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1. - Introduction

Each Section of this paper begins with a short summary of what is done
in that Section: Here we present a bit of history of Kolmogorov’s Theorem on
the stability of quasi-periodic solutions in Hamiltonian systems followed by a
rough outline of a novel proof, based on a tree representation of formal series.

A 1954 theorem by Kolmogorov [19] guarantees the existence of infinitely
many quasi-periodic solutions for the (standard) Hamilton equations associated
to real-analytic, "spatially periodic" Hamiltonians of the form H(y, x; e) = h(y) +

(y c U open subset of RN, x E TN =- 0), provided the

Hessian matrix is invertible on U and provided 1,-l is sufficiently

(*) The authors are indebted with one of the referees for having pointed out a mistake in
the proof of Lemma (5.2) of a previous version of this paper. They are also grateful to C. Liverani
for helpful discussions.

Pervenuto alla Redazione il 14 Giugno 1993 e in forma definitiva il 7 Febbraio 1994.
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small. We recall that a solution (y(t), x(t)) is called (maximal) quasi-periodic if
there exists a rationally independent vector w E and smooth functions

such that (y(t), x(t)) = (Y(wt), wt + X(wt)). A detailed

proof, different from that outlined by Kolmogorov in [19], was provided,
in 1963, by V.I. Arnold in [1] and J. Moser [20] proved, in the same

period, an analogous theorem for symplectic diffeomorphisms removing the
hypothesis of analyticity of the perturbation. The corpus of results and methods
stemmed out from Kolmogorov’s original ideas is now known as "KAM

(Kolmogorov-Amold-Moser) theory".
It is not difficult to write down formal e-expansion of quasi-periodic

solutions; the problem is then turned into whether such series are convergent or
not. This question was extensively and thoroughly investigated by H. Poincare
in his methodes nouvelle de la mecanique celeste [23]. Poincaré, following
Lindstedt (Mémoires de lacademie de Saint-Petersbourg, 1882), considered
formal quasi-periodic solutions concluding that such series are likely to be

divergentl. The main problem in this context is that the formal solution has
N

Fourier coefficients which are divided by terms of the type w - n L Wini
i=l

with n e Z~)(0), and such factors ("small divisors") become arbitrarily small
as Inl -~ oo. In fact (see Appendix B below), the repeated occurrence of
small divisors ("resonances") in the kth coefficient of the formal solution leads
to contributions of the order of (k !)a with a &#x3E; 0. However, in 1967 Moser

[21] showed indirectly (see below) that the formal serie converges leading to
analytic solutions, provided the --independent vector w satisfies certain number
theoretic assumptions verified by almost all (with respect to Lebesgue measure)
vectors in see the "Diophantine condition" (2.7) below. This means that the
kth coefficient of the formal solution contains many huge contributions which
compensate among themselves producing terms that behave like a constant to
the kth power. Moser’s proof, as well as all proofs in KAM theory (up to
the 1988 Eliasson work [11]), are based on a "rapidly convergent" iteration

technique. The strategy, similarly to Newton’s method of tangents, consists in
finding solutions of a nonlinear differential equation N (u) = 0 by recursively
solving a sequence of approximate equations of the form ej where
the size of the "error function" ej becomes quadratically smaller at each step
of the procedure. Such an approach is very powerful and can be used very
effectively (see [22] for applications to partial differential equations, [7] for
accurate estimates and Appendix 2 in [9] for a five-page proof) but is indirect
and hides the mechanism beyond the above mentioned compensations.

1 "M. Lindstedt ne demontrait pas la convergence des developpements qu’il avait ainsi
formes, et, en effet, ils sont divergents" ([23], vol. II, §IX, n° 123); and later: "Il semble donc

permis de conclure que le series (2) ne convegent pas. Toutfois le raisonnement qui precede ne
suffit pas pour etablir ce point avec une rigueur complete [...] Tout ce qu’ il m’ est permis de dire,
c’est qu’il est fort invraisemblable." ([23], vol. II, §XIII entitled "Divergence des series de M.
Lindstedt",~n° 149).
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In the different context of linearization of germs of analytic diffeomor-
phisms, C.L. Siegel [26] succeeded in 1942 in proving directly the convergence
of formal power series involving small divisors: the crucial difference being
that the small divisors are of the form w - n with n C NN so that a given divisor
occurs at most once in each coefficient of the formal solution (i. e. "there are
no resonances").

In 1988 Eliasson, in a Report of the University of Stockholm [ 11 ] (which to
the best of our knowledge has not been published elsewhere2), extended Siegel’s
method so as to cover the Hamiltonian case. We present a different version
of Eliasson’s proof3 based on a tree representation of the formal solutions and
on the explicit exhibition of compensations of huge contributions. We follow
closely [11] in its convenient reformulation of Siegel’s method (Appendix C)
which allows to bound product of (possibly) small divisors whenever (certain
dangerous) repetition do not occur; however for the crucial part (grouping
together the huge contributions) we adopt a different approach which now we
outline.

In order to simplify the presentation we consider the particular model with

Hamiltonian H = 1 y * y (x): Such a choice has the advantage of making2 
y y .f ( ) 

. , 

g g

(we hope) more transparent the presentation without introducing (we believe)
any essential modification.

The starting point is to express the coefficients of the formal solution in
terms of labeled rooted trees4. This allows to express the coefficient in
terms of a sum over all possible labeled rooted trees of order k, and over all
possible (and "admissible") integers av E (v denoting a vertex of a
tree) of

where V and E denote, as customary, the set of vertices v and edges vv’
of a given tree (see Appendix A), fn denote Fourier coefficients of f and 6v
represents the divisor associated to the vertex v i. e. (rooted

trees have a natural order according to which the root r is &#x3E; v for all vertices

2 See, however, the excerpts from the proceedings [12] and [13].
3 For a short comparison between our approach and that of Eliasson, see the end of this

introduction; more technical comments, at this regard, are given throughout the rest of the paper
(see, especially, Remark 4.1 ).

4 The use of graph theory in connection with formal power series is natural and very old
(see e.g. [17] and references therein); for connections with KAM theory see [8] and [15]. In

[15] the problem analyzed here is also investigated with similar tools, emphasizing, in particular,
the similarities with renormalization group approaches to quantum field theory. However, the
families of trees considered there, as well as most of the technical aspects are different from
ours; in particular stronger assumptions on f (assumed to be an even trigonometric polynomial)
and w (assumed to be a "strong Diophantine" vector) are made; in [16] the "strong Diophantine"
hypothesis has been removed.
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v c V, the square in ( 1.1 ) comes from the fact that the Hamilton equations
for our model can be immediately written as the second order system x = f~;
"admissible" means that

Now, the main point is to make a partition of the trees of order k
into families F’ (called below "complete families") so as to be able to bound
sums over such families by a constant to the k th power (recall that even single
contributions given by (1.1) may have size of order (k !)a as already mentioned).
The main technical estimate is

for suitable constants c4 and 34, determined below, depending on N and on the
numerical properties of the vector w; degy v is defined as the maximum degree
of v when T varies in the family :1. Obviously, it is crucial that complete
families either do not intersect or coincide (in fact it is much easier to find
families of trees for which (1.2) holds but which do not form a partition: clearly
such families are of no use for our purposes). The construction of the partition
of complete families is the delicate part of our paper. Given Siegel’s method
(which we include for completeness in Appendix C) and the identification of
complete families, the convegence of formal solutions follows very easily (under
the Diophantine condition on w). All the constants are computed explicitly (see
Remark 5.1 below).

Let us now point out possible directions of future investigations.

(i) The method of proof presented here, being based on a very direct approach,
seems particularly suitable for computer-aided implementations and might
shed some new light on the difficult problem of the break-down of stability
of quasi-periodic solutions in connection with the 6-singularities of the
function X (see, e.g., [7], [3], [4], [14] and references therein).

(ii) Let (x 1, x2) with xi E TNi and Nl + N2 = N, let w E JRNI and let X2
be a nondegenerate critical point of the periodic function x2 E TN2 -+

~ Then, it is not difficult to see that (if w satisfies a

TNI

Diophantine condition) there are formal (non maximal) quasi-periodic
solutions whose first term (e = 0) is given by (wt, It would be nice
to extend the proof in this paper so as to establish convergence for such
formal series.

(iii) It is well known ([24]) that maximal quasi-periodic solutions are stable
under weaker assumptions on the vector W than the classical one made
here. It might be interesting to see how far, in this direction, can lead the
technique worked out in this paper.

The paper is organized as follows. In Section 2 existence and uniqueness of
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formal quasi-periodic solutions are established. In Section 3 the tree expansion
of formal quasi-periodic solutions is given (the purely combinatorics aspects are
proven in Appendix B where the occurrence of huge terms is also explicitly
exhibited). The construction of complete families is carried out in Section 4

allowing to formulate the results in Section 5 divided in four Lemmas and one
Theorem. Detailed proofs are given in Section 6 and in the appendices B and C.
Graph theory is used here mainly as a (very useful!) language and the standard
definitions (enough to read our paper without any knowledge of graph theory)
are presented in Appendix A.

We close this introduction with a few words of comment about the relation
of our approach with the work in [11]. The reason why Siegel strategy does
not work in the Hamiltonian case is due to repetitions of the value of some
divisor 8w in the product fl 6v in (1.1); to such repetitions correspond subtrees

v

R c T, called below resonances, such that a, = 0. It is actually easy to
vER

extend Siegel’s original strategy so as to admit resonances R such that the
absolute value of the corresponding repeated divisor is "not too small"

compared to some divisor 6v with v E R (Appendix C). When this is not the
case ("critical resonances"), single contributions (1.1) can, as already mentioned,
have a size of - k !. Eliasson’s approach is then the following. The formal
solution is in general not unique since, for each k, one can choose an arbitrary
constant ("phase shift"). In [11] use of such freedom is made by adding, at each
order k, suitable "counter-terms" which are chosen to balance the divergences
due to critical resonances. Such counter-terms are not identified a priori with
suitable terms of the formal expansion, instead it is a posteriori shown that the
convergent series thus obtained is still solution of the original problem. The
strategy followed in this paper, as already mentioned above, is different: We
fix from the beginning a formal solution choosing all the phase shifts equal to
0 (in fact this identifies uniquely the formal solution). We then group together
suitable single contributions, coming from different trees, and, keeping track of
the signs, we then prove that the sum of such groups of contributions can be
bounded by a constant to the kth power showing the convergence of the series.
In our opinion such strategy (which is also at the basis of [15], [16]) might be
a relevant simplification, at least from a conceptual - if not from a technical -
point of view, with respect to [11].

