Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

L. CHIERCHIA

E. Zehnder

Asymptotic expansions of quasiperiodic solutions

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^{*e*} *série*, tome 16, nº 2 (1989), p. 245-258.

http://www.numdam.org/item?id=ASNSP_1989_4_16_2_245_0

© Scuola Normale Superiore, Pisa, 1989, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Asymptotic Expansions of Quasiperiodic Solutions

L. CHIERCHIA - E. ZEHNDER

1. - Introduction

We first describe the existence problem of quasiperiodic solutions in a general setting and consider a Lagrangian function F = F(t, x, p),

(1.1)
$$F(t, x, p)$$
 defined on $T^{n+1} \times \mathbb{R}^n$,

i.e. periodic in $(t, x) \in \mathbb{R}^{n+1}$ with periodic 1, $T^{n+1} = \mathbb{R}^{n+1}/\mathbb{Z}^{n+1}$. The aim is to find special solutions of the associated Euler-equations

(1.2)
$$\frac{\mathrm{d}}{\mathrm{d}t}F_p(t,x(t),\dot{x}(t))=F_x(t,x(t),\dot{x}(t)).$$

We shall call, in the following, a solution x(t) quasiperiodic with frequencies ω , if it is of the form

(1.3)
$$x(t) = U(t, \omega t),$$

where $\omega \in \mathbb{R}^n$ is a given vector with rationally independent components, and where

(1.4)
$$U(t, \vartheta) - \vartheta =: u(t, \vartheta)$$
 is defined on T^{n+1}

i.e. is periodic in (t, ϑ) . Inserting (1.3) into (1.2), one obtains the nonlinear partial differential equation for U:

(1.5)
$$DF_p(t, U, DU) = F_x(t, U, DU),$$

where

(1.6)
$$\mathbf{D} = \mathbf{D}(\omega) = \sum_{j=1}^{n} \omega_j \frac{\partial}{\partial \vartheta_j} + \frac{\partial}{\partial t}.$$

Pervenuto alla Redazione il 19 Aprile 1989.

The differential operator D depends on the frequencies $\omega = (\omega_1, \dots, \omega_n)$. It is the differentiation in the direction $(\omega, 1)$. Restricting our attention to functions of the special form

(1.7)
$$F(t, x, p) = \frac{1}{2}|p|^2 + f(t, x),$$

the equation to be solved becomes

(1.8)
$$D^2 u = f_x(t, \vartheta + u)$$

for $u(t, \vartheta) = U(t, \vartheta) - \vartheta$ being a function on T^{n+1} . In order to solve (1.8) we shall assume f to be analytic and the frequencies ω to satisfy the diophantine conditions:

(1.9)
$$|\langle \omega, j \rangle + m| \ge \gamma(|j|)^{-\gamma}$$

for two constants $\gamma > 0$ and $\tau \ge n$ and for all $(j, m) \in \mathbb{Z}^n \times \mathbb{Z} \setminus \{0\}$.

It is well know that under these conditions on f and ω the equation (1.8) has a solution, provided f is sufficiently small (in an appropriate sense). This is a consequence of the KAM theory, and we refer to [CC], [SZ] and [M1]. However, if f is not small, then (1.8) may not admit any solutions for frequencies contained in a compact region of \mathbb{R}^n , see [Ma]. We shall not impose any smallness conditions on f in the following. Instead we shall construct quasiperiodic solutions having sufficiently large frequencies. We point out, that the system under consideration, decribed by a Lagrangian function in the special form of (1.7), can be viewed as beeing "close to an integrable system" in the region in which |p| is large. Introducing

(1.10)
$$\omega(\alpha) = \frac{1}{\alpha}\omega,$$

we look for quasiperiodic solutions having frequencies $\omega(\alpha)$ for sufficiently small $\alpha \in R$ with $\alpha \neq 0$. We shall abbreviate

(1.11)
$$E(u) =: D^2 u - f_x(t, \vartheta + u),$$

with $D = D(\omega(\alpha))$.

