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1. Introduction

In 1892 Henri Poincaré conjectured that in the restricted three–body problem, an
arbitrary connected piece of a (bounded) trajectory could be approximated arbi-
trarily well by a periodic orbit of long period. This conjecture is still open but a
“metric asymptotic version” of it was proven by Gómez and Llibre:10

Theorem 1.1 (Gómez, Llibre 1981). For any fixed value of the Jacobian con-
stant and for any ε > 0, there exists a µ0 > 0 such that if the mass parameter
µ ∈ [0, µ0], then the set of bounded orbits which are not contained in the closure of
the set of periodic orbits has measure of Lebesgue smaller than ε.

The proof relies on the existence and abundance of KAM invariant curves and on
the possibility of approximating KAM curves by periodic orbits.
As pointed out by Conley and Zehnder7 (who combined the Birkhoff–Lewis fixed
point theorem together with the quantitative version of the KAM theorem due to
Pöschel to prove that, under suitable non–degeneracy assumptions, the closure of
periodic orbits in a ball around an elliptic equilibrium of a smooth Hamiltonian has
a density which tends to one as the radius of the ball goes to zero), such strategy can
be extended to any number of degrees of freedom under suitable non–degeneracy
assumptions.
However, the strong degeneracies of the planetary N–body problem have prevented,
until now, to obtain results of this type in the general case.
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In this paper we show how recent results by G. Pinzari and the author4,6 allow
to give a full extension of Theorem 1.1 to the general spatial planetary N–body
problem in a neighborhood of co–circular (“well separated”) and co–planar motions.
A more precise statement is given in the following section.

2. The planetary (1 + n)–body problem

The planetary N–body problem consists in studying the dynamics of N = 1 + n

point masses interacting only through gravitational attraction with no friction or
external potentials in the special case where one of the bodies (the “Sun”) has mass
m0 = 1, while the other have masses

mi = µmi � 1 , (1 ≤ i ≤ n)

(“planets”); in particular, one is interested in the phase region of total negative
energy near the unperturbed limit of the n–planets revolving on nearly co–planar
and nearly co–circular Keplerian ellipses generated by the two–body system Sun–
ith–planet.
The equations of motions for (1+n) gravitationally interacting bodies are described
by Newton’s equations:

ü(i) =
∑

0≤j≤n
j 6=i

mj
u(j) − u(i)

|u(j) − u(i)|3
, i = 0, 1, ..., n (1)

where u(i) = (u(i)
1 , u

(i)
2 , u

(i)
3 ) ∈ R3 denotes the position in Euclidean space of the

ith–body, “dot” denotes derivative with respect to time t ∈ R, and |u| denotes the

Euclidean norm
√
u · u =

√√√√ 3∑
k=1

u2
k.

Equations (1) are invariant by change of “inertial frames”, i.e., by change of variables
of the form u(i) → u(i) − (a + ct) with fixed a, c ∈ R3. This allows to restrict the
attention to the manifold of “initial data” given by

n∑
i=0

miu
(i)(0) = 0 ,

n∑
i=0

miu̇
(i)(0) = 0 . (2)

As well known, the total linear momentum Mtot :=
n∑
i=0

miu̇
(i) does not change along

the flow of (1), i.e., Ṁtot = 0 along trajectories; therefore, by (2), Mtot(t) vanishes
for all times. But, then, also the position of the barycenter B(t) :=

∑n
i=0 miu

(i)(t)
is constant (Ḃ = 0) and, again by (2), B(t) ≡ 0. In other words, we can restrict our
analysis, without loss of generality, to the (6n)–dimensional phase space

M :=
{
u(i) ∈ R3 , u̇(i) ∈ R3, 0 ≤ i ≤ n , s.t.

n∑
i=0

miu
(i) = 0 =

n∑
i=0

miu̇
(i)
}
, (3)
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(or more precisely, to the open subset of it with no collisions or blowups).

Furthermore, the total angular momentum

C :=
n∑
i=0

miu̇
(i) × u(i)

is conserved and we choose a reference frame {k(1), k(2), k(3)} so that k(3) is parallel
to C.