2. - Formal Quasi-Periodic Solutions

We review some known facts recalling, in particular, the notions of

quasi-periodic and formal quasi-periodic solution for a "spatially periodic"
Hamiltonian.

Let H(y, x) be a Coo (U x TN) Hamiltonian where U is an open set of and
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(i. e. H can be seen as a function of the 2N variables 2/1,..., YN,
27r-periodic in xi). Consider the standard Hamilton equations:

where, as usual,

A solution (y(t), x(t)) of (2.1) is called (maximal)

with frequency w c JRN if w is rationally independent 

for some n E ZN implies n = 0) and if there exist

smooth functions Y, X : R:N such that:

The rational independence of w easily implies that the functions 0 E TN -+ Y (8),
X(0) satisfy the system of equations:

Viceversa, given a solution of (2.3), (2.2) (or more generally (2.2) with wt
replaced by 0 + wt for any 0 E TN) is a quasi-periodic solution of (2.1 ).

"Le probleme general de la dynamique" according to Henri Poincare

([23], vol. I, chapter I, §13) is the study of the equations governed by the
"nearly-integrable" Hamiltonian

for small values of the parameter -. As we shall see below, if the Hessian

matrix ) is invertible, then there are "a lot" of "formal
quasi-periodic solutions" of the equations (2.1 ) with Hamiltonian (2.4).

A formal --power series F, over T N, is an infinite sequence of 

functions Fk = Fk(O), and it is customary to write. .

is a COO function and a formal series, one naturally defines the

formal series g by setting
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A formal solution of (2.3) with H as in (2.4) is a couple of (vector-valued)
formal --power series over

T~ 2013~ R~), verifying (2.3) in the sense of formal series (i.e. "=" should be

replaced by "-") or equivalently:

where k &#x3E; 1; notice the different ranges of indices in the equation for DX(k)
due to the particular form of (2.4).

PROPOSITION 2.1. Let H as in (2.4) be Coo in a neighborhood x 7~N
with yo such that h"(yo) is invertible and w - h’(yo) =- hy(yo) is "Diophantine"
i. e. such that5

Then there exists a unique formal quasi-periodic solution Y, X of (2.6) with

A proof is given in Appendix B.

3. - Tree Expansion of Formal Series

A very explicit representation of the formal solutions described in Propo-
sition 2.1 can be obtained by means of trees, as explained below. For a different
representation see [27].

From now on we restrict our attention to Hamiltonians (2.4) of the form

5 It is well known that for any T&#x3E;N, almost all (with respect to Lebesgue measure) 
satisfy (2.7) with some (see, e.g., [2], chapter I, §3) while if T=lv-1 then for any wce there
exist a and an infinite number of nEzN such that (2.7) is violated (this is a theorem by Dirichlet,
see, e.g., [25]).
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Notice that, obviously, the average of f, as well as its sign, plays no role in
Hamilton equations.

Thus, in the present case (3.1), Hamilton equations and the equations
characterizing quasi-periodic solutions with frequencies w are given respectively
(see (2.1), (2.3)) by

The formal power series with whose existence and

uniqueness (for f e COO(rN)) is guaranteed by Proposition 2.1, satisfies

The rest of this section is devoted to a tree representation of the formal solution

X of (3.3) (with
i

We recall that a tree T is a connected acyclic graph (see Appendix A
for the fundamentals used here or see any introductory book on graph theory
such as [18] or [5]). We denote respectively by V = V(T) and E = E(T) the
set of vertices and edges (or points and lines) of the tree T. A rooted tree is a
tree with one distinguished vertex called root; we shall usually denote r such a
point and Tr the rooted tree obtained by selecting, as root, the vertex r of the
tree T. It will also be useful to regard a rooted tree Tr as a tree with one extra
point q V V(Tr), called the earth, and one more edge qr e E(Tr) connecting the
earth q to the root r. It is natural to define on rooted trees a partial ordering:
Given Tr and u, v E V we say that u &#x3E; v or u if the path with endpoints
r and v passes through u; u &#x3E; v means obviously u &#x3E; v and In particular
r &#x3E; v for any v E V.

We fix once and for all a Diophantine vector w E JRN satisfying (2.7) and
denote the inner product between n E Z~ and w by

Given a rooted tree Tr and a function a : v E V - av E Z’ we denote by
(or 6v(Tr) or 6v when there is no ambiguity) the quantity
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Given a rooted tree Tr and an integer-valued function a : V -~ Z~ we say that
a is Tr-admissible if, for all vertices of Tr, one has

We shall denote by the set of all Tr-admissible functions over Tr.
Finally, we let Tk denote the set of rooted, labeled trees with k vertices

and, for any integer-valued function a and any subset S c V of vertices of a
tree T, we denote

PROPOSITION 3.1. The j th component of the n-Fourier coefficients of X(k)
is given by

where ej is the unit vector with all zeros except in the jth entry.
The proof is given in Appendix B. Note that in the above formula

E = E(Tr) includes the edge "1r and for this reason the function a has been

extended on q (which is outside V = 

REMARK 3.1. The above function . n is obviously a function of rooted
trees rather than labeled rooted trees and the introduction of the labels has the

only task of simplifying the combinatorial factors entering in the formula. In
terms of rooted trees, (3.7) can be rewritten as follows. Let Tr - [Tr] ] denote
the rooted tree obtained by removing the labels from Tr (clearly Tr can be seen
as the equivalence class generated by Tr), and let denote the number of

ways of putting k labels on Tr ~{T~ E Tr E For example,
if Tr is the path of order k rooted in one of its endpoints, then £(T,) = k !. The
"Tr-admissible" class of ZN -valued functions is defined in exactly the same way
(see (3.6) replacing Tr by Tr (as the labeling did not enter in the definition of
A(Tr)). Finally denote by the class of all rooted trees of order k. With this
notations we see that

with:
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Below it will be useful to exchange the sums (over trees and over integers a’s)
in (3.7), in which case we obtain the following formula:

where if VI, ... , Vk are the labels of T k and if we set avo == ni for any choice
of the function F is defined by and

otherwise by

4. - Resonances

Repetitions of small divisors correspond to resonant subtrees i. e. to subtrees
S of a given (labeled rooted) tree T for which a(S) - L av = 0. Throughout

vES
the rest of the paper (unless otherwise stated), given T E (we shall often
omit the explicit indication of the root r appearing elsewhere as index of T
when this does not lead to confusion), the function a : Y - V 1, ZN,

{ni }, is admissible in the usual sense that and L av f0 for all
v~v

v E V (in which case 6v f0 by the rational independence of w). In this section
we develop the tools needed to make a partition of for a given choice of
Inil (see (3.9) -;- (3.10)), into "complete families". In the next section we shall
see that the main property of complete families is that (possibly) huge terms
(coming from repetition of small divisors) compensate among themselves within
the same class of the partition. This fact will allow us to bound the contribution
to (3.9), coming from the sum over trees belonging to the same class of the
partition, by a constant to the power.

The rest of this section consists basically in a sequel of definitions and
checks of elementary properties of trees with a given admissible ni,

being the labels of T k. Let us begin (with a bit of patience).

DEFINITION 4.1 (Degree of a subtree). Given a (possibly rooted) tree T
and S C T (i. e. S is a subtree of T i. e. ,S is a connected subgraph of T) we
call degree of S, deg S, the number of edges connecting S with TBS (if T is
rooted and r E S the edge q r has to be counted; see Figure 1 below where
three subtrees of degree two are encircled).

DEFINITION 4.2 (Resonances). Given a rooted tree T and an admissible
function a on it, we say that the subtree R c T is resonant if: (i) deg R = 2;
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(ii) R is null i. e. a(R) = 0; (iii) R cannot be disconnected by removal of one
edge into two null subtrees. A resonant subtree will also be called a resonance.
It follows that a resonance R is connected to TBR by two edges uu and ww
with U, w (possibly coincident) belonging to R and u &#x3E; w outside R (u may
coincide with the earth q). If u = w we shall call R. following [11], a short
resonance (the second resonance in Figure 1 is a short one).

Fig. 1: n + n2 + n3 = 0; (in the third example u =,q)

DEFINITION 4.3 (Resonant couples). Given a rooted tree T and a real
number A &#x3E; 0, we say that a couple of points (v, w) E V x V is A-resonant if:
(i) v &#x3E; w ; (ii) 8v = 8w; (iii) v and w are not adjacent and 18wl ~ À18v’l ( for all v’
between v and w.

Such a notion 6 is given also in [11] ] where the couple (v, w ) is called a
critical resonance; we reserve such a name for a different object (Definition
4.5) closely related to:

DEFINITION 4.4 (A-Resonances). Given a rooted tree T, A &#x3E; 0 and a
resonance R c T, let uu, will be the edges connecting R with TBR, With7 u,

let also

We say that R is a A-resonance (or a A-resonant subtree) if

It is easy to check that, since a(R) = 0, A(R) = min for any , fixed
vcR

v, c R. 

REMARK 4.1. (i) To two points v &#x3E; w such but 
for any v’ between v and w (if there are any) it is always possible to as-

6 Which is not fundamental in our approach but may help the reader in the comparison
with [11].

7 Here (and below) we make the common abuse of notation using "vc=R" in place of
the more correct notation to read (4.1) recall that ~«v,) where the order

 is that of the tree R rooted at u. §§/£
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sociate a resonant subtree R =- R(v, w) of T whose vertices are given by
V(R(v, w)) - { v’ E Y : v’  e V : v’  Notice however that (v, w)
may be A-resonant while the associated resonance R(v, w) is not A-resonant.

Consider, in fact, the first example in Figure 1 and set v - u: it is easy to see
that one can choose nl, n2, n3 so that ni + n2 + n3 = 0 (implying 6v = 6w = (n))
and l(n)1 ~ A~2+~3+~)! I (implying (v, w) A-resonant) but l(n)1 I &#x3E; ~ ~ ~n3 ~ I
(implying R(v, w) not A-resonant).

To compare with the approach in [11] we note the following. Roughly
speaking, complete families will be constructed by considering certain "critical"
resonances R and by grouping together all trees obtained by replacing the
connecting edges uu, ww with edges uu’, ww’ with u’, w’ arbitrary points in R
(e.g. the first two trees in Figure 1 might belong to the same complete family).
It is therefore clear that the notion of "criticality" must be invariant under such
operation and also that, in view of the above example, the notion of criticality
introduced in [ 11 ] is not adequate for our purposes.