In the second section we shall prove that there is unique formal powerseries expansion in α :

(1.12)
$$\tilde{u} \sim \sum_{j=2}^{\infty} \alpha^{j} u_{j}(\vartheta, t),$$

with analytic functions u_j on T^{n+1} , which solves the equation $E(\tilde{u}) = 0$ formally, and satisfies

$$\int_{T^{n+1}} u_j dt d\vartheta = 0, \text{ for all } j.$$

However, in general, the series diverges as it is well known, and our aim is to show that the formal series can be interpreted as an asymptotic expansion for the true quasiperiodic solutions u_{α} , as α tends to zero. For this purpose α is required to belong to the subset

(1.13)
$$A(\omega) = \left\{ \alpha \in \mathbb{R} : \left| \frac{1}{\alpha} \langle \omega, j \rangle + m \right| \ge \gamma |j|^{-\tau}, \text{ for all } (j,m) \in \mathbb{Z}^n \times \mathbb{Z} \setminus 0 \right\}.$$

If γ is sufficiently small and $\tau > n + 1$, we will see that the set $\{\alpha \in A(\omega) : |\alpha| \le \epsilon\}$ has positive Lebesgue measure for every $1 > \epsilon > 0$. Setting now for every $N \ge 2$

(1.14)
$$\tilde{u}_N := \sum_{j=2}^N \alpha^j u_j(t,\vartheta),$$

one concludes that, in proper norms,

$$(1.15) |E(\tilde{u}_N)| \le C_N |\alpha|^{N-1}$$

for all $|\alpha| \leq 1$, with a constant C_N independent of α . Consequently, \tilde{u} can be interpreted as an approximate solution of E(u) = 0, if only α is small. Moreover, \tilde{u}_N is stable in the sense that the matrixfunction on T^{n+1} ,

(1.16)
$$V_{\vartheta}^T F_{pp}(t, V, DV) V_{\vartheta},$$

with $V =: \vartheta + \tilde{u}_N(\vartheta, t)$, is close to the identity matrix. Thus the assumptions of the KAM theory are met and one concludes that there is an $\alpha^* = \alpha^*(N)$, such that for $\alpha \in A(\omega)$ satisfying $|\alpha| < \alpha^*$ there is a unique analytic solution u_{α} of (1.8) having frequencies $\omega(\alpha)$, hence solving

$$(1.17) E(u_{\alpha}) = 0,$$

moreover

$$\int_{T^{n+1}} u_{\alpha} =$$

0.

In addition, one has an estimate of the form

$$(1.18) |u_{\alpha} - \tilde{u}_N| \leq C_N |E(u_N)|.$$

This establishes the existence of uncountably many quasiperiodic solutions for every analytic f. We point out again, that f is not assumed to be small. Moreover, on account of (1.18) and (1.15) one concludes that for every $N \ge 2$ there are constants $C_N > 0$ and $\alpha^* = \alpha^*(N)$ such that

(1.19)
$$\left| u_{\alpha} - \sum_{j=2}^{N} \alpha^{k} u_{j} \right|_{\infty} \leq C_{N} |\alpha|^{N+1}$$

for all $\alpha \in A(\omega)$ satisfying $|\alpha| \leq \alpha^*$. This shows that indeed the formal series (1.12) serves as an asymptotic expansion for the solutions having large frequencies $\omega(\alpha)$. The precise statement and the details of this argument are given in section 3. For simplicity we shall only treat the case in which f is analytic. We point out that the asymptotic expansion holds true also for $f \in C^{\infty}(T^{n+1})$, in which case also the solutions u_{α} belong to $C^{\infty}(T^{n+1})$.

It should be mentioned that in the special case n = 1 the existence of quasiperiodic solutions having large frequencies can be used in order to prove that all solutions of

(1.20)
$$\ddot{x} - f_x(t, x) = 0, \quad (t, x) \in T^2$$

are bounded, i.e.

$$\sup_{x \to \infty} |\dot{x}(t)| < \infty.$$

This has already been pointed out in [M1] and we shall recall the argument. We shall write (1.20) as a system

(1.21)
$$\dot{x} = y, \ \dot{y} = f_x(t, x), \ \dot{t} = 1,$$

which is considered as a vectorfield on the phase space $T^2 \times \mathbb{R}$. Assume now that U is a solutions of

(1.22)
$$D^{2}U = f_{x}(t, U)$$
$$U(t, \vartheta) - \vartheta = u(t, \vartheta) \quad \text{on } T^{2},$$
$$D = \frac{\omega}{\alpha} \frac{\partial}{\partial \vartheta} + \frac{\partial}{\partial t}.$$