Now fix reference radii r1 < r2 < · · · < rn (“mean distances from the Sun”) and let
us consider the nearly co–circular and nearly co–planar region of phase space inM
given by

Mε :=
{ ∣∣∣|u(i) − u(0)| − ri|

∣∣∣, |u(i)
3 − u

(0)
3 |, |u̇

(i)
3 − u̇

(0)
3 | < ε , ∀ 1 ≤ i ≤ n

}
(4)

and denote by Pε the set of periodic orbits in Mε. Then we can prove

Theorem 2.1. There exist positive numbers δ and b such that if ri/ri+1 < δ and
0 < µ < εb, then

lim
ε→0

meas closure (Pε)
measMε

= 1 . (5)

The proof is based on two steps:

- the first step consists in showing that Mε is asymptotically filled up by
Kolmogorov invarian tori (a precise definition will be given later);

- the second step consists in proving that, in general, Kolmogorov tori are
accumulation manifolds for periodic orbits with longer and longer periods.

The first (hard) step has been recently proven in Ref. 4: we shall briefly illustrate it in
the next section. The idea beyond the second step was remarked in Ref. 7 by Conley
and Zehder in a somewhat different context (periodic orbits in a neighborhood of
a non–degenerate elliptic equilibrium) and using J. Moser’s version of a celebrated
fixed point theorem by Birkhoff and Lewis: in the last section we shall discuss a
variational proof introduced in Ref. 2.

3. Existence and abundance of non–degenerate Kolmogorov tori

The existence and abundance (positive Lebesgue measure in phase space) of Kol-
mogorov (or KAM) tori for the planetary problem was first stated, and proved in
the particular case of n = 2 planets in a plane, by V.I. Arnold in his milestone
paper Ref. 1. The full extension of Arnold’s result to n planets in space turned
out to be much more difficult than expected, essentially because of degeneracies of
Birkhoff invariants of the averaged (secular) approximation (see below). The first
complete proof of a somewhat weaker result was given in 2004 by M. Herman and
J. Féjoz9 and a full generalization of Arnold’s results and methods has been given
in Ref.s 4,6.
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3.1. The planetary Hamiltonian

The starting point is that the space M in (3) is a symplectic manifold and the
Newton’s equations are equivalent to Hamiltonian equations on M: Indeed, M is
a 6n–dimensional manifold and one can take as standard symplectic variables (or
Darboux coordinates) the following (“heliocentric”) variables:

x(i) = u(i) − u(0) , X(i) = miu̇
(i) , (1 ≤ i ≤ n) (6)

and as Hamiltonian the function

Hplt(X,x) :=
n∑
i=1

(
|X(i)|2

2Mi
− Mim̄i

|x(i)|

)
+ µ

∑
1≤i<j≤n

(
X(i) ·X(j)

m0
− mimj

|x(i) − x(j)|

)
=: H(0)

plt(X,x) + µH(1)
plt(X,x) , (7)

where (recall that we have normalized the mass of the Sun m0 = 1 and set mi = µmi

for the mass of the planets with mi = O(1) and µ� 1)

Mi :=
mi

1 + µmi
, and m̄i := 1 + µmi ;

the symplectic form is the standard Darboux form

n∑
i=1

dX(i) ∧ dx(i) =
n∑
i=1

3∑
j=1

dX
(i)
j ∧ dx

(i)
j .

The planetary Hamiltonian Hplt is the sum of an integrable part, H(0)
plt , correspond-

ing to n decoupled two–body systems formed by the Sun and the ith planet, and a
perturbation term proportional to the planet/Sun mass ratio µ. The natural sym-
plectic action variables for H(0)

plt are the classical Delaunay variables, which, how-
ever are singular exactly in the limit case of interest, namely, the co–planar and
co–circular limit. The classical symplectic regularization goes back to Poincaré;
however, such variables are not well suited for a KAM (or Birkhoff) analysis, and
it turns out to be more convenient to use a set of variables introduced in Ref. 4
called rps (Regularized Symplectic Planetary) variables, which are a regularization
of action–angle coordinates related to certain symplectic variables introduced by
Deprit8 in 1983.