(ii) If R is a non short A-resonance and uu, ww are the edges connecting
R with TBR (with u &#x3E;;a &#x3E; w &#x3E; w), for any v’ such that u &#x3E; v’ &#x3E; w, one has

therefore, by (4.2),

Hence, if A  1, the points u and w form a couple of A’-resonant points with

(iii) We may classify resonances as follows. Let R be a resonance and
u11, ww be the edges connecting R with TBR (with u &#x3E; 11 &#x3E; w &#x3E; w). We shall
call R a

(a) Siegel resonance (with parameter A) if there exists a vertex v’ such that
Ibwl 

(b) Eliasson resonance (with parameter A) if (11, w) form a couple of a-resonant
points;

(c) A-resonance, as above, if R satisfies Definition 4.4~.

8 The reason for the names is the following: Siegel resonances can be treated basically
by Siegel’s original technique (a fact easy to justify intuitively since the repetition of the divisor

due to a Siegel resonance R(v,w) can be controlled in terms of some divisor bv, with v’ER; see
Appendix C). Eliasson resonances are those which are called critical by Eliasson and controlling
the repetition coming from such resonances constitutes the main difficulty in [ 11 ]; with our
approach (Lemma 5.2) we shall be able to extend Siegel’s method so as to control those Eliasson
resonances which are not A-resonant (however in order to do this a rather careful "topological"
analysis is needed: see Subsection 6.2). Finally a-resonances (and A-subresonaces : see below) are
responsible for repetitions which cannot be bounded effectively by looking at a fixed tree (as done
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Observe that a short resonance (u - ill) may be a A-resonance or not
but is never Siegel or Eliasson. Other relations have already being pointed out
above: e.g. point (i) of this Remark can be rephrased by saying that an Eliasson
resonance with parameter A need not be a A-resonance (and, in fact, need not
be a A’-resonance for any prefixed A’), while point (ii) says that a non-short

A-resonance is an Eliasson resonance with parameter 1 -

PROPOSITION 4.1 (Non overlapping of resonant couples). Let (vi, wi) for
i = 1, 2 be couples of Ai-resonant points. If VI &#x3E; V2 &#x3E; Wl &#x3E; W2 then either

PROOF. By contradiction: Assume both À1 1 and A2 are less than one. Then:
which is absurd. D

PROPOSITION 4.2 (Non overlapping of resonances). Let Rï for i = 1, 2
be Ai-resonances which are not one subtree of the other and with non empty
intersection (i. e. with at least one common vertex). Then either À1 1 &#x3E; 1 /2 or
~2 &#x3E; 1 /2.

PROOF. Two subtrees of degree 2 which are not one a subtree of the other
can intersect in three ways, see Figure 2.

Fig. 2: Intersections of resonances

In the pictures we are using the following:

NOTATION REMARK. Thick points correspond in general to subtrees (a
subtree of degree d collapses to a thick point of the same degree) and the
n written above a thick point correspond to the sum of av when v varies in

the corresponding (collapsed) subtree. In the figures, null subtrees (indicated
usually by R) are encircled (while the root, as customary, is distinguished by
a small circle around it.)

with Siegel’s method) and, instead, their contributions can be controlled only grouping together
similar (in size) contributions coming from other trees keeping track of signs and compensations:
see Lemma 5.3 and Proposition 6.1 ).
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Since 14 are resonant subtreesy n2 + n3 = 0, n3 + n4 = 0 in case (a)
while ni = -n2 in case (b) and (c). We proceed now by contradiction: As-
sume Ai  1/2. In case (a) l(n1)1 ~ A 1 ] ( n2 ) ] , ~~n~+nz)~ c À21(n3)1 = À21(n2)1 and

+ n2)1 (1 - &#x3E;’1)I(n2)1 1 ---&#x3E; !(n2)|  - !(n2)! 1  |nz) 1 which is absurd.1 - Ai
In case (b) and (c): l(n1)1 À11(n2)1 = À11(n1)1 1 which is absurd because A 1 G 1.

0

DEFINITION 4.5 (Critical Resonance). A resonance R is called critical (or
A-critical) if it is A-resonant with A  1/2 and if it is maximal i.e. it is not

properly contained into another A-resonant subtree.

Obviously: (i) Critical resonances cannot intersect (by definition and by
Proposition 4.2). (ii) Critical resonances may contain A’-resonances with any A’.

Critical resonances may appear in sequels where each resonance is a

subtree of another resonance (creating "hierarchies of subresonances"). In order
to classify them, we introduce the following concept.

DEFINITION 4.6 (A-Subresonances). Let R’ be a null subtree of degree two
of a A-critical resonance R and let U1 VI, U2V2. with vi e R’, be the two edges
connecting R’ with RBR’ (obviously ui E R and ui ~uZ). Define

where Rvi is the rooted tree R with root in vi and the order  in each sum is
relative to The integer m E is defined up to sign (as the roles of
the can be exchanged); see Figure 3 for an example. We then say that R’
is a A-subresonance if

As in case of resonances we have a simple non overlapping criterion for
subresonances:

PROPOSITION 4.3 (Non overlapping of subresonances). for i = l, 2
be A-subresonances of a A-critical resonance R. Assume that R~ are not one
subtree of the other: Then 1

The proof is very similar to the proof of Proposition 4.2 and is left to the
reader.

9 Observe that in case (a) of Figure 2, for some u f v in Ri ; (nI)=8w with ww

connecting Ri with rBRi; etc.
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DEFINITION 4.7 (Hierarchies of critical subresonances). Let R be a A-critical
resonance (i. e. R is a maximal A-resonance with A  1/2). Let R1 be a

maximal A-subresonance (if it exists) of R (maximal means that R1 is not

properly contained in another A-subresonance of R). Note that, by Proposition
4.3, R1 cannot overlap with another A-subresonance of R. We can now define
subresonances of R1 replacing, in Definition 4.6, R with R1. We then let R2 be
a maximal A-subresonance (if it exists) of Ri. And so on, till Rh, h &#x3E; 1, does
not contain any A- subresonance. We consider also the case in which R does
not contain any A-subresonance setting in such a case h = 0 and Ro - R. The
sequence )I - ~R1, ... , Rhl, R D Rh is called a critical

hierarchy of A-subresonances (or simply a hierarchy of subresonances) and the
elements of the hierarchy, R¡ with 1  i  h, are called critical subresonances.
Thus by definition a critical subresonance of the rooted tree T is an element of
a hierarchy associated to some critical resonance. Obviously a critical resonance
may contain more than one hierarchy of subresonances (see Figure 5 below).

REMARK 4.2. In general a critical A-subresonance need not be a

A-resonance (as shown by the following example) even though it is always
a a’-resonance with a’ - A see 4.6 .a with A’ = - . see (4.6).

1 A’

Fig. 3: A subresonance R’

Fix A = 1/3 and let n E ZNB{0}. Then one checks immediately that R, in
Figure 3, is a A-critical resonance and that Nx(R) = {R’}. However the critical
subresonance R’ is not a A -resonance since ] (4n) &#x3E; AA(R’) = 31 (n) I (but it is a

1-resonance).2

REMARK 4.3. If R’ is a A-critical subresonance then R’ = 14 for some

1  i  h where {Rl, ... , Rhl is a A-hierarchy associated to some A-critical
resonance R. To each Rj we can associated (up to sign) an integer mj e 
as in (4.4) (see Figure 4).

Then l(mj)1 ~ AA(Rj) for any j = 1, ... , h and in particular 
so that and
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Also, ifuh is plus or minus one or ±1 (i = 1, ... , h - 1) then

Fig. 4: A hierarchy of resonances with h = 3

Furthermore, letio If we call w the first vertex following

Rh, then one has and (since I ~

The same bound holds if h is replaced by any j ; thus each subresonance Rj
. A
is a 

1 - A
We shall often use the word "(sub)resonance" to indicate either a resonance

or a subresonance.

DEFINITION 4.8 (The set of critical (sub)resonance of T). Given a rooted
tree T, an admissible a and a A  1/2 we let R - R(T) be the set of all
A-critical resonances and A-critical subresonances of T and Ro - Ro(T) be
the set of all A-critical resonances of T. If 2  p == == cardinality of Ro
then Ri n Ri = 0 for all E R o with To each element Ri of R o
we can associate an integer hi which is zero if Ri does not contain A-critical
subresonances, otherwise hi =- max !VBL where IAI denotes the cardinality of
the set A. See Figure 5 for an example of critical resonances and subresonan-
cesll.

10 If and MM, ww connect R with TBR, vR means vw.
11 In Figure 5 and R3,...,R~, are critical subresonances; notice that R’ contains

five hierarchies, three of which have h=1.
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DEFINITION 4.9 (Coresonances). To any A-critical (sub)resonance R in R
we associate its coresonance R - RB{all A-critical subresonances contained in
R}. If R is minimal (i. e. does not contain any element of R ) then R = R oth-
erwise R is the disjoint union of two or more subtrees of T. In any case,
for any coresonance, R, we always have a(R) == L av - 0. We denote

vFR. / 1

the set of all coresonances. Finally, we let

so that and otherwise T is the disjoint union of one rooted
tree (or only of the earth q if r ERE Ro) and of one or more subtrees.

REMARK 4.4. R E R is connected to TBR by two edges uu, vv with u,
v E TBR and either u or v may be the earth q) and with u, v E R (u, v
may coincide).

Fig. 5: Critical (sub)resonances

DEFINITION 4.10 (Subtree contractions). Let T be a (possibly rooted) tree
and R c T a subtree of degree two. We define the contraction of T over R
denoted T /R as follows. Let uu, vv, (u, v E R), be the two edges connecting
R with TBR; we then set

Fig. 6: Tree contractions; (in the second example u = r~ )
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Coresonances R are crucial for constructing "complete families": they will
be the invariants of all the trees (with a common a function) belonging to the
same complete family. We describe with more detail the set R.

DEFINITION 4.11 (Critical chains and connecting points). A (A)-critical
chain C is an ordered s-tuple of coresonances, (Rl, ... , R,), such that Ri is

connected by one edge with Ri+1 for all 1  i  s - 1 and such that R1 and
RS are also connected by one edge with either T or with a coresonance R E R
which contains the whole chain C (i.e. R1 U ... U Rs c R). The case 3 = 1,
trivial chain, is admitted: in such a case C = R1 is connected with either T or
with a coresonance R such that R1 c R. Given a chain C, R c C means that
C - (R1,_... , Rs) and _R = Ri for some i; analogously v E C means that v is a
vertex E R for some R e C. With this convention we see that C - {the set of
all chains} = R.

