0 (as it follows from u, u′ ∈ Hξ∗
0 ), one sees that (2.99) is equivalent

to

w = ŵ − V
〈
ŵ
〉
, ŵ := V D−1

0

(
W −1 D−1

η (V Q)
)

.

By Lemma 1, one gets the estimate

‖w‖ξ−δ � c12δ
−2τ ‖Q‖ξ , (0 < δ < ξ ≤ ξ∗),

which, by (2.98), implies

‖w‖ξ−δ � c13 δ−3τ‖w‖2
ξ , (0 < δ < ξ ≤ ξ∗)

showing that w satisfies the estimate (2.89). Letting Ĉ := c13 43τ and ŝ := 3τ , the
thesis follows from Lemma 4. ��

The above analysis shows the smooth (C∞) dependence upon the “dissipation”
parameter η. We close this section with a brief remark on how solutions depend
upon other eventual “external” parameters.

Remark 7. (i) If the function g in (1.18) depends also in a real-analytic way on
one (or more) external parameters ℘ ∈ J ⊂ C

m , then so do KAM solutions
u(θ; η,℘) provided the smallness condition (1.24) holds uniformly in ℘, that
is, provided such conditions holds with the ‖ ·‖ξ norm redefined as the norm

‖e‖ξ :=
∑
n∈Z

(
sup
℘∈J

|en(℘)|
)

e|n|ξ .

This claim follows from the uniform convergence of the KAM scheme and
Weierstrass theorem on analytic limits of holomorphic function; for more
details compare, for example, with [5].

(ii) The dependence upon the frequency ω, as is well known, is more delicate
since it involves the small divisors λη,n : it is, however, standard to check
that this dependence is C∞ in the sense of Whitney on a bounded set of
Diophantine numbers, say, Dκ,τ ∩ [1 + r, 1/r ] for any prefixed 0 < r < 0;
for more details on Whitney smoothness and proofs we refer the reader to
[7], [12] and [2].
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2.6. Proof of Theorem 3

We start by observing that the hypotheses (H1)÷(H3) of Theorem 3 imply that

(v, β) ∈ W ξ̄
ξ (recall Definition 1) and that (2.54) and (2.55) hold.

Next, because of (H2) and (H3), we have that, on T
2, one has

1

(1 − σν)2 � W −1 � 1

(1 + σν)2 ,

so that (recall the definitions of µ0, µ1, µ̄0 and µ̄1 in (2.63) and (2.70)) we find

µ̄0 − µ0 � (1 + ν)2 − (1 + σν)2

(1 + ν)2(1 + σν)2 =: µ̂0 > 0,

µ1 − µ̄1 � (1 − σν)2 − (1 − ν)2

(1 − ν)2(1 − σν)2 =: µ̂1 > 0.

Thus, the number µ defined in (2.71) is bounded below by

µ ≥ µ∗ = µ∗(ν, α, σ ) :=min

{
(1 − σ)ν ,

(1 − ν)2

2(1 + ν)2 , µ̂0 , µ̂1 , (1 − σ)α

}
>0.

Therefore, taking

m = m∗ := 2s−1µ∗

we see that condition (2.73) may be rewritten as

k1 ‖e‖ξ � 1,

with
k1 = k1(ξ, ξ∗, κ, τ, η0, M, ν, α, σ ) := C e

1
e m∗(ν,α,σ ) ,

while (2.75) holds with C∗ equal to k2 with

k2 = k2(ξ, ξ∗, κ, τ, η0, M, ν, α, σ ) := C

2s

(
1 − e

− 1
e m∗(ν,α,σ )

)−1
. (2.100)

Thus, if k is taken to be not smaller than max{k1, k2}, we see that (1.24) implies
(2.73) so that by Proposition 2, the claims about existence of the solution (u, γ )

and the estimates (1.25) and (1.26) hold.
Let us turn to uniqueness. Let us take ŝ and Ĉ as in Proposition 3 and define

k3 = k3(ξ∗, κ, τ, η0, M, ν, α) := 2Ĉξ−ŝ∗ ,

k4 := k2 k3,

and assume that
k4 ‖e‖ξ∗ � 1. (2.101)