3.2. The RPS variables

Let us begin by recalling the definition of the Deprit action–angle variables(
(Λ,Γ,Ψ), (`, γ, ψ)

)
∈ R3n × T3n. Let n ≥ 2. The variables Λ, Γ and ` are in

common with the Delaunay variables: Let Ei be the istantaneous Keplerian ellipse
associated to the two–body Hamiltonian

|X(i)|2

2Mi
− Mim̄i

|x(i)|
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(with a negative value); let ai and ei be, respectively, the semimajor axis and the
eccentriity of Ei; `i is the mean anomaly of x(i), i.e., the normalized area spanned
by the vector x(i) from the perihelium Pi of Ei, while

Λi := Mi

√
m̄iai , Γi := |C(i)| = Λi

√
1− e2i , (8)

where C(i) denotes the ith angular momentum

C(i) := X(i) × x(i) .

Introduce the “partial angular momenta”

S(i) :=
i∑

j=1

C(j) , S(n) =
n∑
j=1

C(j) =: C , (9)

and define the “Deprit nodes”
νi := S(i) × C(i) , 2 ≤ i ≤ n
ν1 := ν2
νn+1 := k(3) × C =: ν̄ .

(10)

Finally, let us use the following notation: for u, v ∈ R3 lying in the plane orthogonal
to a non–vanishing vector w ∈ R3, let αw(u, v) denote the positively oriented angle
(mod 2π) between u and v (orientation follows the “right hand rule”). Then,

γi := αC(i)(νi, Pi) Ψi :=
{
|S(i+1)| , 1 ≤ i ≤ n− 1
C3 := C · k(3) i = n

ψi :=
{
αS(i+1)(νi+2, νi+1) 1 ≤ i ≤ n− 1
ζ := αk(3)(k(1), ν̄) i = n.

(11)

Similarly to the case of the Delaunay variables, the Deprit action–angles variables
are not defined when the Deprit nodes νi vanish or ei /∈ (0, 1) but on their domain
of definition are analytic symplectic variables (compare Ref.s 4,5).

Now, we are ready to define the rps variables(
(Λ, l), z

)
:=
(
(Λ, l), (η, ξ, p, q)

)
∈ Rn × Tn × R4n .

The Λ’s are again the Keplerian actions as in (8), while

λi = `i + γi + ψni−1 ,

{
ηi =

√
2(Λi − Γi) cos

(
γi + ψni−1

)
ξi = −

√
2(Λi − Γi) sin

(
γi + ψni−1

)
(12){

pi =
√

2(Γi+1 + Ψi−1 −Ψi) cosψni
qi = −

√
2(Γi+1 + Ψi−1 −Ψi) sinψni

where

Ψ0 := Γ1 , Γn+1 := 0 , ψ0 := 0 , ψni :=
∑
i≤j≤n

ψj . (13)
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On their domain of definition, the rps variables are real analytic and symplectic
(compare [4, §4]).

3.3. Foliation of phase space (partial reduction of rotations)

The main point here is that that{
pn =

√
2(|C| − C3) cosψn

qn = −
√

2(|C| − C3) sinψn ,
(14)

showing the the conjugated variables pn and qn are both integrals and hence both

cyclic for the planetary Hamiltonian, which, therefore, in such variables, will have
the form

Hrps(Λ, l, z̄) = hk(Λ) + µf(Λ, l, z̄) , (15)

where z̄ denote the set of variables

z̄ := (η, ξ, p̄, q̄) :=
(
(η1, . . . , ηn), (ξ1, . . . , ξn), (p1, . . . , pn−1), (q1, . . . , qn−1)

)
, (16)

and hk is the integrable Hamiltonian H(0)
plt expressed in terms of the Keplerian

actions, i.e.,

hk(Λ) := −
n∑
i=1

M3
i m̄

2
i

2Λ2
i

. (17)

In other words, the (6n)–dimensional phase space where Hrps is defined is foliated

by (6n−2)–dimensional invariant manifolds and since the restriction of the standard
symplectic form on such manifolds is symply

dΛ ∧ dl + dη ∧ dξ + dp̄ ∧ dq̄ ,

such manifolds are symplectic and the planetary flow is the standard Hamiltonian
flow generated by Hrps in (15). Notice, also, that the analytic expression of the
planetary Hamiltonian Hrps is the same in each symplectic submanifold and that
the selected submanifold of vertical angular momentum corresponds to having fixed
pn = qn = 0.

