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Abstract—In this note, we discuss the topology of Diophantine numbers, giving simple explicit
examples of Diophantine isolated numbers (among those with the same Diophantine constants),
showing that Diophantine sets are not always Cantor sets.
General properties of isolated Diophantine numbers are also briefly discussed.

MSC2010 numbers: 37J40, 70H08, 11D75

DOI: 10.1134/S156035472455001X

Keywords: Diophantine sets, Diophantine conditions, Cantor sets, KAM theory, small divisor
problems

1. INTRODUCTION

Diophantine numbers are irrational numbers poorly approximated by rationals, namely, real
numbers ξ satisfying, for some γ, τ > 0,

|ξq − p| � γ

qτ
, ∀ p ∈ Z, q ∈ N = {1, 2, . . .}. (1.1)

Such numbers, which form a set of full Lebesgue measure in1) R, arise naturally in number theory
and in small divisor problems in dynamics. Indeed, since the seminal works of C. L. Siegel, in
the context of linearization of holomorphic diffeomorphisms around a fixed point [11], and of
A.N. Kolmogorov, in the context of Hamiltonian systems [7], Diophantine conditions as in (1.1)
(or higher-dimensional analogs) are ubiquitous in perturbative Hamiltonian dynamics both in finite
and infinite dimensions. Let us denote by Dγ,τ the Diophantine set of all real numbers satisfying

condition (1.1) with fixed2) 0 < γ < 1/2 and τ � 1. Clearly, Dγ,τ is a closed and nowhere dense set.

It is, therefore, natural to ask whether Dγ,τ is actually a Cantor set3), i. e., if it is also a perfect set

(no isolated points). Such a question, in view of the Cantor –Bendixson theorem4), is equivalent to
asking whether the discrete set of Diophantine sets is empty. An (authoritative) place where the
term Cantor set appears in association with Diophantine sets is Chapter III of the fundamental and
beautiful book, Lectures on Celestial Mechanics, by C. L. Siegel and J.K. Moser [12]. In § 32–36

*E-mail: fernando.argentieri@math.uzh.ch
**E-mail: luigi.chierchia@uniroma3.it
1)See, e. g., [12], end of § 25.
2)Notice that Dγ,τ = ∅ whenever γ � 1/2 (trivially, taking q = 1 and the minimum over p) or, (by Dirichlet’s
Theorem), when τ < 1.

3)We recall that a general Cantor set is a closed set consisting entirely of boundary points.
4)I. e., Any closed subset of a Euclidean space can be written as the (disjoint) union of a discrete set and a perfect
set.
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of [12], Moser, extending the previous text of Siegel5), includes a proof, in the analytic case, of
his theorem on the persistence of invariant curves for area-preserving twist diffeomorphisms of the
annulus [10]. As is well known, one of the main hypotheses is that ω/2π belongs to Dγ,τ for given
γ, τ , where ω denotes the rotation number of the unperturbed invariant curve. Moser calls such
numbers admissible and, on p. 245, writes6): “the set of admissible values for ω form a Cantor set
of positive measure”. Although it does not appear a formal statement about the sets Dγ,τ , reading
p. 245 of [12], one might be led to the belief that Diophantine sets are Cantor sets.

However, it turns out that, in general, this is not the case: In Section 1, we show that the

quadratic numbers α := (n+
√
n2 + 4)/2 = [n, n, n, . . .] = [n̄] (in continued fraction expansion) are,

for any n � 2, isolated in Dγ,τ with γ := 1/α and τ := logα/log n. In Section 2, we briefly review
some general properties of isolated Diophantine points, proven in [1, 2], which show, in particular,
that isolated Diophantine points are not that rare; Section 3 contains concluding remarks.

2. ELEMENTARY EXAMPLES OF ISOLATED DIOPHANTINE NUMBERS

Theorem 1. Let n ∈ N, n � 2 and define

α :=
n+

√
n2 + 4

2
, γ :=

1

α
, τ :=

logα

log n
. (2.1)

Then, α is an isolated point of Dγ,τ .