Fig. 7: Critical chains C = {(Ri~R3)~5~)~4~7,~8}

Given a chain C - (~?i,..., we let u - u(R 1 ) - u(C), w - 
w(C) be the unique points outside C such that uu and ww are the edges
connecting, respectively, R 1 and Rs with TBC: thus u E R1, W E Rs, u and w
are distinct (and one of them may be the earth q). The points u, w will be
called the base points of the chain C.

In the example shown in Figure 7, if 01 == (R 1, R2, R3 ) and C2 &#x3E; 
we have the connecting points: u(Cl ) =q, = u(C2 ) = v3 , ~(C’2) = v2
and u(R4) = vs, w(R4) = v4, u(R7) = v6, W(R7) = u(R8) = v~, w(R8) = V8-

We denote by U - U(T) - lu(C), w(C) : C E C} the set of base points of
T.

REMARK 4.5. The order of a chain (R 1, ... , RS ) is related to the order in
T as follows: either R1 &#x3E;... &#x3E; RS (as in the chain 01 of the above example)
or Rl 1  ...  Rs (as in C2).

Finally, we are ready to define complete families of trees generated by a
tree T and a given T-admissible function a.

DEFINITION 4.12 (Complete families). Given T E T-admissible and
A . 1/2 we define :1(T) == {T}, if )Z(T) = 0 (i. e. if there are no A-critical
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resonances in T), otherwise, letting , we define

if s = 1 for some C the sum over i has to be omitted. F’ is called the complete
family associated to (T, a).

Obviously, the integers ni =- avi’ which together with the "topological"
structure of the tree T generates :1, may be thought of as fixed "attributes" of
the labels vi and, by construction, is admissible for any tree T’ E 
The following Proposition collects a few elementary properties of complete
families.

PROPOSITION 4.4 (Properties of ~). Let T E a a T -admissible func-
tion and Then:

complete and minimal set of invariants for

The proof of the Proposition is a simple consequence of the various
definitions.

REMARK 4.6. From (i), (ii), (iii) above it follows immediately that the
property T’ E ~(T) is an equivalence relation. Thus the set of all labeled rooted
trees, given can be partitioned into disjoint complete families:
here we have preassigned the function av, m ni and we use the convention that
if a is not admissible for some T we are omitting the (meaningless) contribution
coming from that tree.

A final comment: the set of labels f VI, of can be thought of
as the set of vertices V of 7 and for any v E V we set

and from (vi) of Proposition 4.4 it follows immediately that:

. In Appendix D we show two examples of complete families associated to order
5 trees with two resonances.
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5. - Estimates

In this section we formulate the estimates on (sums) of products of
small divisors needed to prove Kolmogorov’s (KAM) theorem following
Siegel’s strategy. The first two lemmas are a simple generalization of Siegel’s
argument and deal with situations without resonances (or better with non critical
resonances). The first lemma is taken from [11] and we include for completeness
its proof in Appendix C; estimates of products of "small divisors" for trees with
no resonances have been also considered in [6]. The second lemma extends
Siegel’s argument so as to cover the case of trees with no A-resonances (but
which may contain Eliasson resonances i. e. resonances which are called critical
in [ 11 ] 12). The third and fourth lemmas are the crucial point of our paper: it
is shown that sums over complete families obey the same bounds that hold for
products of small divisors without resonances (i. e. without repetitions). In other
words, the "divergent terms" (whose actual occurrence is discussed in Appendix
B) compensate (and in fact they do not cancel exactly) within complete families.
The four lemmas will easily yield Kolmogorov’s theorem for the case under
consideration (3.2); see Theorem 5.1 below. The proofs are presented in the next
section (except for the proof of Lemma 5.1 which is given in Appendix C). In
formulating the results we shall make certain requirements on the parameter A
which cannot be guessed by simply looking at the explicit form of the various
constants appearing in the estimates: such requirements are needed in order to
perform inductive proofs (often based on contractions of resonant subtrees: see,
in particular, Subsection 6.2).

Recall (2.7) and the definition of admissible functions (3.6).

LEMMA 5.1 (Siegel, Eliasson). Let T rooted tree of orderl3
k, a a T-admissible function and 0  A  1. Assume that all resonances (if
any) are Siegel, (recall (iii) of Remark 4.1 ). Then there exist constants c 1 &#x3E; ~y,

,~1 &#x3E; T such that

The constants cl, {31 can be taken to be

The next Lemma extends the above type of estimate to products of small divi-
sors arising in trees with (possible) resonant subtrees which are non A-resonant
(for some prefixed A); recall that such trees may contain couples of points which
violate the main hypothesis in Lemma 5.1 i. e. they may contain either short
resonances or Eliasson resonances (which are not A-resonant, see Remark 4.1)

12 Recall the definitions given in (iii) of Remark 4.1.
13 i.e. k= cardinality of V(T).
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so that the result described in the next Lemma is a genuine generalization of
the estimates described in Lemma 5.1.

LEMMA 5.2. Let T E Tk, a a T-admissible function and 0  ~  2 - 0.
Assume that there are no A-resonances (Definition 4.4). Then there exist
constants C2 &#x3E; ~y and ,Q2 &#x3E; T such that

The constants C2, ,Q2 can be taken to be

LEMMA 5.3 (Small divisor compensations). Let T E a aT-admissible

function, 0  ~  1 /2 and let 0  A  1. Let R be a minimal A-(sub)resonance
of T (i.e. R does not contain any A-subresonance, see Definition 4.6) and let
n E be such that l(n)1 ~ XA(R). Let z be an extra vertex (not in T)
and set az = n. Finally, for any u, w E R, denote by R wu the tree 14 
rooted at u. Then there exist constants C3 &#x3E; -i,83 &#x3E; 2T such that for all 1  i,

where aui (respectively denote the i~ (respectively the j th) component of
the integer vector au. The constants c3, ~33 can be taken to be

Estimate (5.5) easily leads to control the contributions to (3.7) coming from
complete families.

LEMMA 5.4. Let T E a a T-admissible function, 0  a  1 ~4. Let
jr = be the complete family defined in Definition 4.12, let V - V(T) = V (7)
and recall the definition of degy given in (4.8). Then there exist constants

C4 &#x3E; 12, ,~4 &#x3E; 2r such that

The constants C4, ,Q4 can be taken to be

14 If R is rooted, R=Rr, first remove the edge i7r so as to obtain an unrooted subtree.
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Kolmogorov’s theorem now easily follows. We introduce the following norms
on analytic function Clearly, for any analytic

function on T N there exist a a &#x3E; 0 such that the above norm is finite; viceversa
if g is such that Ilgli,  oo for some a &#x3E; 0 then I gn I  exp(- ]n)03C3) so that
g is analytic. If g = (gl, ... , g~,,I) : CM we set = sup 

- 

THEOREM 5.1. Let f in (3.2) be real-analytic  oo for some
u &#x3E; 0. Then the formal solution X(O, 6) described in Proposition 2.1 is

real-analytic. Furthermore, fix 0  a  (1, 0  A  1/2 and set

where the constants ~34, C4 are defined above. Then X(O, e) is jointly analytic
in the domain a I x and for any (complex) - with lei  eo

the following bound holds

REMARK 5.1. Choosing A = 1/5 (so as to minimize the constant cs) one
obtains .

Such constants are certainly not optimal.

6. - Proofs

In the following five Subsections we give the proofs of Lemmas 5.2, 5.3,
5.4 and of the Theorem of Section 5. In the first subsection we show how

Kolmogorov’s Theorem can be easily derived from Lemma 5.4. In the second
subsection we discuss the hypotheses under which certain resonant subtrees can
be contracted without generating, in the contracted tree, new A-resonances: this
analysis allow to perform inductive proofs of Lemma 5.2 and 5.4. A proof of
Lemma 5.1 is given, for sake of completeness, in Appendix C.

6.1 Proof of Theorem 5.1

Recall the form of the coefficients X(k) given in (3.9) (3.10). By Remark
4.6 we know that, for a given choice of with ni E Z B101, the
labeled rooted trees in can be partitioned into complete families having as
common admissible a function av, = ni. Denote by .N = the set
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of all such complete families. Then, by (3.9) 2013 (3.10), by Lemma 5.4 and by
(4.8), (4.9) we see that, for any 0  a~  V,

It is easy to check (see Proposition B.1 ) that, if we let 4Jn == 
then, last line of (6.1 ) is exactly the kth coefficient, gk, of the formal solution
g of

But since (by the analyticity of f ) the nonnegative numbers 0.,, decay exponen-
tially fast as )n) - cxJ, the function of two complex variables

is holomorphic and bounded in the complex 2-disk

for any ~o &#x3E; 0 and any 0  s  Q - Q . In fact, recalling that ~35 - Q4 + 4 we find

Taking s - (i~7 - Q )/2 and so as in (5.9) we see that sup 1/2, and, since
D

G’(o, 0) = 0, by the complex Implicit Function Theorem, we conclude that there
exists a unique analytic function such that
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Thus and therefore and, for any

complex c with

completing the proof of Theorem 5.1. D

6.2 Contractions

Here we discuss the circumstances under which it is possible to contract
certain resonant subtrees without generating new A-(sub)resonances. The reason
why one wants to contract resonances is simply that, if R is a resonance of T,

so that one can reduce the order of the tree (passing from T to T /R).
We start with a "negative" example i. e. an example of "forbidden" con-

traction. Consider Figure 8: it easy to see that, given any A’ « A  1/2, if m, n
and p are suitably chosen, then: R is an Eliasson resonancel5 (with parameter A)
but not A-resonant; R’ is a short resonance not A-resonant; R/R’ is A’-resonant
(hence, in particular, is a À -resonance) 16 .

Fig. 8: A forbidden contraction if ~ I

The first simple result says that Siegel resonances cannot become
A-resonant by contraction of Eliasson or short resonances:

LEMMA 6.1. Let T E a a T-admissible function, 0  ~  1 /2. If
R’ c R are resonances and R’ is either Eliasson or short and R is Siegel, then
R/R’ is not A-resonant.

15 Recall (iii) of Remark 4.1.
16 The parameters can be chosen as follows: fix ,+a fix and choose

m=n such that Then one checks immediately that (I. e. R is Eliasson);
(i-e. R is not A-resonant); (i. e. R’ is not A-resonant); but (i. e.