3.4. The secular Hamiltonian

The angular variables ` are fast angles moving on a time scale of order one. It is
natural to expect that an important rôle in the analysis is played by the average

fav(Λ, z̄) :=
1

(2π)n

∫
Tn

f(Λ, `, z̄) d`

of the perturbation term f over such fast angles; such function is called the secular

planetary Hamiltonian.

On the symplectic submanifolds the direction of the total angular momentum is
fixed, but its Euclidean length

G := |C|



November 5, 2012 17:49 WSPC - Proceedings Trim Size: 9.75in x 6.5in chierchia˙aalborg˙2012

7

is still an integral; in other words, G Poisson commutes with the planetary Hamil-
tonian Hrps and, hence, with the secular Hamiltonian fav, reflecting the rotational

invariance of the planetary system. This fact accounts for the special symmetries
exhibited by fav: indeed fav is an even function z̄ and

fav = c0(Λ) + Qh(Λ) · η
2 + ξ2

2
+ Q̄v(Λ) · p̄

2 + q̄2

2
+O(|z̄|4; Λ) , (18)

(where Q · y2 =
∑
i,j Qijyiyj denotes the action of the quadratic form Q on the

vector y), showing that the secular origin z̄ = 0 is an elliptic equilibrium for the
secular Hamiltonian.

The form of fav calls for Birkhoff analysis, which is summarized (up to order four)
in the following result proven in § 7 of Ref. 4.

Proposition 3.1. There exist δ, ε0 > 0 such that if ri/ri+1 < δ and |ai − ri| < ε0,
then fav can be put into Birkhoff normal form up to order four by a symplectic
transformation φ : z̃ → z̄, parameterized by Λ and leaving the origin fixed so that

fav ◦ φ = c0(Λ) + α · I +
1
2
τ I · I +O(|I|6); Λ) , (19)

where

I :=
1
2
(
η̃2
1 + ξ̃21 , ..., η̃

2
n + ξ̃2n, p̃

2
1 + q̃21 , ..., p̃

2
n−1 + q̃2n−1

)
and the symmetric (2n− 1)× (2n− 1) matrix τ = τ(Λ) is invertible.

Let us make a few remarks.

(i) The first order Birkhoff invariants αj are commonly denoted α = (σ, ς̄) ∈
Rn×Rn−1 and satisfy identically one, and only one, exact resonance, called
Herman resonance, namely

2n−1∑
j=1

αj =
n∑
j=1

σj +
n−1∑
j=1

ςj = 0 . (20)

Notwithstanding such resonance Birkhoff normalization is possible because
of the rotation invariance of the system (compare Ref 6).

(ii) The invertibility of the matrix of the second order Birkhoff invariance τ
is a crucial point of the analysis; this property is usually referred to as
full torsion (or twist) of the secular Hamiltonian and allows to apply the
properly–degenerate KAM theory developed by Arnold in § 4 of Ref 1
(the “fundamental theorem”) and extended in Ref. 3 (compare also the
discussion, in the totally reduced case, about Kolmogorov tori at p. 646 of
Ref. 6).

(iii) The approach in Ref. 9 is quite different and avoids the check of the twist
(which indeed in the Poincaré variables used in Ref. 9 is false, as clarified
in Ref. 6) but rather it is based on a “first order” KAM theory developed
by Rüssmann11 and Herman, which is based on a non–degeneracy property
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(“non–planarity”) of the frequency map (and, still, since the frequency map
of the planetary Hamiltonian is planar because of Herman resonance, one
has to modify the planetary Hamiltonian with a term which commutes
with it so as to get invariant tori for the modified Hamiltonian and then, by
Lagrangian intersection theory, one can conclude that such tori are invariant
also for the original Hamiltonian).