Remark 1. (i) By definition of Dγ,τ , it follows immediately that

Iγ,τ (p, q) :=

{
ξ ∈ R :

∣∣∣ξ − p

q

∣∣∣ < γ

qτ+1

}
⊂ R\Dγ,τ , ∀q ∈ N,∀p ∈ Z. (2.2)

(ii) Dγ,τ is invariant by translations by integers, as, for k ∈ Z, ξ ∈ Dγ,τ ⇐⇒ ξ + k ∈ Dγ,τ .

Therefore, α− n =
√
n2+4−n

2 = [0, n̄] ∈ (0, 1) is an isolated point of Dγ,τ ∩ [0, 1].

As one may expect, proofs make use of the theory of continued fractions; see [6] for general
information. Let γ > 0, τ � 1; let ξ be an irrational number and let

ξ = [a0, a1, a2, . . .] = a0 +
1

a1 +
1

a2+
1

...

be its continued fraction expansion, pk/qk = [a0, a1, . . . , ak] its kth convergent, and a′k :=

[ak, ak+1, . . .] its k
th complete quotient.

Lemma 1. A number ξ belongs to Dγ,τ if and only if

qk+1

qτk
+

1

a′k+2q
τ−1
k

� 1

γ
, ∀k � 0. (2.3)

Proof. From continued fraction theory, one knows that7)

ξ ∈ Dγ,τ ⇐⇒
∣∣∣ξ − pk

qk

∣∣∣ � γ

qτ+1
k

, ∀k � 0. (2.4)

Then8), ∣∣∣ξ − pk
qk

∣∣∣ = 1

qk(a
′
k+1qk + qk−1)

=
1

qkτ+1

qτk
a′k+1qk + qk−1

5)Compare with the 1971 Preface to the English Edition of [12].
6)Obviously, Moser considers Diophantine sets with exponent τ > 1 (see p. 242), as it is well known that for τ = 1,
Dγ,τ is not, in general, a Cantor set (see, e. g., [3]).

7)For a proof, see, e. g., Lemma 1, Appendix 8, p. 122 of [5].
8)p−1 := 1, q−1 := 0; for the first equality, see [6, §10.7].
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=
1

qkτ+1

qτk
ak+1qk + qk−1 +

qk
a′k+2

=
1

qkτ+1

qτk
qk+1 +

qk
a′k+2

=
1

qkτ+1

(qk+1

qτk
+

1

a′k+2q
τ−1
k

)−1
,

and the claim follows from (2.4). �

Proof (of Theorem 1). One immediately verifies that⎧⎪⎪⎨
⎪⎪⎩

α = n+
1

α
, nτ = α,

α = [n, n, n, n, . . .],

p0 = n, q0 = 1, p1 = n2 + 1, q1 = n, a′k = α, qk+1 = pk (∀k � 0).

(2.5)

Thus, for k = 0 we have ∣∣∣α− p0
q0

∣∣∣ (2.5)
= α− n

(2.5)
=

1

α

(2.1)
= γ. (2.6)

For k � 1, using (2.5) and the facts that pk/qk � p1/q1 and qk � q1, one finds

qk+1

qτk
+

1

a′k+2q
τ−1
k

=
pk
qk

1

qτ−1
k

+
1

αqτ−1
k

� p1
q1

1

qτ−1
1

+
1

αqτ−1
1

=
n2 + 1

nτ
+

1

nτ−1α

=
n2 + 1

α
+

n

α2
=

1

α

(
n2 + 1 +

n

α

)

=
1

α
(αn + 1) = n+

1

α
= α

=
1

γ
,

which, together with (2.6) and the lemma, shows that α ∈ Dγ,τ .
Next, because of (2.5),

∣∣∣α− p1
q1

∣∣∣ = p1
q1

− α =
n2 + 1

n
− α =

1

n
+ n− α

=
1

n
− 1

α
=

1

nα2
=

1

α

1

q1nτ
=

1

αqτ+1
1

=
γ

qτ+1
1

.