Then, if u′ and γ ′ solve (1.18), that is, Fη(u′; γ ′) = 0 for each η ∈ I0, and if

k3 ‖u′ − v‖ξ∗ � 1, (2.102)
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then, by (2.102), (2.75), the definition of k2 in (2.100), (2.101), we see that

‖u′ −v‖ξ∗ � ‖u′ −u‖ξ∗ +‖u −v‖ξ∗ � 1

k3
+ k2 ‖e‖ξ∗ � 1

k3
+ k2

k4
= 2

k3
= 1

Ĉξ−ŝ∗
,

showing that (2.91) is satisfied so that, by Proposition 3, u′ = u and γ ′ = γ .
Thus (since k4 is greater than k2 and k3), we see that all claims in Theorem 3

follow by taking k := max{k1, k4}.

2.7. Proof of Theorem 1

We now show how Theorem 1 can be obtained as a corollary of Theorem 3.
Since f in (1.6) is assumed to be real-analytic, there exists a ξ̄ > 0 such that

f ∈ Hξ̄ (point (ii) of Remark 4). Assuming, as we shall henceforth do, that

|ε| � ε0 < 1

we can take the constant M in Theorem 3 to be

M := ‖∂3
x f ‖ξ̄ .

In this section, ‖ · ‖ξ denotes the norm (compare (i), Remark 7)

‖h‖ξ :=
∑
n∈Z

(
sup
ε∈J

|hn(ε)|
)

e|n|ξ , J := {ε ∈ C, |ε| � ε0}.

The numbers ξ∗, ξ , ν, α and σ can be chosen arbitrarily as long as they satisfy

0 < ξ∗ < ξ < ξ̄, 0 < ν < ξ̄ − ξ, 0 < α < 1, 0 < σ < 1. (2.103)

Finally, we choose as the initial approximate solution, the trivial couple

(v, β) := (0, 0).

Then the error function e defined in (1.23) is simply given by

e = e(θ; ε) := Fη(0; 0) = ε ∂x f (θ), ‖e‖ξ � ε0 M (2.104)

and the functions defined in (1.21) are given by

V = 1, W = 1, ρ = 0.

Thus, (H1)÷(H3) of Theorem 3 are trivially satisfied and in order to meet (H4),
that is, the smallness condition (1.24), it suffices to require

ε0 � ε∗ := min

{
1 ,

1

k M

}
. (2.105)

Thus, if (2.105) holds, by Theorem 3 and Remark 7, there exist unique functions
u = u(θ; η) = uε(θ; η, ω) and γ = γ (η) = γε(η, ω) such that Fη(u; γ ) = 0, for
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all η ∈ I0, and θ → u(θ; η) ∈ Hξ∗
0 . Furthermore, u and γ are Whitney C∞ in all

their variables (θ, η, ε, ω) in the domain

T
2
ξ∗ × I0 × J × Dκ,τ ,

they are C∞ in (θ, η, ε) and real-analytic in (θ; ε) ∈ T
2
ξ∗ × J .

The solution (u, γ ) satisfies the bounds (1.25) and (1.26). In particular (by
(1.26) with v = 0), it holds

‖uθ1
‖ξ∗ � ε0 k M,

which, together with analyticity in ε, implies that u = O(ε), that is, u|ε=0 = 0.
Finally, the relation between γ and ω in (1.6) and Equation (1.16) imply (1.4),
completing the proof of Theorem 1. ��

2.8. Proof of Theorem 2

The proof of Theorem 2 is also based upon Theorem 3 along the lines of
Section 2.7, but first we have to investigate the analytical properties of the spin–
orbit potential defined in (1.8). For this purpose, we denote21

e1 := υ−1(1 + r), e2 := υ−1
(

1

r

)
, (2.106)

where 0 < r < 1 is a prefixed number as in Theorem 2 and υ−1 is the real-analytic
function (inverse of e → υe) defined in point (iii) of Remark 2. Clearly,

0 < e1 < e2 < 1.