R/R’ is A’-resonant).
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PROOF. Let R’ = R(u’, w’) and R = R(u, w). The statement is obvious if
R’ is short or if R’ does not intersect the path P(u, w). Assume therefore that
R’ is Eliasson (with parameter A) with u &#x3E; u’ &#x3E; w’ &#x3E; w and assume also

(by contradiction) that R/R’ is A-resonant. R Siegel implies that there exists
u &#x3E; v &#x3E; w such that 18wl 1 &#x3E; in fact V’ &#x3E; v &#x3E; w’ (otherwise R/R’ would
clearly be Siegel). Since R’ is Eliasson, ]  so that (  18wl. But
bw, = 8w’(Ru) + 6w and, since 18wl ~ I (having assumed that R/R’ is

A-resonant), it is bw~ ~ I &#x3E; ( 1 - A)16,,,(Rv)l. Putting these bounds together one
obtains &#x3E; )6w ) &#x3E; Sw~ ( &#x3E; ( 1- a) ~ Sw~ (Ru) ~ I which is a contradiction since
A  1/2. p

The next lemma shows that (sub)resonances can always be contracted
without introducing new critical (sub)resonances, provided A  1/4.

LEMMA 6.2. Let T E a a T-admissible function, 0  A  1 /4. Let R*
be a minimal critical (sub)resonance then R (T /R* ) = 

Such a result is an immediate corollary of the following

SUBLEMMA 6.1. 1/3, let R’ be a A-resonance and let R :) R’ be
a resonance which is non A-resonant. Then R/R’ is not A-resonant.

PROOF (of Lemma 6.2 given Sublemma 6.1). If R* is a critical resonance,
the claim follows directly from Sublemma 6.1 (as critical resonances are maximal
A-resonances). If R* is a subresonance then it is a A’-resonance with A’ = A/(l- A)
(recall Remark 4.1 ). Let R D R* be a resonance with R V R (T ). Then by the
lemma (since A  1/4 is equivalent to A’  1/3), R/R* cannot be a A’-resonance
and hence cannot be a critical (sub)resonance of T. D

PROOF (of Sublemma 6.1). Let R = R(u, z) and uu’, w’w the edges
connecting R’ with R _ R/R’ and u’, w’ E R’, u’ &#x3E; w’, u &#x3E; w. R not
A-resonant means that 3vi E R, such that

If (or v 1 = u’ in which case 8w(Ru) and w- V R’) then the
claim is obvious. Assume that and let us proceed by contradiction,
assuming that R is A-resonant. Because R and R’ are A-resonant, one has

Observe also that 3u, (1’ E {O, I} such that

(u = 1 if v, is on the path P(u’, w’) and u = 0 otherwise; (1’ = 1 if w &#x3E; z and
u’ = 0 otherwise). Now, using (6.10) and (6.11 ) we get
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whence

Putting (6.12), (6.10), (6.13) and (6.9) together we get

which implies A &#x3E; 1/3 which is a contradiction. D

Let now R’ be Eliasson (with parameter A) and R’ c R with R not
A-resonant. With the same notations used in the above proof, we see that, if

B

u’ &#x3E; v 1 &#x3E; w’, in place of the second of (6.10), it holds I

Mimicking the rest of the estimates leading to (6.14), we obtain

which implies A &#x3E; 2 - f = 0.26.... We have thus proved the following
statement:

SUBLEMMA 6.2. Let T E a a T-admissible function, 0  A  2 - -13.
Let R’ be an Eliasson resonance (with parameter À) and let R - R(u, z) D R’
be such that ~bz ~ &#x3E; for some u &#x3E; vi &#x3E; z. Then R/R’ is not 

We are now ready to give a criterion which allows to contract resonances
which are not critical (sub)resonances.

LEMMA 6.3. Let T e Tk, a a T-admissible function, 0  A  2 - -13,
h &#x3E; 2. Let R1, ... , Rh, Rh be resonances such that Rh ~; Rh U Rh C
Rh-1 c ’’’ c R1; Rh and Rh are either Eliasson or short; for 1  i  h -1,
are not Then one can choose R* equal either to Rh or to Rh so
that, , four 1  i  h - 1, not 

PROOF. Let, for 1  i  h, Ri = and let Wi &#x3E; Wi-1 1 be adjacent
to wj (so that Wi E 14 and WiWi-1 is one of the edges connecting 14 with

set similar definitions for Rh = R(uh, wh_1). If is not A-resonant
for all i, we put and we are done. Assume now that for some
1  j  h - 1. is A-resonant. Since Rj is not A-resonant, 3Vh such

that &#x3E; (where Rj is rooted at The vertex vh cannot be
outside Rh (otherwise 8Vh(Rj) = and would not be A-resonant);
thus vh E Rh (and In fact, vh e (otherwise Rh, which is
assumed to be either Eliasson or short, would be Eliasson and, by Sublemma
6.2, Rj/Rh would not be A-resonant). Hence and
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Since Rj / Rh is A-resonant, it is  for all v E in

particular

We claim that the Lemma holds also in the present case if we put R* - 7~.
In fact, if Rh = then the claim is true (arguing as above and using
Sublemma 6.2). Let and assume (by contradiction) that 
is A-resonant for some j’  h. Then (repeating the arguments given above)
there exists vh e such that &#x3E; I and by (6.17) (used

and (6.16), ~ )6v ) &#x3E; 18vhl. Thus &#x3E; so that is not
A-resonant which is a contradiction. 

~ 

D

6.3 Proof od Lemma 5.2

If all resonances are Siegel we are in the hypothesis of Lemma 5.1, and
Lemma 5.2 follows since {32 &#x3E; #1 and c2 &#x3E; ci. Assume now that T contains
short and/or Eliasson resonances. We shall proceed by induction on k = ~ I
and to reduce the order k we shall contract suitable resonances as advertised
above.

The main technical estimate is the following.

SUBLEMMA 6.3. Let h &#x3E; 1 and assume that Rh G " ’ C R1 == Rare
resonances of T such that: (i) R is not (ii) each R;, is either

Eliasson or short; (iii) if we Rh and, for i  h, Ri = then

Ri contains at most Siegel resonances. Then

where C2, ~32 are as in (5.4).

PROOF. Let (for i = 1, ... , h) Ui-1 Ui, WiWi-1 be the edges connecting Ri
with TBRï, with Ui, Wi E Ri and &#x3E; · Clearly: ui, ui, wi, wi for
all 1  i  h; Uh, Wh e Rh ; uo is outside R and might be the earth q; wo is the
first vertex following R; ui-l Wi-I; Ui 2:: Ui (for i  h). If 
and v E Rï is not on the path P(ui, wi) joining ui with Ti (which is always the
case if Rï is short) then 6v = If Ri is Eliasson and U-i  v  Wi, then
bv = 8v(Rï) + 8Wi-I (where Rï is rooted at ui ) and, from the definition of Eliasson

resonance, it follows that   b so that, in all cases, if v E R;I | l - A I 
and it holds
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Thus, since , by (6.19) we get

(Ri rooted at Ui). Now, using (6.19) with v = w2 and the Diophantine inequality
(2.7), we get, for 1  i  h,

Since R_ is not A-resonant, 18wol &#x3E; AA(R), thus (6.21) holds also for i = 0 if we
define Ro =- R. Since by (iii) we can use Lemma 5.1 to estimate the products
over Ri in (6.20), we get easily (6.18) (to get the constants straight, observe
that 2Tc1 &#x3E; À -11). D

PROOF (of Lemma 5.2). Let us call, here, "ES" a resonance which is
either Eliasson or short. Let us also call (for the purpose of the present proof) a
"resonant hierarchy" a family of ES resonances Rh C ... C R1 (h &#x3E; 1) satisfying
(i), (ii) and (iii) of Sublemma 6.3 and such that R1 is either maximal (i. e. is
not contained in another ES resonance) or is contained into some ES resonance
S which contains another ES resonance disjoint from R1. Pick a maximal ES
resonance, R c T. Then either R = R1 for some resonant hierarchy or R
contains more than one resonant hierarchies. In the first case, by Lemma 6.1,
T/R will not contain A-resonances and we can use the inductive hypothesis and
the estimate in Sublemma 6.3, to obtain Lemma 5.2. In the second case, call S’i
(for i = 1, ... , p for some p &#x3E; 1) all the ES resonances contained in R which do
not belong to any resonant hierarchy (in particular R is one of such resonances
and we shall put Sl = R). Pick a minimal S* among the {6’J (i. e. S* does not
contain any Sj). By construction S* contains at least two resonant hierarchies,
say, Rh and RI :D ... D Rh, (with R1 nR’ = 0). By Lemma 6.3 (and
Lemma 6.1 ) we can contract either R1 or R’ so that the remaining tree does
not contain any A-resonance and use the estimate in Sublemma 6.3 to estimate
the product over the contracted hierarchy. D

6.4 Proof od Lemma 5.3

The heart of the matter is the following remarkable algebraic fact.
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PROPOSITION 6.1 (Compensations). Let R be a tree and a be a Ru-ad-
missible function, Vu E R. Assume that a(R) = 0 and set (for prefixed 1  i,
~  N)

where P(u, w) is the path joining u and w (if u = w the first product
is missing, while if R is a path the second product is missing). Then

PROOF. Recall that a(R) = 0 and define, for any u, w in R and any
s c V(R) such that a(S) = 0

We claim that and v are independent of u and w : - JjR,

vR,s . The independence of from u comes immediately from
the identities

(where as usual P(u, w) denotes the path joining u and w) and

Note that (6.24) holds for any rooted tree (i. e. not necessarily null) while in
(6.25) it is important that R is null. Now, for any u and w with (6.24)
and (6.25) imply

which proves the independency of 1L from points in R. Next, observe that
to prove the independence of v from points in R it is enough to check that
v(w) = v(w’) for adjacent points w and w’. Thus, let w, w’ be adjacent points
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in R. Then

where in the second equality we used 6w«Rw) = -6w(Rw) which is a particular
case of (6.25) and xs is the characteristic function of the set S. This finishes
the proof of the above claim.

The check of the Proposition is now trivial:

and

finishing the proof of Proposition 6.1. D

REMARK 6.1. In fact, from the above proof it follows that Proposition 6.1
holds also if the sum over R is replaced by the sum over any null subset of R.