Then the map $\psi: T^2 \to T^2 \times \mathbb{R}$, defined by $(t, \vartheta) \to (t, x = U(t, \vartheta), y = DU(t, \vartheta))$, describes an embedding of the torus T^2 into the phase space. In view of (1.22), the vectorfield (1.21) is tangential to $\psi(T^2) \subset T^2 \times \mathbb{R}$ so that its flow leaves this embedded torus invariant. If now $a_1 = \min DU \leq DU \leq a_2 = \max DU$, then $\psi(T^2) \subset T^2 \times [a_1, a_2]$, and since $\psi(T^2)$ is invariant under the flow we conclude, for every solution (t, x(t), y(t)) satisfying $y(t^*) < a_1$ for some $t^* \in \mathbb{R}$, that $y(t) < a_2$ for all $t \in \mathbb{R}$. Since $DU = \frac{\omega}{\alpha} + O(\alpha)$, we can construct for every C > 0 a quasiperiodic solution U satisfying DU > C by choosing α sufficiently small. This proves the claim, that all solutions are bounded. One can show that the analyticity of f is not necessary for the argument. It is sufficient to assume f to be sufficiently smooth, e.g. $f \in C^6(T^2)$, for the smooth case we refer to [M2]. Similar arguments allow to prove the boundedness of solutions of other equations, for example for the Euler equation associated to

$$F(t, x, p) = \frac{1}{2}p^2 + \sqrt{1 + p^2}f(t, x)$$

on $T^2 \times \mathbb{R}$. The above argument was used also in the more subtle proof in [DZ] of the boundedness of solutions for a nonlinear Duffing equation on $\mathbb{R}^2 \times \mathbb{R}$.

Observe that this note deals only with systems of very restricted nature and it is desirable to have asymptotic expansion for a more general class of Euler equations associated to

$$F(t, x, p) = g(p) + f(t, x, p)$$

on $T^{n+1} \times \mathbb{R}^n$, with

$$rac{|f(t,x,p)|}{|g(p)|}
ightarrow 0, \ \ {
m as} \ \ |p|
ightarrow \infty.$$

2. - The formal expansion

In order to solve E(u) = 0 we set formally

(2.1)
$$u =: \sum_{j=0}^{\infty} \alpha^{j} u_{j}(\vartheta, t),$$

and recall that

(2.2)
$$E(u) := D^2 u - f_x(t, \vartheta + u)$$

contains the parameter α also in the differential operator D. Introducing the operator

$$\partial =: \sum_{j=1}^n \omega_j \frac{\partial}{\partial \vartheta_j}$$

we can write

(2.3)
$$D^2 = \frac{1}{\alpha^2} \partial^2 + \frac{2}{\alpha} \partial D_t + D_t^2,$$

where D_t denotes partial derivative with respect to t. Expanding $\alpha^2 E(u) = 0$ into powers of α we find the following equations to be solved for the functions u_j :

(2.4)

$$\partial^2 u_0 = 0$$

$$\partial^2 u_1 + 2\partial D_t u_0 = 0$$

$$\partial^2 u_j + 2\partial D_t u_{j-1} + D_t^2 u_{j-2} = \varphi_{j-2},$$

for $j \ge 2$, where

(2.5)
$$\varphi_j = \varphi_j(u_0, \cdots, u_j) = \frac{1}{j!} \left(\frac{\mathrm{d}}{\mathrm{d}\alpha} \right)^j f_x \left(t, \vartheta + \sum_{s=0}^j \alpha^s u_s \right) \bigg|_{\alpha=0}$$

is a polynomial in u_1, \dots, u_j .

We shall show that there are unique analytic solutions u_j defined on T^{n+1} , if we normalize

$$\int_{T^{n+1}} u_j \mathrm{d}\vartheta \mathrm{d}t = 0$$

We first observe that the linear equation $\partial u = g$ on T^{n+1} admits a unique analytic solution u with meanvalue zero, provided g is analytic and has vanishing meanvalue. Since we will need it we formulate this well know result in quantitative terms. Denote by H_{σ} the space of holomorphic functions g(t, x) defined in the complex strip $\sum_{\sigma} = \{(x, t) \in C^{n+1} : |\text{Im } x_i| < \sigma, |\text{Im } t| < \sigma\}$ and periodic in all its variables, and abbreviate

$$|g|_{\sigma} =: \sup_{\Sigma_{\sigma}} |g|.$$

LEMMA 1. Let ω satisfy the diophantine conditions (1.9). Assume $g \in H_{\sigma}$ satisfies $|g|_{\sigma} < \infty$ and $\int g dx = 0$. Then there is a unique analytic and periodic solution u satisfying