It is also clear that ρe(t) and fe(t) (defined in (1.11) and (1.12)) are real-analytic
function of (e, t) ∈ (0, 1) × S

1, where S
1 := R/(2πZ). Thus, there exist positive

numbers
0 < ξ̄ < 1, 0 < d < min{e1, 1 − e2}, (2.107)

such that the functions ρe(t) and fe(t) may be analytically continued into the com-
plex domain Er,d × S

1
ξ̄
, where

Er,d :=
⋃

e′∈[e1,e2]
{e ∈ C : |e − e′| � d}, S

1
ξ̄

:= {t ∈ C : | Im t | < ξ̄}. (2.108)

Therefore, for any ε0 > 0, which will be henceforth assumed to be smaller than or
equal to one, the function

g(x, t; ε, e) := ε f (x, t; e) (2.109)

is real-analytic for
((x, t), (ε, e)) ∈ T

2
ξ̄

× J, (2.110)

21 Again: do not confuse the letter e, which stands for eccentricity, with the letter e, which
denotes the error function.
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where,
J := {ε ∈ C : |ε| � ε0} × Er,d ⊂ C

2. (2.111)

Clearly, in the present situation the ‖ · ‖ξ denotes the norm

‖h‖ξ :=
∑
n∈Z

(
sup

(ε,e)∈J
|hn(ε, e)|

)
e|n|ξ .

Finally, we choose η0 as22

η0 := Ωe2 ,

and let

ω ∈ Dκ,τ ∩
[

1 + r,
1

r

]
,

which guarantees that, as e ∈ [e1, e2], then υe ∈ [1 + r, 1/r ].
At this point, we can proceed as in the previous section (with the same choices

of M , ξ∗, ξ , ν, α and σ , (v, β)) and deduce from Theorem 3 the existence and uni-
queness of functions u = u(θ; η) = u(θ; η, ε, e, ω) and γ = γ (η) = γ (η, ε, e, ω)

such that Fη(u; γ ) = 0, for all η ∈ I0, and θ → u(θ; η) ∈ Hξ∗
0 .

As above, u and γ are Whitney C∞ in all their variables (θ, η, (ε, e), ω) in the
domain

T
2
ξ∗ × I0 × J ×

(
Dκ,τ ∩

[
1 + r,

1

r

])
,

they are C∞ in (θ, η, (ε, e)) and real-analytic in (θ; (ε, e)) ∈ T
2
ξ∗ × J ; (u, γ )

satisfies the bounds (1.25), (1.26) and ‖uθ1
‖ξ∗ � ε0 k M , which, together with

analyticity in ε, implies that u = O(ε), or u|ε=0 = 0. Therefore, relation (1.16)
implies that γ = O(ε2) and we can write

γ =: −ηω ε2 γ̃ (η, ε, e, ω),

with γ̃ Whitney C∞ in all its variables, C∞ in η and real-analytic in (ε, e); the
minus sign accounts for the fact that γ̃ � 0 for real values of its arguments.

To finish the proof of Theorem 2, we have to discuss the parameter relations
(compare (1.13))

η = KΩe, γ = KΩeω − K Ne. (2.112)

By definition of υe and γ̃ , we can rewrite (2.112) as

η = KΩe, ωε2 γ̃ (η, ε, e, ω) = υe − ω. (2.113)

Letting
γ̂ (K , ε, e, ω) := γ̃ (KΩe, ε, e, ω),

the second relation in (2.113) can be rewritten as

h(e, ε, K , ω) := υe − ω
(

1 + ε2γ̂ (K , ε, e, ω)
)

= 0.

22 Recall the definition of Ωe in (1.9) and note that K will be taken in the interval [−1, 1].
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This last equation may be solved by the standard Implicit Function Theorem: Let
e0(ω) := υ−1(ω), then

h(e0(ω), 0, K , ω) = 0, he(e0(ω), 0, K , ω) = ∂eυe|e=e0(ω) > 0.

Thus, there exists a unique

eε(K , ω) = e0(ω) + O(ε2) = υ−1(ω) + O(ε2),

which is Whitney C∞ in all its variables, C∞ in K ∈ [−1, 1] and real-analytic in
ε such that

h(eε(K , ω), ε, K , ω) ≡ 0,

implying that the parameter relations (2.113) are satisfied for η = KΩe,
e = eε(K , ω). The proof of Theorem 2 is finished upon the identification

u = uε(θ; K , ω) := u(θ; KΩeε(K ,ω), ε, eε(K , ω), ω).

��
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