We can now proceed with the Proof of Lemma 5.3. First observe that

(letting in Proposition 6.1 R be as in Lemma 5.3)
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so that

where a- is defined here. By assumption we have

and we see that a is holomorphic and bounded in the complex disk
I .. ;

Recall the "Cauchy estimate":

valid for any holomorphic function g bounded in a complex domain D, for any
k &#x3E; 0 and for any subdomain D’ whose closure is contained in D (above a
denotes "boundary of,,)17 . Then, letting

(recall that A  1 so that D’ is smaller that D) we see that

Furthermore, for any x E D and any u, v E R we have (recall that from the
definition of A(R) it follows that A  8v(Ru)):

- o

l~ The proof of (6.31) is standard: it follows immediately by expressing the kth derivative
of g at a point zED’ in terms of Cauchy’s integral formula (taking as path of integration a disk
centered at x and of radius r).
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Thus, by and Lemma 5.2

..... ’-"’"

where in the estimate before last we have applied Lemma 5.2 to the tree(s)
RB{u} (if degr u &#x3E; 2 then RB{u} is the disjoint union of deg~ - 1 trees) and
in the last estimate

The proof of Lemma 5.3 is complete. D

6.5 Proof of Lemma 5.4

If T’ E ~(T ), denote by I-’(T’_) - ~ vv’ E E(T’) : 3R C R (T ) with v’ C R
and v V RI and by E(R) - U E(R). Then

Rck

and the second product does not depend on T’ (i. e. it is common to all elements
of :1). Furthermore, recalling (4.7), we see that

the last product being absent if s = 1. Fixing a set of indices (depending upon
C and taking the values 1, ... , N), ji - for i = 0,..., s, we can make
more explicit (6.37) by writing out the scalar products:
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Now observe that which implies 
’

and

notice that, for all

Then

where the supremum is taken over all choices of the indices 

and coincide with suitable indices j’s. Fix T’ E :1, fix indices i - i(R) and
i’ - i’(R) ( 1  i, j  N) and let R* be a minimal critical (sub)resonance: i. e.
either R* - Ro E R o is a critical resonance which does not contain any critical
subresonance or R* is the smallest element of a hierarchy for some
Ro E Ro : { R 1, ... , Rh } and R* = Rh. Now, by Lemma 6.2, T = T’ / R*
and R B ~ R* } . Thus

If h &#x3E; 0 (i.e. R* is a critical subresonance) and if mi, for i = 0,1, ... , h,
are the integer vectors associated to the hierarchy (see Remark
4.3 of Section 4) we have for and some ui i = 0, ~ 1, (for

h

i = 0, ... , h - 1), mo _ ~ av - (l(Jhl = 1), so that, by (4.6), we

A vRo i=0

have l(mo)1 I  1 - 0(R*). 
Notice that such a bound holds also in the case

1-A
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R* = Ro E R o (and in fact holds without the factor ( 1 - a ) -1 ) . We can apply
Lemma 5.3 to R* A)  1, obtaining

Repeating the above procedure to the tree T’/R* it is clear that we can
inductively contract all critical resonances ending up with the tree T / Ro
to which Lemma 5.2 can be applied. Thus Lemma 5.4 follows with C4
N max{c3, C 2 21, #4 - max{{33, 2,32 + 2} which by (5.6) yield (5.8). D

A. - Trees

In this appendix we collect the basic facts from graph theory that are used
in the main text. The material is standard and can be found in the introductory
sections of most elementary books on graph theory (see e.g. [18] or [5]).

Given a finite set V, a graph G on V is a couple (V, E) where E is a
subset of unordered couples of different elements of V. If needed, we spec-
ify V == V(G) and E - E(G). One can already start to count: ( is

the cardinality of V, also called the order of G, then 0  JE(G)I y &#x3E; &#x3E;  ( )) 
(2)

(lEI = 0 - E = Elements v of V are called equivalently either vertices or
points or nodes, while elements of E, denoted by vv’ - v’v (as the couple are
taken disregarding the order), are respectively called edges or lines or branches.
It is customary to write v E G in place of the proper notation v E V(G) and,
analogously, vv’ E G in place of vv’ E E(G). The edge vv’ is said to be
incident with the vertices v and v’. Two vertices v, v’ are called adjacent if
vv’ E E. Two edges are adjacent if they are incident with the same vertex. The
number of edges incident with a vertex v is called the degree of v and denoted
deg v or degG v when needed. A point with degree 1 is called an endpoint
(or endvertex). Clearly, L deg v = 2IE(G)I. Standard set theoretic notations are

vEG
used in graph theory with the obvious meaning clear from context. For example:
a subgraph G’ of G, denoted G’ c G, is a graph such that V(G’) c V(G) and
such that E(G’) is a subset of edges vv’ of E(G) with v, v’ E V(G’); if G1
and G2 are two graphs, their union G U G2 is always meant as disjoint union
(Y(G1 U G2) - V(G,)UV(G2), E(G1 U G2) - E(Gl)UE(G2)); if G’ is a subgraph
of G, GBG’ is the graph whose vertices are given by V(G)BV(G’) and whose
edges are given by E(G)B{vv’ : v’ E Y(G’)} (notice that the set of edges
subtracted is, in general, strictly larger than E(G’)); if v, v’ E G (but vv’ f/. G),
G + vv’ denotes the graph obtained by including the edge vv’.

All the above definitions, and in general everything concerning graphs,
are better understood by looking at diagrams.
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Fig. 9: G=G1UG2UG3UG4

The set of vertices of the graph G in Figure 9 is given by vi, V2, V3,

and the set of edges is 

W2W3, W2W4, ZlZ4, Z4Z3, Z3Z21. The graph G is disconnected (see below) and the
connected components are given by the subgraphs G1, G2, G3, G4; the degree
of u is 0 (4===&#x3E;. u is an isolated point) the degree of W2 is 3; some endpoints are
w 1 and z2 ; the lines incident with z4 are z4zi and z3 z4 ; zi and z4 are adjacent;
the graph G’ given by V(G’) = {~3,~2} and is a subgraph of
G; the order of G is 12 and the number of edges in 9. Two graphs G, G’ (and
their corresponding diagrams) are identified if there exists a bijection j from
V(G) onto V(G’) such that E(G’) = {j(v)j(v’) : vv’ E E(G)}; j is called a graph
isomorphism. Thus G4 in Figure 9 and the graphs depicted in Figure 10 all

represent the same graph.

Fig. 10: Graphs isomorphic to G4

An ismorphism between G’ and G4 = U2, j(Z3) = u3,
j(Z2) = u4 (another isomorphism = U4, j(Z4) = tt3, ~’(~3) = U2, j(Z2) 
notice that graphically G4’ (no labels) is a complete description of the graph G4.
Here the "labels" zi or ui are used only for notational convenience as the only
relevant aspect is the "topology" of lines and points; below we shall introduce
instead the concept of labeled trees where points are distinguished by labels
attached to them.

Connectedness is defined through paths: A path P is a graph whose verti-
ces can be given an order such that if V(P) = then E(P) is given
by fVlV2, - - -, (if p = 1, E(P) = 0 and the path is trivial). The length
of a path is given by its order minus 1 (= number of lines in P); a path P
is denoted by vp. A graph G is connected if any two (different) points
can be joined by a path in G. G4 in Figure 9 (and in Figure 10) is a path. A
closed path or cycle is a connected graph whose vertices have degree 2.
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A tree is a connected acyclic (i. e with no cycles) graph. In Figure 9, G 1,
G3 and G4 are trees while G2 is not a tree (being itself a cycle). Equivalent
characterizations of trees are the following (see e.g. [18]): (i) T is a tree; (ii)
T is connected and IE(T)I = IV(T)L - 1 (as above we set = 0); (iii) Every
two vertex of T are joined by a unique path. A subtree T’ of T is a connected
subgraph of T (hence T’ is also a tree); unless otherwise specified, if T is a

tree, T’ c T means that T’ is a subtree of T.

Fig. 11: Trees up to order k = 4

A rooted tree is a tree with a distinguished vertex called the root.
A graph (tree) on a set of distinct points (or labeled points or simply

labels) is called a labeled graph (tree).
Labeled rooted graphs (trees) are labeled graphs (trees) with one

distinguished (labeled) vertex.
A useful way of identifying the root r of a rooted tree T is to introduce

an extra point q g V(T), called the "earth", and to add a new edge, qr, in

E(T): Thus for rooted trees it is IE(T)I = IV(T)L and the unique edge of the
form "1v identifies the root v (usually denoted r). Consistently, we let the degree
of the root r be the number of edges incident with r, "1r included. If T is an
unrooted tree and v E V(T), we denote by Tv the rooted tree obtained from T
putting the root in v (equivalently, adding the edge q v): degTv v = degT v + 1.
Notice that for rooted trees of order k it is L deg v = 2k - 1.

We conclude by counting some classes of trees. Denote by T k - {labeled
rooted trees of order k}, 7Qk == {labeled trees of order k}, {rooted trees
of order tok {trees of order k} and by tk, l(o) tk. ikO) the respective
cardinalities. The only trivial relation among the t’s is that tk = Less

obvious are the following statements: (a) given di ~! 1 such that E di = 2k - 2,

(b) given di &#x3E; 1 such

1 -1

that : degT Vi = di }

tk -= = kk-1, tkO) = l~~-2. Proofs of (a) - (d) can be found in [5]
(chapter VII, §3).
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Fig. 12: Rooted trees up to order k = 4

Fig. 13: Labeled trees in for k = l, ... , 4

Fig. 14: Labeled rooted trees on {vl , ... , vk }, for k = 1,..., 4
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B. - Formal Solutions, Combinatorics, Divergences

In this appendix we provide details on some known facts, mentioned in
the main text, whose proofs would not be trivially traced back in the literature.
We will start by giving the proofs of Proposition 2.1 on the existence and

uniqueness of formal solutions and of Proposition 3.1 on the tree representation
of the formal solution. Finally we shall illustrate with a concrete example the
presence of single terms of size - k ! in the tree expansion of the k th coefficient
of the formal solution.