(2.6)
$$\partial u = g \text{ on } \sum_{\sigma}, \text{ and } \int_{T^n} u dx = 0$$

Moreover, there is a constant $C = C(n, \tau)$ such that

(2.7)
$$|u|_{\sigma-\delta} \leq \frac{1}{\gamma} \delta^{-\tau} C |f|_{\sigma}, \text{ for all } 0 < \delta \leq \sigma$$

For a proof we refer e.g. to [R]. We notice that here the variable t is only a parameter. To construct the solutions one proceeds inductively.

a) First we show that $u_0 = u_1 = 0$. Indeed from the first two equations in (2.4) we conclude, in view of Lemma 1, that $u_0 = u_0(t)$ and $u_1 = u_1(t)$ are independent of the ϑ -variable. Integration of

(2.8)
$$\partial^2 u_2 + 2\partial \mathbf{D}_t u_1 + \mathbf{D}_t u_1 + \mathbf{D}_t^2 u_0 = f_x(t, \vartheta + u_0)$$

in the ϑ -variable gives $D_t^2 u_0(t) = 0$ and hence $u_0 = 0$, if the meanvalue should vanish. Integrating now

$$\partial^2 u_3 + 2\partial \mathrm{D}_t u_2 + \mathrm{D}_t^2 u_1 = f_{xx}(t, \vartheta) u_1(t)$$

in the ϑ -variable over T^n we find $D_t^2 u_1(t) = 0$ and hence $u_1(t) = 0$.

b) Next we proceed by induction and assume that

(2.9)
$$\partial^2 u_j + 2\partial D_t u_{j-1} + D_t^2 u_{j-1} = \varphi_{j-2},$$
$$\int_{T^n} (D_t^2 u_j - \varphi_j) d\vartheta = 0$$

hold true for $0 \le j \le n$, where quantities with negative subscripts are defined to be zero. In order to prove the statement for j = n + 1 we first solve

(2.10)
$$\partial^2 u_{n+1} = \varphi_{n-1} - 2\partial \mathbf{D}_t u_n - \mathbf{D}_t^2 u_{n-1}.$$

On account of the induction assumption the meanvalue over T^n of the right hand side vanishes, and by Lemma 1 there is a solution

(2.11)
$$u_{n+1} = a + b$$
,

where $a = a(\vartheta, t)$ is uniquely determined, if we set

(2.12)
$$\int_{T^n} a(\vartheta, t) \mathrm{d}\vartheta = 0,$$

b = b(t) is arbitrary. It will be determined by the condition

$$\int\limits_{T^n} (\mathrm{D}_t^2 u_{n+1} - \varphi_{n+1}) \mathrm{d}\vartheta = 0$$

or

(2.13)
$$D_t^2 b = \int_{T^n} \left(\varphi_{n+1} - D_t^2 a\right) \frac{\mathrm{d}\vartheta}{(2\pi)^n} = \int_{T^n} \varphi_{n+1} \frac{\mathrm{d}\vartheta}{(2\pi)^n}.$$

Observe that the average over T^n of φ_{n+1} does not depend on b. Indeed φ_{n+1} is, in view of (2.5), of the form

$$\varphi_{n+1}=f_{xx}(t,\vartheta)u_{n+1}+\tilde{\varphi},$$

where $\tilde{\varphi}$ depends on u_n, u_{n-1}, \dots, u_1 only. Therefore, since the meanvalue of $f_{xx}(t, \vartheta)b(t)$ is zero, the meanvalue of φ_{n+1} is independent of b.

Now the necessary and sufficient condition for a solution of (2.13) is the vanishing of the meanvalue in the t variable:

(2.14)
$$\int_{T^{n+1}} \varphi_{n+1} \mathrm{d}\vartheta \mathrm{d}t = 0.$$

Assuming (2.14) to hold true there is a unique solution b of (2.13) having meanvalue zero and the induction is completed. It remains to prove (2.14). c) For the proof of (2.14) we need

LEMMA 2. For every $u \in C^2(T^{n+1})$.

(2.15)
$$\int_{T^{n+1}} (1+u_{\vartheta})^T E(u) \mathrm{d}\vartheta \mathrm{d}t = 0,$$

where u_{ϑ} is the Jacobian matrix in the ϑ -variable.