Before stating the main theorem concerning the existence of a positive measure set
of maximal invariant tori, let us recall the definition of a Kolmogorov torus. An
m dimensional torus T is a Kolmogorov torus for a (real–analytic) Hamiltonian
H defined on a 2m dimensional phase space M, if there exists a (real–analytic)
symplectic diffeomorphism

ν : (y, x) ∈ Bm × Tm → ν(y, x;ω) ∈M ,

such that

• H ◦ ν = E + ω · y +Q; (Kolmogorov’s normal form)
• ω ∈ Rm is a Diophantine vector (i.e., there exist numbers a > 0 and
b ≥ m− 1 such that for any non vanishing integer vector k ∈ Zm, one has
|ω · k| ≥ a/|k|b);

• Q = O(|y|2);

• det
∫

Tm

∂yyQ(0, x) dx 6= 0 , (nondegeneracy)

• T = ν(0,Tm).

Now, as mentioned in Remark (ii) above, properly–degenerate KAM theory can be
applied and one gets the following

Theorem 3.1. Let ai and ε0 be as in Proposition 3.1, then there exists positive
constants ε∗ < ε0, c∗ and C∗ such that the following holds. If

0 < ε < ε∗ , 0 < µ <
ε6

(log ε−1)c∗
, (21)

then in each symplectic submanifold M6n−2
ε∗ with {|z̄| < ε∗} contains a positive

measure set K (“Kolmogorov set”), which is formed by the union of (3n − 1)–
dimensional Kolmogorov tori for Hrps with ω1 = O(1) and ω2 = O(µ).
Furthermore, the following measure estimates hold:

measMε∗ ≥ measK ≥
(

1− C∗
√
ε
)

measMε∗ . (22)

4. Periodic orbits cumulating on Kolmogorov tori

The proof of Theorem 2.1 follows now from Theorem 3.1, from the observation at
the end of the preceding section and from the following general result (compare,
also, Ref. 2).
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Theorem 4.1. Each Kolmogorov torus T for a Hamiltonian H is a cumulation set
of periodic orbits of H, i.e., for any open set U ⊇ T , closure (P(U)) ⊇ T , where
P(U) denotes the set of periodic orbits of H in U .

Proof.

1. As a general fact, a Hamiltonian H in Kolmogorov normal form

H = E + ω · y +Q(y, x)

can be put, via a symplectic real–analytic diffeomorphism ν̄, into the form

H ◦ ν̄ = E + ω · y +
1
2
B0 y · y + f , (23)

with

B0 :=
∫

Tm

∂yyQ(0, ·) , f = O(|y|3) . (24)

Indeed, it is easy to check that this can be achieved taking ν̄ = φ1
χ as the time–

one map of the Hamiltonian flow generated by a quadratic–in–y Hamiltonian χ =
1
2A(x)y · y with A given by

A(x) := D−1
ω

(
B −B0

)
, B := ∂yyQ(0, x) dx ,

and D−1
ω denoting the “small divisor” operator acting on functions with zero average

by dividing the k–Fourier coefficients by iω·k: if u is a (real–analytic) (vector/matrix
valued) function on Tm with vanishing average u0 = 0

D−1
ω u :=

∑
k∈Zm\{0}

uk
iω · k

ei k·x ,

uk denoting the Fourier coefficients of u. Notice that the invertibility of B0 is not
needed for this step.

2. To prove the theorem is enough to show that in any neighborhood of the Kol-
mogorov torus {y = 0} one can find a periodic orbit; compare p. 134 of Ref 7.

3. By step 1 we can assume that H is in the normal form as in the right hand side
of (23) with B0 invertible. Now, for ε > 0, let

H̃(y, x) =
1
ε
H(εy, x) . (25)

Then,

φtH(εy, x) = diag (ε, 1) · φteH(y, x) ,

where diag (ε, 1) · (y, x) = (εy, x) and φth denotes the (standard) Hamiltonian flow
generated by h. Therefore, by step 2, the theorem holds if one can find periodic
orbits for H̃ for every positive ε small enough.