PROOF OF PROPOSITION 2.1. We construct the formal solution by induction
over k. For k = 0 we get immediately from (2.6) that and are constant

vectors and that = w (as if g is a smooth function over T N and Dg = a
with some constant a, then g _ 0 = a) so that, from our hypotheses it fol-
lows that = y°; requirement (2.8) fixes the constant vector X~°~ to be zero.
Let, now, k &#x3E; 1 and assume that yo, yn&#x3E;, ... , Xn&#x3E;, ... , are smooth

functions over solving (2.6) with X(h) = 0. We claim that
TN

(note that the claim is obvious for k = 1 as in such a case (B.1) is just the
average of the gradient of a periodic function). If the claim is true, then the

proposition follows easily: o(k)(0) would be a Coo (vector-valued) function over
T~ with zero average and therefore the solutions of the equation are

given by yCk) with ck constant and the smooth function
with zero average given in Fourier expansion by

where o(k) are the Fourier coefficients of 0(k) (notice that the fast decay of the
Fourier coefficients of the smooth function ~~~&#x3E; yields the fast decay, in view
of (2.7), of the coefficients in (B.2), ensuring that D-1 ~~~~ is The
constant ck is not arbitrary, as the right hand side of the second of (2.6), in

order to make sense, must have vanishing mean value over T N ; rewriting such
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equation we get

is a smooth function (depending on H and X(h), for h  k - 1)
so that

in which case (B.3) has a unique solution with

It remains to prove (B.1 ). Observe that for any (smooth) functions X, Y
over T N one has

where 80X is the matrix (80X)j * and we adopted the standard con-
vention about row-by-column multiplication of matrices (interpreting vectors
as (respectively) 1 x N (N x 1) matrices if they are to the left (right) of
an N x N-_matrix); identity (B.5) follows immediately if one notices that

(Hx)(I + (9oX) + (Hy)(aeY) is just the 0-gradient of 0 --~ H(Y, 0 + X) (so
that its average vanishes) and that the remaining terms in (B.5) disappear by

k-1 k-1

integration by parts. Now, we use (B.5) with Y = 6hy(h), X = 
~ ~ 

h=0 h=l

get an identity in -; differentiating such identity with respect k times and

setting - = 0 (i. e. evaluating [ ~ ] k of the identity) and using the fact that 
X(h) solve (2.6), for h  k - 1 we easily obtain (B .1 ) . For a similar proof see
[10]. 0

PROOF OF PROPOSITION 3.1. In order to prove Proposition 3.1 we discuss
first another tree expansion, used in the proof of Theorem 5.1, for a series

satisfying an equation simpler than (but related to) (3.3).

PROPOSITION B. I . Let n e ~N -~ ~n G C decay faster than any power of
Inj (i. e. Vs &#x3E; 0, sup  oo) and let g = g(~) ~ L unique

n 
k&#x3E;1
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formal solution of the equation Then

where deg v denotes the degree of v (i. e. the number of edges incident with v).

(Actually, if the decay exponentially (i. e.  M for
some M, ~ &#x3E; 0 and all n E ZN), it follows immediately from the (analytic)
Implicit Function Theorem (applied to the analytic function of two complex
variables (z, e) E C2 -+ L cPnlnl that g converges
absolutely near c = 0).

PROOF. The starting point is so to get a recursive formula for the coeffi-
cients gk defined implicitly by (6.2): Expanding the right hand side of (6.2) in
Taylor series and comparing equal powers of - one immediately obtain

Now, there is a natural way of linking (labeled rooted) trees of order k with
all possible trees of order h 1, ... , i with h, + ... + 1 = k - 1: This link is
based on the following construction. Let denote the rooted trees of order k

(non labeled) and let fók denote the trees of order k (no labels, no root).
DEFINITION B .1. Let s &#x3E; 1, let Ti E t hi where i = 1, ... , s and hi &#x3E; 1

s

with h &#x3E; Let T ° E fóhi be the (unrooted) tree obtained from Ti by
i=1 

_ _ _

not distinguishing the root. We define the rooted tree T(Tl , ... , E 
1 by

setting18

where r is the root of T(Tl , ... , Ts) (r is an extra vertex i. e. r V Ti ) and the ri’s
are the roots of Ti i. e. = TZ .

18 For the (standard) notation see Appendix A.
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Fig. 15: The r-operation

And here it is the combinatorics (recall that the number of labeled rooted
trees of order h is hh-1 (see Appendix A)):

LEMMA B,I. For k &#x3E; j &#x3E; 2, denote by tki the number of labeled rooted
trees of order k with root of degree j. Then

PROOF. Proof of (i). Denote by fok the set of labeled (unrooted) trees of
order k. Then tkj = k#{T E tok : deg Vk = j - 11. Now, recalling (Appendix A)

k

that given integers di &#x3E; 1 such that E di = 2k - 2, one has
i=l
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we obtain

proving (i).
Proof of (ii). It is just a matter of counting: For any choice of j - 1 trees

j-1

Ti E with his = k - 1, pick one among k labels (it will be the label of
i=1

the root of an element of T k) and choose hi labels among the k - 1 labels at
your disposal. There are ~ hi !/(hl ! ~ ~ ~ = (k - 1)!/(h1! ... ways
of doing such a choice. Now, we attach the j - 1 trees Ti according to the rule
described in (B.8) (with s = j - 1) so as to form a generic element of with
root of degree j : obviously, since changing the order in (B.8) give rise to the
same tree, we have to divide by ( j - 1 ) ! . Summing over all possible choices of
hi and over all possible trees in T hi we obtain (ii).

(iii) is immediately obtained by summing (ii) over all possible degrees of
the root i. e. j = 2,..., k. D

The main point of the above Lemma is (ii): (i) is just a curiosity and will
not be used and (iii) is simply obtained by summing (ii) over j. An immediate
corollary of this Lemma (better: "of the proof of this Lemma") is the following
Corollary.

COROLLARY B .1. Let G : -~ C. Then

PROOF. It is an immediate consequence of the argument used to prove (ii)
above. D

We are now ready to prove (B.6) by induction on k &#x3E; 1. For 1~ = 1 the
claim is trivially true. Let 1~ &#x3E; 2 and assume that (B.6) holds for 1, ... ,1~ - 1.
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Denoting, for

in view of (B .10) we find

Notice that in the second equality we have used the crucial property of F:

This finishes the proof of Proposition B .1.

REMARK B .1. In fact, it is easy to see from (B.6) that

However, a direct (arithmetic) proof of (B.6), starting from the explicit
expression (A.5), might not be simpler than the proof presented above.

To get also the proof of Proposition 3.1 from Corollary B,I, one needs
only to rewrite (3.7) properly. To do this, let for any m, n E and k &#x3E; 1
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Then from (3.3) and Taylor expansion (in e) we obtain easily

The similarity of (B.14) and (B.7) is transparent corresponds to

(?~)~m ’ while corresponds to ~(nj,hi) ). It is enough to change
the extensions of the a functions on the earth q to generalizes (3.7) to

Notice that Fmn satisfies, for any

Now, mimic the proof of Proposition B. I using (B.15) in place of (B.12). D

We proceed now to illustrate the well-known mechanism of divergences
of series with coefficients of type (3.7), (for an f in (3.3) real analytic), if
signs are disregarded i. e. when absolute values are introduced within the sums.
This fact, based on the repetition of particularly small divisors 6v (resonances),
shows the need for detecting the compensations among all the terms whose
size in absolute value grows faster than exponentially in k and whose actual
occurrence will readily be seen.

More explicitly, let, for 1  y  N:
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we want to show that

where in the supremum I  j7!5 N, k &#x3E; 1 and n E ZN. In fact, it is enough to
check (B.17) in the case N = 2, f (X 1, X2) - cos x + cos(x2 - W2 &#x3E; W &#x3E; 0,

irrational, since it will be clear that the same argument can easily be
adapted to the general analytic case as long as f has two Fourier coefficients
with linearly independent (in ZN) indices. From an elementary number theoretical
theorem by Dirichlet (see [25]) it follows that there exist pj, qj &#x3E; 1, o0

such that and we can assume without loss of generality that,
. - 

.W "’J

for all 7 &#x3E; 1, qj &#x3E; 2013201320132013. . We shall now select a particular (unlabeled) rooted
.

tree and associate to its vertices a particular choice of Fourier indices ( i. e. a

particular choice of a). Let P be the path of order k, UkUk-1... U1 1 rooted at

Uk: uk = r and ... &#x3E; pj and, for any h &#x3E; 0 let

k=-qj+2h:qj = pj + s j, 1  si, pj  Let now au, == ni E Z2 be
defined as follows:

Fig. 16: Divergent contributions

and choose h = 3qj (so that k =- kj = 
Then, one can easily check that if in the sum (B.16) (with y = 1,

aq m (1, 0), n = (qj, we keep only the terms corresponding to the unlabeled
rooted tree P with the above choice of Fourier indices, recalling from Remark
3.1 that the number of labeled rooted trees corresponding to P are exactly k!,
it is

from which (B.17) follows at once. Notice that by increasing h, the exponent
of kj ! in (B.18) becomes arbitrarily close to 1. D
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C. - Siegel’s Lemma

We follow [ 11 ] . The first two steps are stated in the next two Sublemmas.

SUBLEMMA C. l. Let P - VI ... Vk be the path with k vertices rooted at
vi. Let a : P --+ ZNBf 01 be a P-admissible function and fix 0  A  1. Assume
that

if 8u = 8w for some u &#x3E; w then there exists v between u
(C.1 )

and w such that 18wl &#x3E; À18vl.

Then there exist positive constants Do &#x3E; Bo &#x3E; I such that

The constants Bo, Do can be taken to be

PROOF. By induction on k. If k = 1, (C.2) follows at once from the

Diophantine inequality (2.7). Let k &#x3E; 2 and assume the statement true for all
rooted paths with up to k - 1 vertices satisfying (C.1 ). Let (P, a) as above.
Define s to be the greatest integer between 1 and k such that 18v &#x3E; max 18v I.
There are four cases: 

Note that if + 0 we have s  k because a is P-admissible. If i = s
when when s &#x3E; 1, by the maximality of 18vsl I we have

hence, in case (i), by i while in case (ii)

In case (iii) and (iv) we have that 8Vs+I = 8vs-p and by (C.1 )

where last inequality holds only in case (iii); hence mimicking (C.5) replacing
2 by ( 1 + a ) -1 we obtain
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Let now in case (i), (ii) and v = Vs+1 in case (iii), (iv) and let, in the
cases (ii), (iii), (iv), v’ &#x3E; v be adjacent to v. Then in case (ii), (iii), (iv) we
obtain from (C.6) or (C.8), using the Diophantine inequality (2.7) (and the fact
that A  1 ), that

Now, if we let P - (recall Definition 4.10) and a : P - defined

by

av - av in case (i); and in case (ii), (iii), (iv):

Then

If (P,7i) verifies (C.1 ) then we can apply the inductive hypothesis and, using
(C.9), the Sublemma would follow immediately. It remains to check that (P, ZF)
satisfy (C.1 ). 