PROOF. Set $1 + u_{\vartheta} = V$, by integration:

$$\int_{T^{n+1}} V^T E(u) d\vartheta dt = \int_{T^{n+1}} (V^T DF_p - V^T F_x) d\vartheta dt$$
$$= -\int_{T^{n+1}} (DV^T F_p + V^T F_x) d\vartheta dt$$
$$- \int_{T^{n+1}} \frac{\partial}{\partial \vartheta} F(t, \vartheta + u, D(\vartheta + u)) d\vartheta dt = 0.$$

Inserting the expansion for $\alpha^2 E(u)$ into (2.15) one finds the identities

$$\int_{T^{n+1}} \varphi_j = \int_{T^{n+1}} \sum_{s+\ell=j+2} u^T_{s,\vartheta} \Phi_\ell \mathrm{d}\vartheta \mathrm{d}t,$$

where

$$\Phi_\ell =: \partial^2 u_\ell + 2 \partial \mathrm{D}_t u_{\ell-1} + \mathrm{D}_T^2 u_{\ell-2} - arphi_{\ell-2},$$

for all $j \ge 0$, and for every formal series u. The claim (2.14) follows immediately if we set j = n + 1, since the integrand on the right hand side vanishes: indeed if s = 0 and s = 1, then $u_0 = u_1 = 0$. If $s \ge 2$, then by the induction assumption and by (2.10), $\Phi_{\ell} = 0$ for all $\ell \le n + 1$. This finishes the proof of the unique formal power series.

3. - Existence and asymptotic character

In this section we give the necessary details in order to prove (1.17)-(1.19). First we observe that the set

$$A := \left\{ \alpha > 0 : \left| \frac{1}{\alpha} \langle \omega, j \rangle + m \right| \ge \gamma |j|_{\cdot}^{-\tau} \text{ for all } j, m \in \mathbb{Z}^{n+1}, j \neq 0 \right\}$$

has positive Lebesgue measure μ provided the constant γ is sufficiently small. Here ω is a fixed vector with rationally independent components and τ is a constant satysfying $\tau > n + 1$. More precisely:

LEMMA 3. Fix $0 < \lambda < 1$. Then there is a constant $\gamma^* = \gamma^*(\lambda)$ such that for $0 < \gamma \leq \gamma^*$

(3.1)
$$\mu \{ \alpha \in A | 0 < \alpha \le \epsilon \} \ge \epsilon (1 - \lambda),$$

for every $0 < \epsilon \leq 1$.

PROOF. Assume $\gamma \leq \frac{1}{2}$, we prove that $\mu(B_{\epsilon}) \leq \epsilon \lambda$ if γ is sufficiently small, where $B_{\epsilon} = (0, \epsilon) \setminus A$ is the complement. We have

$$\mu(B_\epsilon) \leq \mu\left(igcup_{(j.m)
eq 0} A_{jm}
ight)$$

where

$$A_{jm} = \left\{ 0 < lpha \leq \epsilon : \left| rac{1}{lpha} - rac{m}{\langle \omega, j
angle}
ight| < rac{\gamma}{|\langle \omega, j
angle| |j|^ au}
ight\}.$$

In view of $\gamma \leq \frac{1}{2}$ one verifies readily that

$$\sum_{(j,m)} \mu(A_{jm}) \leq 4\gamma \sum_{j
eq 0} rac{|\langle \omega, j
angle|}{|j|^ au} \sum_{|m| \geq rac{1}{\epsilon} |\langle \omega, j
angle|} rac{1}{m^2}.$$

Since the sum over *m* is dominated by $\frac{2\epsilon}{|\langle \omega, j \rangle|}$ we conclude that

$$\mu(B_{\epsilon}) \leq 8\gamma\epsilon\sum_{j\neq 0}rac{1}{|j|^{ au}}.$$

In view of $\tau > n + 1$, the right hand side is equal to $8\gamma\epsilon C$. Therefore, defining $\gamma^*(\lambda) = \min\left\{\frac{1}{2}, \frac{\lambda}{8C}\right\}$, one concludes that $\mu(B_{\epsilon}) \leq \lambda\epsilon$ as claimed.

Now, we can state our main result.

THEOREM. Assume $\gamma < \gamma^*$. Assume f is real analytic in the (closure of the) complex strip \sum for some $1 \ge \sigma > 0$. For every $N \ge 2$, there exist positive constants $\alpha^* = \alpha^*(N)$ and C_N with the following properties:

For $\alpha \in A(\omega)$ satisfying $|\alpha| < \alpha^*$ there is a unique u_{α} real-analytic in, say, $\sum_{\sigma/8}$ and of mean value 0 such that

$$(3.2) E(u_{\alpha}) = 0 in \sum_{\sigma/8}$$

L. CHIERCHIA - E. ZEHNDER

and

(3.3)
$$\left| u_{\alpha} - \sum_{j \geq 2}^{N} \alpha^{j} u_{j} \right|_{\sigma/8} \leq C_{N} |\alpha|^{N+1}.$$

The proof rests on the discussion in section 2 and on the following KAM result, for which we refer to [SZ] (Theorem 1) and [CC] (Lemma 6).