Such a relation, together with (2.6), shows that α separates the two intervals9) Iγ,τ (p0, q0) and
Iγ,τ (p1, q1), and, therefore, α is an isolated point of Dγ,τ . �

3. GENERAL PROPERTIES OF ISOLATED DIOPHANTINE NUMBERS

General properties of isolated Diophantine numbers have been investigated in [1, 2], where proofs
may be found. Let us briefly report here the main results in [1, 2].

9)Recall the definition of the open intervals Iγ,τ (p, q) in (2.2).
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The first result in [1] shows that isolated points are not that rare: Indeed, any Diophantine

number has at least one equivalent representative10), which is isolated in some Diophantine set:

Theorem 2 ([1, Theorem B]). Fix γ ∈ (0, 12), τ � 1, α ∈ Dγ,τ , and let m :=
[
3·2τ
γ

]
. Then, the

equivalent Diophantine number α′ :=
mα+ 1

(2m+ 1)α + 2
is an isolated point of Dγα,τα for suitable

τα > τ and γα > 0.

Actually, it can happen that a Diophantine number is simultaneously isolated for infinitely many
Diophantine sets. More precisely11):

Theorem 3 ([1, Theorem A]). For all τ � 1, there exist γ > 0 and α ∈ Dγ,τ such that α is an
isolated point for Dγn,τn , for suitable sequences τn ↘ τ , γn ↘ γ.

Even though these two theorems show the existence of many isolated Diophantine numbers,
from the metric point of view, the typical situation seems to be that Diophantine sets are Cantor
sets:

Theorem 4 ([2]). Let τ > τ0 :=
3+

√
17

2 = [3, 1, 1]. Then, for almost all γ ∈ (0, 1/2), Dγ,τ is a
Cantor set.

4. REMARKS

(i) The Diophantine exponent τ0 :=
3+

√
17

2 in Theorem 4 is certainly not optimal, and it would
not be difficult to improve it. On the other hand, it is not so obvious what is the optimal τ0, for
which the statement of Theorem 4 holds.

(ii) Diophantine sets, as pointed out in the Introduction, play a fundamental role in dynamics,
e. g., in the theory of exact symplectic twist diffeomorphisms. Arithmetic properties of the rotation
number of an invariant curve of a twist diffeomorphism are, in particular, relevant for the
renormalization point of view; compare [8]. Now, even though Theorem 2 above indicates that
the property of being isolated for Diophantine numbers may not be a stable property under
renormalization, it would be interesting to see if such a property does have a counter part in
dynamics. For example,

Does there exists a Cr exact symplectic twist diffeomorphism f , r � 2, having an isolated
invariant curve of rotation number α that is not of bounded type, with α isolated point of a
suitable Diophantine set?

(iii) We point out that, modifying suitably the definition of the set of Diophantine numbers,
one obtains right away Cantor sets; compare Lemma 2.3 in [9].

(iv) A final comment on higher-dimensional Diophantine sets.
Let n � 1, γ, τ > 0, an define

Dn
γ,τ := {α ∈ R

n : |q · α− p| � γ

|q|τ ,∀q ∈ Z
n\{0}, p ∈ Z}.

The analogous problem discussed in this note is12):

For n � 2, do there exist γ, τ > 0 such that Dn
γ,τ is not a Cantor set?

Clearly, such a question may be more difficult to analyze due to the lack of the beautiful and
powerful theory of continued fractions.

10)Recall that two irrational numbers ξ and ξ′ are equivalent if and only if ξ′ = aξ+b
cξ+d

with integers a, b, c, d satisfying

ad− bc = ±1 , and that happens if and only if the continued fractions of ξ and ξ′ differ only by a finite number
of terms; compare [6, §10.11].

11)In [1] something stronger is proven, in the sense that the sequence τn in Theorem 3 can be assigned arbitrarily
up to small errors.

12)For related questions on homogeneous Diophantine sets R
n
γ,τ := {ω ∈ R

n : |ω · k| � γ/|k|τ , ∀k ∈ Z
n, k �= 0},

compare [4].
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