_

Case (i) is obvious as 7i coincide with a on P = v2 ... Vk. Also case (iv) is
easily checked as any couple of resonant points (i. e. points where the divisors
6 coincide) in P would also be resonant for P. Consider case (ii) and assume
that u &#x3E; w form a couple of resonant points for P. If either w &#x3E; 1 or

1 &#x3E; u, then (C.1 ) follows immediately from the validity of (C.1 ) for P. If
u &#x3E; Vs-1 1 &#x3E; w, @ let vi E P be such that u &#x3E; w and such that &#x3E; 

Then, if (C.1 ) holds for P as vi E P; on the other hand vs then

18vs-II - 18wl À18vs-II showing that (C.1 ) holds for P also in
this case. Consider case (iii). Arguing as above we see that we only have to
check the case when, in P, we have 6u = 6w with u &#x3E; fg &#x3E; w. Let as above

vi E P be such that 18wl 1 &#x3E; If vi = 1 then either u &#x3E; v, -I 1 or u = Vs-1.

If u &#x3E; Vs-1 1 then 18wl If u = Vs-1, then

Hence vs+1 &#x3E; w for a resonant couple in P and there exists by (C.1 ) a point vj
between Vs+1 and w (~ vj E P) such that )6w ) I and we see that (C.1 )
holds for (P, a) also in this final case. D

SUBLEMMA C.2. Let r &#x3E; 0 and s &#x3E; 2 be integers and let x 1, ... , xr,

yl, ... , ys be real numbers greater than or equal to 1 and let z be their sum
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means that there are no x’s).

: then

PROOF. The proof is taken from [11]: we include it for completeness.
We first observe that it is enough to prove the statement for r  1 (as

E xi :5 r n xi :5 TT xZ). We can also assume that s  3 (in fact,
since we can replace Yi and yj by their sum if such sum is
 z/2 ; hence we can assume &#x3E; z/2 for all and repeating the argument
we end up with at most three yj). Now, let s = 3. For z = 3 the result holds
therefore we assume that z &#x3E; 3 and y2  y3. Clearly y2  z/2 (otherwise
y3 would also be &#x3E; z/2 contradicting the positivity of Y1). Furthermore

and taking t = min {y1 - 1, z - y2 we see that we can assume either y1 = 1
z 

2 1
or y2 = 2. Repeating the argument for y2 and y3 we can assume that either y2
or y3 is equal to z/2. But then 2/1 + 2/2 ~ z/2 and by the above argument we
can reduce to the case s = 2. We are thus lead to consider only the case s = 2.
By (C.13) we can again assume that either Y1 = 1 or y2 = z/2. The remaining
cases are checked directly. D

We are now ready for the:

PROOF OF LEMMA 5.1. We shall prove, by induction on the number V ~ I
of vertices of T, the following estimate

for suitable constants D &#x3E; B 2:: I determined below. Lemma 5.1 follows

immediately from (C.14) by taking #1 = 3T and D.
If )V) = 1, (C.14) follows from (2.7) (as B &#x3E; ~). Now let k &#x3E; 2, assume

that (C.14) holds for any (T’, a’) satisfying the hypotheses of Lemma 5.1 and
with 1 and let (T, a) be as in Lemma 5.1 with IV(T)I = k.
We need some notation. Let Sv be the subtree {v’ E T : v’  vl rooted

at v and for any subset of vertices W c V let Define
r I } vew

&#x3E; 2 It is easy to check that P is a path:
P = uo ... up with p &#x3E; 0, uo being the root r of the tree T. To each ui we
associate mi &#x3E; 0 subtrees Sij as follows. Let mi - deg uZ - 2 when i  p - 1,
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mp m deg up - 1 and let, for mi &#x3E; 0, vii be the mi vertices adjacent to ui with
P. We then set Sjj m when mj f0 and otherwise. We also

define: 
°

It then follows

and, by the definition of P

If 7i then P - T and we can apply directly Sublemma C.1 assuming that

From now on we assume that I1:f0 i. e. m &#x3E; pi &#x3E; 0. We shall adopt
the convention that sums or products over empty set of indices have to be

disregarded (i. e. replaced, respectively, by 0 or 1 ). Next, let

then 8Ui - s~t (T ; a) _ 8Ui(P; a), whence

and we can use Sublemma C.l to bound the product over P (as (P, a) obviously
satisfy (C.1 )) and the inductive hypotheses to bound the product over Sij (note
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that Recalling the definitions in (C.16), we obtain from (C.20)
and (C.19) 

1

with

and we have to show that M  1 if we choose suitably D, B. Suppose first
that p E Io. Then by the first inequality in (C.17) with i = p we have

Then using repeatedly the bound (valid for real

numbers bi &#x3E; 1) and estimating I we get

provided

(which is stronger than (C.18)).
Suppose now that p E I,. We can assume that (otherwise

(C.22) holds also in this case and we can proceed as above). Then

and we see that we are in position to apply Sublemma C.2 (with r = p + pl - 1,
.. 

obtaining

provided we take B - Bo4T, D - 4r (which satisfy also (C.23)).

Thus, by (C.3), we can take
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D. - Two Examples of Complete Families (k = 5)

REFERENCES

[1] V.I. ARNOLD, Proof of A.N. Kolmogorov’s theorem on the preservation of quasi-
periodic motions under small perturbation of the Hamiltonian. Uspekhi Mat. Nauk
18, No. 5 (1963), 13-40 (Russian); English translation: Russian Math. Surveys 18,
No. 5 (1963), 9-36.

[2] V.I. ARNOLD, Small denominators and problems of stability of motions in classical

and celestial mechanics. Uspekhi Mat. Nauk 18, No. 6 (1963), 91-192 (Russian);
English translation: Russian Math. Surveys 18, No. 6 (1963), 85-192.



592

[3] A. BERRETTI - L. CHIERCHIA, On the complex analytic structure of the golden-mean
invariant curve for the standard map. Nonlinearity 3 (1990), 39-44.

[4] A. BERRETTI - A. CELLETTI - L. CHIERCHIA - C. FALCOLINI, Natural boundaries for
area-preserving twist maps. J. Statist. Phys., 66 (1992), 1613-1630.

[5] B. BOLLOBAS, Graph Theory. Springer-Verlag (Graduate text in mathematics, 63),
Berlin-Heidelberg-New York, 1979.

[6] A.D. BRJUNO, Convergence of transformations of differential equations to normal

form. Dokl. Akad. Nauk SSSR 165 (1965), 987-989; Analytic form of differential
equations, Trans. Moscow Math. Soc. 25 (1971), 131-288 and 26 (1972), 199-239.

[7] A. CELETTI - L. CHIERCHIA, Construction of analytic KAM surfaces and effective
stability bounds, Comm. Math. Phys. 118 (1988), 119-161.

[8] L. CHIERCHIA - G. GALLAVOTTI, Drift and Diffusion in phase space, Preprint (1992).
To appear in Ann. Inst. H. Poincaré Phys. Théor.

[9] L. CHIERCHIA - P. PERFETTI, Second order Hamiltonian equations on T~ and

almost-periodic solutions. Preprint (1992). To appear in J. Differential Equations.
[10] L. CHIERCHIA - E. ZEHNDER, Asymptotic expansions of quasiperiodic solutions. Ann.

Scuola Norm. Sup. Pisa, Cl. Sci. (4), 16 (1989), 245-258.

[11] L.H. ELIASSON, Absolutely convergent series expansions for quasi periodic motions,
Reports Department of Math., Univ. of Stockholm, Sweden, No. 2 (1988), 1-31.

[12] L.H. ELIASSON, Hamiltonian systems with linear normal form near an invariant torus.
In "Nonlinear Dynamics", G. Turchetti (Ed.) World Scientific, Singapore, 1989.

[13] L.H. ELIASSON, Generalization of an estimate of small divisors by Siegel. In "Analysis,
et cetera", P.H. Rabinowitz and E. Zehnder (Eds.), Academic Press, 1990.

[14] C. FALCOLINI - R. DE LA LLAVE, Numerical calculation of domains of analyticity for
perturbation theories in the presence of small divisors, J. Statist. Phys. 67 (1992).

[15] G. GALLAVOTTI, Twistless KAM tori, quasi flat homoclinic intersections, and other
cancellations in the perturbation series of certain completely integrable hamiltonian
systems. A review. Preprint (1993).

[16] G. GALLAVOTTI - G. GENTILE, Non recursive proof of the KAM theorem. Preprint
(1993).

[17] I.P. GOULDEN - D.M. JACKSON, Combinatorial Enumeration. Wyley Interscience Series
in Discrete Math., 1983.

[18] F. HARARY, Graph Theory. Addison-Wesley, 1969.

[19] A.N. KOLMOGOROV, On conservation of conditionally periodic motions under small

perturbations of the Hamiltonian. Dokl. Akad. Nauk SSSR 98, No. 4 (1954), 527-530

(Russian).

[20] J. MOSER, On invariant curves of area-preserving mappings of an annulus. Nachr.
Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.

[21] J. MOSER, Convergent series expansions for quasi-periodic motions. Math. Ann. 169

(1967), 136-176.

[22] J. MOSER, A rapidly convergent iteration method and nonlinear partial differential
equations, I-II. Ann. Scuola Norm. Super. Pisa Cl. Sci. (3) 20 (1966), 265-315 and
499-535.



593

[23] H. POINCARÉ, Les méthodes nouvelles de la mécanique céleste. Vols. 1-3. Gauthier-

Villars, Paris 1892/1893/1899.

[24] H. RÜSSMANN, Kleine Nenner. I: Über invariante Kurven differenzierbarer Abbildun-
gen eines Kreisringes. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1970 (1970),
67-105.

[25] W.M. SCHMIDT, Diophantine Approximation, Springer-Verlag (Lecture Notes in Math.
785), Berlin-Heidelberg-New York, 1980.

[26] C.L. SIEGEL, Iterations of analytic functions, Ann. of Math. 43 (1942), 607-612.
[27] M. VITTOT, Lindstedt perturbation series in Hamiltonian mechanics: explicit

formulation via a multidimensional Burmann-Lagrange formula, Preprint (1991).

Dipartimento di Matematica
Universita di Roma "Tor Vergata"
Via della Ricerca Scientifica

, 

00133 Roma (Italy)