LEMMA 4. Let f be as in the above Theorem. Let ω satisfy (1.9) and let $v \in H_{\sigma}$ with $|v|_{\sigma} \leq \sigma, |v_{\vartheta}|_{\sigma} \leq \frac{1}{2}$. There exists a costant $C = C(n, f, \sigma, \gamma, \tau)$ such that if

$$(3.4) C|E(v)|_{\sigma} \leq 1,$$

then there is a unique real analytic $u \in U_{\sigma/2}$ satisfying

(3.5)
$$E(u) = 0, \quad \int (u - v) = 0, \quad |u - v|_{\sigma/2} < C|E(v)|_{\sigma}.$$

PROOF OF THE THEOREM. Applying iteratively Lemma 1 and the Cauchy estimates (to control derivatives in terms of functions) to the u'_{is} constructed in section 2, one finds estimates of the form

$$|u_i|_{\sigma/2} \leq K_i, 2 \leq i \leq N,$$

with constants K_i depending on n, f and γ, τ . Thus one can find an α_0^* so small, that for $|\alpha| < \alpha_0^*$ one has

$$(3.6) |\tilde{u}_N|_{\sigma/4} < \frac{\sigma}{4}, |\tilde{u}_{N,\vartheta}|_{\sigma/4} \le \frac{1}{2},$$

where, as above, $\tilde{u}_N =: \sum_{j=2}^N \alpha^j u_j$. Moreover, Taylor's formula leads to the bound

$$(3.7) |E(\tilde{u}_N)|_{\sigma/4} \leq K_N^* |\alpha|^{N-1}$$

Now, if we set

$$\alpha^* = \min\left\{\alpha_0^*, (CK_N^*)^{\frac{1}{1-N}}\right\},\,$$

the Theorem follows from Lemma 4 simply replacing ω by $\frac{\omega}{\alpha}$ ($\alpha \epsilon A(\omega)$), σ by $\frac{\sigma}{4}$ and v by \tilde{u}_N . In this case (3.3) holds with $C_N =: CK_N^*$.

This theorem gives a precise meaning to the asymptotic character of the series $\sum \alpha^i u_i$ which, as mentioned in the introduction, is in general divergent. It would, therefore, also be desirable to have good estimates for the functions

 u_j . In the special case in which n = 1 the operator ∂ is simply the differential operator $\omega \frac{\partial}{\partial \vartheta}$. We may therefore assume $\omega = 1$ and find the following estimates:

PROPOSITION. Assume $n = 1 = \omega$, and assume that f is analytic and bounded on the strip \sum_{σ} with $0 < \sigma \leq 1$. Then the unique formal power series in section 2 satisfies

$$|u_{j+2}|_{\sigma/2} \leq B^{j+2} j^{2j} \text{ for all } j \geq 0.$$

Here $B = \left(\frac{30M}{\sigma}\right)^2$ with $M = \max \{|f|_{\sigma}, |f_x|_{\sigma}, 1\}$.

We shall use the following

LEMMA 4. For all
$$j \ge 1$$
:

$$\sum_{k_1+2k_2+\cdots+jk_j=j} \prod_{s=1}^j \frac{1}{k_s!} < e^4.$$

PROOF. Using the generating functions, the left hand side of the inequality is equal to

$$\frac{1}{j!} \left(\frac{\mathrm{d}}{\mathrm{d}\alpha}\right)^{j} \exp \left(\sum_{1}^{\infty} \alpha^{s}\right) \bigg|_{\alpha=0}$$
$$= \frac{1}{j!} \left(\frac{\mathrm{d}}{\mathrm{d}\alpha}\right)^{j} \exp \left(\frac{\alpha}{1-\alpha}\right) \bigg|_{\alpha=0} = \frac{e^{-1}}{j!} \sum_{n=1}^{\infty} \frac{(n+j-1)(n+j-2)\cdots n}{n!},$$

so that the claim follows from

$$\frac{(n+j-1)(n+j-2)\cdots n}{j!} < 4^n \text{ for all } n, j \ge 1.$$

PROOF OF THE PROPOSITION. Recall that $u_0 = u_1 = 0$, and

$$(3.8) u_j = a_j + b_j, \quad j \ge 2,$$

is determined by

(3.9)
$$\int a_j(\vartheta,t) \mathrm{d}\vartheta = 0, \int b_j(t) \mathrm{d}t = 0,$$