Disregarding the ininfluent constant term, the Hamiltonian H̃ has the form

H̃(y, x; ε) = ω · y +
ε

2
B0 y · y + ε2f̃(y, x; ε) (26)
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with f̃ real–anlytic in a neighborhood of {0} × Tm and of O(|y|3).

4. For T > 0 (the period, to be determined later), let

ȳ := −2π
T
B−1

{Tω
2π

}
, ω̄ := ω +Bȳ , (27)

where {a} := a− [a] denotes the fractional part of a (and [a] integer part of a): in
this way

ω̄T = 2πk , k ∈ Zm . (28)

We shall look for T–periodic solutions of the form

{
y(t) := ȳ + η(t)
x(t) = θ + ω̄t+ ξ(t)

with b.c.
{
η(0) = η(T )
ξ(0) = ξ(T ) = 0 .

(29)

Besides the functions η and ξ, we have to fix the period T (which will turn out to
be ∼ 1/ε) and to determine θ.

The looked after solution ζ(t) :=
(
η(t), ξ(t)

)
has to satisfies the differential equation

Lζ = ε2Φ(ζ) , (30)

where L is the linear operator

Lζ :=
(

η̇

ξ̇ − εBη

)
(31)

and Φ is the nonlinear operator

Φ(ζ) :=

(
−f̃y(ȳ + η, θ + ω̄t+ η; ε)
f̃x(ȳ + η, θ + ω̄t+ η; ε) .

)
(32)

Note that Φ depends also on the unknown T , θ and tr ε.

5. Let X denote the Banach space

X :=
{
ζ = (η, ξ) ∈ C([0, T )] : ξ(0) = ξ(T ) = 0

}
, (33)

endowed with the maximum norm, and let I denote the “right inverse” of L, namely,
the linear operator acting on continuous functions z =

(
p(t), q(t)

)
as

Iz =

 µ+
∫ t

0

p(s)ds

εtB0µ+ ε

∫ t

0

∫ s

0

p(τ)dτ +
∫ t

0

q(s)ds

 , (34)

with

µ := − 1
T

∫ T

0

∫ s

0

p(τ)dτ − 1
εT

∫ T

0

B−1
0 q(s)ds . (35)

Then,

I : C([0, T )]→ X ∩ C1([0, T )] , and LI = id on C([0, T ]) . (36)
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Eq. (30) can be rewritten as

ζ = F (ζ) , F (ζ) := ε2IΦ . (37)

Observe that, if ζ ∈ X satisfies (37), then ζ is C1 and, by (36), it satisfies (30).
Thus, to prove the theorem we have to find solutions of (37) such that π1ζ(T ) =
π1ζ(0) where π1(η, ξ) = η.

6. For, ρ > 0, let Xρ denote the closed, nonempty subset of X given by

Xρ :=
{
ζ ∈ X : ‖ζ‖ ≤ ρ

}
. (38)

Let ρ > 0 be such that the functions ζ ∈ Xρ are in the domain of definition of Φ.
Then, it is easy to check that

there exist c, ε0 > 0 such that, for all 0 < ε < ε0 and for all c/ε ≤ T ≤ 2c/ε, F is a

contraction on Xρ and the unique fixed point ζε,θ satisfies ‖ζε,θ‖ ≤ const ερ.

7. In this last step we see how to choose θ so that π1ζε,θ(T ) = π1ζε,θ(0). Indeed, this
will follow at once from the following elementary variational principle, the proof of
which is left to the reader.

Proposition 4.1. Assume that
(
η(t; θ), ξ(t; θ)

)
= φteH(y, θ) is defined (and smooth)

for t ∈ [0, T ] and that ξ(T, θ) = ξ(0; θ) = θ and let

J(θ) :=
∫ T

0

(
η · ξ̇ − H̃(η, ξ)

)
dt.

Then ∂θJ = η(T )− y.

Since J(θ) is smooth on Tm, one can take, e.g., θ as the point where the minimum
of J is achieved.
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