(3.10)
$$\partial_{\vartheta}^2 a_{j+2} = -2\partial_{\vartheta}\partial_t a_{j+1} - \partial^2 u_j - \varphi_j$$

(3.11)
$$\partial_t^2 b_{j+2} = \int \varphi_{j+2} \mathrm{d}\vartheta,$$

L. CHIERCHIA - E. ZEHNDER

where $\varphi_0 = f_x(\vartheta, t), \varphi_1 = 0$ and where, for $j \ge 2$

(3.12)
$$\varphi_{j} = \sum_{k \in P_{j}} \left(\partial_{x}^{|k|} f_{x} \right) \prod_{s=2}^{j} \frac{u_{s}^{k_{s}}}{k_{s}!}$$
$$= \frac{1}{j!} \left(\frac{\mathrm{d}}{\mathrm{d}\alpha} \right)^{j} f_{x} \left(t, \vartheta + \sum_{n \geq 2} \alpha^{n} u_{n} \right) \bigg|_{\alpha = 0}$$

here

$$P_j = \{k_2, \cdots, k_j | 2k_2 + \cdots + jk_j = j\}.$$

and $|k| = k_2 + k_3 + \cdots + k_j$. Setting

$$P_{j+2}^* = \{k_2, \cdots, k_j | 2k_2 + \cdots + jk_j = j+2\}$$

we can rewrite equation (3.11) as

$$\partial_t^2 b_{j+2} = \int \varphi_{j+2} \mathrm{d}\vartheta = \int \left\{ f_{xx} a_{j+2} + \sum_{\substack{P_{j+2}^* \\ j \neq 2}} \left(\partial_x^{|k|} f_x \right) \prod_{s=2}^{j+2} \frac{u_s^{k_s}}{k_s!} \right\}.$$

Integrating the first term by parts and inserting the equation (3.10) for a_{j+2} gives

(3.13)
$$\partial_t^2 b_{j+2} = -\int f\left(2\partial_\vartheta \partial_t a_{j+1} + \partial_t^2 u_j - \varphi_j\right) + \int \Psi_j \mathrm{d}\vartheta,$$

where

(3.14)
$$\Psi_{j} = \Psi_{j}(u_{j}, u_{j-1}, \cdots, u_{2}) = \sum_{P_{j+2}^{*}} \left(\partial_{x}^{|k|} f_{x}\right) \prod_{s=2}^{j} \frac{u_{s}^{k^{s}}}{k_{s}!}.$$

We proof first the Lemma for j = 0. From

$$\partial_t^2 b_2 = \int f f_x \mathrm{d}\vartheta = 0$$

we conclude that $b_2 = 0$ so that $u_2 = a_2$. Since the meanvalue of a_2 vanishes we conclude that

$$|u_2|_{\sigma} \leq |\partial^2_{artheta} u_2|_{\sigma} = |f_x|_{\sigma} \leq M,$$

which proves the Lemma for j = 0.

Assume now $j \ge 1$. We shall show that

$$(3.15) |u_{i+2}|_{\sigma_i} \le B^{i+1} j^{2i} \text{ for all } 0 \le i \le j,$$

where

(3.16)
$$\sigma_i = \sigma \left(1 - \frac{i}{2j} \right).$$

The Lemma then follows by setting i = j. The estimate (3.15) will be proved by induction in *i*. In the case i = 0, (3.15) is already proved above for $\sigma_0 = \sigma$ and we shall assume now that

$$(3.17) |u_{s+2}|_{\sigma_s} \le B^{s+1} j^{2s}, 0 \le s \le i-1,$$

where, of course, $1 \le i \le j$. From (3.9), (3.10) and (3.13) we conclude

$$(3.18) \qquad |u_{i+2}|_{\sigma_{i}} \leq |a_{i+2}|_{\sigma_{i}} + |b_{i+2}|_{\sigma_{i}}$$

$$\leq |\partial_{\vartheta}^{2}a_{i+2}|_{\sigma_{i}} + |\partial_{t}^{2}b_{i+2}|_{\sigma_{i}}$$

$$\leq 4M |\partial_{\vartheta}\partial_{t}u_{i+1}|_{\sigma_{i}} + 2M |\partial_{t}^{2}u_{i}|_{\sigma_{i}} + 2M |\varphi_{i}|_{\sigma_{i}} + |\Psi_{i}|_{\sigma_{i}}.$$

We estimate each term separately. Using the Cauchy estimates and the induction hypothesis (3.17) one finds

(3.19)
$$\begin{aligned} |\partial_{\vartheta}\partial_{t}u_{i+1}|_{\sigma_{i}} &\leq \frac{1}{(\sigma_{i-1} - \sigma_{i})^{2}}|u_{i+1}|_{\sigma_{i-1}} = \left(\frac{2j}{\sigma}\right)^{2}|u_{i+1}|_{\sigma_{i}}\\ &\leq \frac{4}{\sigma^{2}}B^{i}j^{2i}, \end{aligned}$$

similarly

(3.20)
$$|\partial_t^2 u_i|_{\sigma_i} \leq \left(\frac{j}{\sigma}\right)^2 |u_i|_{\sigma_{i-2}} \leq \frac{1}{\sigma^2} B^{i-1} j^{2(i-1)}.$$

Observe now that $\sigma_{s-2} \ge \sigma_s \ge \sigma_i$, and $B \ge \frac{2}{\sigma}, i \ge 1$ and that $|k| \ge 1$ for $k \in P_i$, then

$$\begin{split} |\varphi_{i}|_{\sigma_{i}} &\leq M \sum_{P_{i}} \frac{1}{(\sigma - \sigma_{i})^{|k|}} \prod_{s=2}^{i} \frac{|u_{s}|_{\sigma_{s-2}}^{\kappa}}{k_{s}!} \\ &\leq M \sum_{P_{i}} \left(\frac{2j}{i\sigma}\right)^{|k|} \frac{B^{i}j^{2i}}{B^{|k|}j^{4|k|}} \prod_{s=2}^{i} \frac{1}{k_{s}!} \\ &\leq \frac{2M}{\sigma} B^{i-1}j^{2i-3} \sum_{P_{i}} \prod_{s=1}^{i} \frac{1}{k_{s}!}, \end{split}$$

.

so that, by Lemma 4,

(3.21)
$$|\varphi_i|_{\sigma_i} \leq \frac{1}{\sigma} 2e^4 M B^{i-1} j^{2i-3}.$$

Observing that, if $k \in P_{i+2}^*$, then $2k_2 + \cdots + jk_j = j+2$ and $|k| \ge 2$, one concludes similarly

(3.22)
$$|\Psi_i|_{\sigma_i} \leq 4e^4 M B^i j^{2(i-1)}.$$

Adding up we find from (3.18)-(3.22) that

$$egin{aligned} |u_{i+2}|_{\sigma_i} &\leq rac{1}{\sigma^2}(16+2+8e^4)M^2B^ij^{2i},\ &<rac{900M^2}{\sigma^2}B^ij^{2i}=B^{i+1}j^{2i}, \end{aligned}$$

where we have used the definition of the constant B. This finishes the proof of the proposition.

REFERENCES

- [CC] A. CELLETTI L. CHIERCHIA, Construction of analytic KAM surfaces and effective stability bounds, Commun. Math. Phys. 118 (1988) pp. 119-161.
- [DZ] R. DIECKERHOFF E. ZEHNDER, Boundedness of Solutions via the Twist-Theorem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) pp. 79-95.
- [MA] J. MATHER, *Nonexistence of invariant circles*, Ergodic Theory Dynamical Systems 4, (1984) pp. 301-309.
- [M1] J. MOSER, Quasiperiodic solutions of nonlinear elliptic partial differential equations, To be published in the Bulletin of the Brazilian Math. Soc.
- [M2] J. MOSER, A Stability Theorem for Minimal Foliations on a Torus, Ergodic Theory Dynamical Systems, 8^{*}, (1988) pp. 251-281.
- [R] H. RÜSSMANN, Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik, Selecta Mathematica V, Heidelberger Taschenbücher, 201, (1979) pp. 93-260.
- [SZ] S. SALAMON E. ZEHNDER, KAM theory in configuration space, Comment. Math. Helv. 64 (1989) 84-132.

Dipartimento di Matematica II Università di Roma Via Orazio Raimondo 00173 Roma

Mathematik ETH-Zentrum 8092 Zürich Switzerland