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1Departament d’Informàtica, Matemàtica Aplicada i Estad́ıstica, Universitat de Girona,
6 Campus Montilivi, 17003 Girona, Spain

2Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre,
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Abstract—In this note, we briefly discuss how the singular KAM theory of [7] — which was

worked out for the mechanical case 1
2 |y|2 + εf(x) — can be extended to convex real-analytic

nearly integrable Hamiltonian systems with Hamiltonian in action-angle variables given by
h(y) + εf(x) with h convex and f generic.
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In the Springer Encyclopaedia of Mathematical Sciences, Arnold, Kozlov and Neishtadt
conjectured that the relative measure of phase space free of invariant tori of a real-analytic, nearly
integrable general Hamiltonian system with three or more degrees of freedom is of the same order
of the perturbation; compare [2].

In [7], in the special case of natural systems with a Hamiltonian function given (in action-angle

variables) by H = 1
2 |y|2 + εf(x), a related result has been proven, namely, that, for generic real-

analytic f , the relative measure of invariant primary and secondary tori is at least O(1− ε| log ε|c)
for some c > 0, in agreement (up to the logarithmic correction) with the Arnold, Kozlov and

Neishtadt conjecture1).

Proofs in [7] are based on a new “singular KAM theory”, which extends the classical theory of
Kolmogorov, Arnold and Moser [1, 8, 12], so as to deal, in particular, with primary and secondary
tori arbitrarily close to action-angle singularities arising near simple resonances, uniformly in phase
space. Let us recall that classical KAM theory predicts that the relative measure of primary tori is
of order2) O(1−√

ε), and that such an estimate is optimal, as simple integrable cases show.

In this paper we briefly discuss how to extend [7] to a convex integrable Hamiltonian in place

of the purely quadratic term 1
2 |y|2.

The main issue here is geometric: one has to quantitatively describe suitable neighborhoods of
simple resonances, so as to be able to put, after averaging, the secular Hamiltonians in “generic
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1)For related partial results, see [11].
2)Compare [9, 13–15].
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standard form” (as defined in [6]). More specifically, we introduce action-angle variables so that
the secular Hamiltonian, after averaging over the (n− 1) fast angles, depends only on one slow
angle. Then, we show that the level sets of the derivative of the integrable part with respect to
the slow action are graphs over uniform domains of slow actions; see § 1.2 below. At this point,
the arguments to show that the density of all KAM primary and secondary tori is at least of order
O(1− ε| log ε|c) for some c > 0 follow, without extra difficulties, the arguments spelled out in [7],
which lead to the following statement, confirming (up to the logarithmic correction) the Arnold,
Kozolv, Neishdatd conjecture, namely:

For generic3) real-analytic potentials f on T
n, the relative measure of invariant primary

and secondary tori for the Hamiltonian H = h(y) + εf(x), with h strictly convex, is at least
O(1− ε| log ε|c) for some c > 0.

We also mention a technical improvement in the averaging theory discussed here, which may be
useful in applications (for example, in celestial mechanics), namely, we allow for different analyticity
radii in the angle variables; indeed, in singular KAM theory it is essential to have sharp control of
analytic singularities in the angular variables and having a common width of analyticity strip is

quite unnatural4).

A second extension would be to replace the perturbation f with a generic function depending

also on actions, but this is a much more difficult problem5).

1. RESONANCE ANALYSIS

Consider a bounded phase space M := B × T
n, with B ⊂ R

n a bounded convex open nonempty
set, and T

n the standard flat n-torus Rn/(2πZn), endowed with the standard symplectic two-form
dy ∧ dx =

∑n
i=1 dyi ∧ dxi.

Let H(y, x) be a real-analytic, nearly integrable Hamiltonian on M given by

H(y, x) = Hε(y, x) = h(y) + εf(x); (y, x) ∈ M, 0 � ε � 1. (1.1)

Analyticity parameters

We introduce quantitative analyticity parameters as follows. Let r > 0 and s = (s1, . . . , sn) ∈ R
n
+

be a vector with positive components. Denote by6) |z| =
√
z · z̄ the standard Euclidean norm on

vectors z ∈ C
n, and define the following complex neighborhoods:

Bρ :=
⋃

y∈B
{z ∈ C

n : |z − y| < ρ};

T
n
s := {x ∈ C

n : |Im xi| < si ∀ i = 1, . . . , n}/(2πZn).

Henceforth, we assume that H is real-analytic and bounded on B2r × T
n
s for some r > 0.

Remark 1. As mentioned above, the reason for allowing different analyticity widths in the angular
variables is motivated by physical examples, such as the three-body problem, where this is the case.
Having sharp control on the angle complex singularities is essential in analyzing fine properties of
Hamiltonian systems, especially, in the context of singular KAM theory or, possibly, of Arnold
diffusion.

3)The generic class we refer to is introduced in [6, Section 1].
4)For example, in the circular restricted three-body problem the angles have different analyticity domains;
compare [10].

5)For example, it is not obvious how to generalize the generic real-analytic class introduced in [7] in view of the zeros
of f introduced, in general, by the action dependence. In this respect, as suggested to us by Laurent Niederman,
it might be useful to consider the quantitative Morse – Sard theory developed by Yomdin and Comte in [16];
compare [3].

6)As usual, “bar” denotes complex-conjugated and “dot” inner product.
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Convexity assumption

In this paper we assume that h in (1.1) is γ-convex for some positive γ, i. e., we assume that

∂2
yh(y) ξ · ξ =

n∑

i,j=1

∂yiyjh(y) ξiξj � γ|ξ|2, ∀ξ ∈ R
n, ∀y ∈ Re(B2r). (1.2)

We shall also assume, without loss of generality, that the frequency map y → ω(y) = ∂yh(y) is

bi–Lipschitz and satisfies for some positive constants L̄, L the inequalities

L̄−1 � |ω(y)− ω(y0)|
|y − y0|

� L, ∀ y �= y0 ∈ B2r,
(
ω(y) := ω(y) = ∂yh(y)

)
. (1.3)

We also let M := supy∈B2r
|ω(y)| < +∞.

1.1. Geometry of Resonances and Coverings of B

In singular KAM theory [7], as well as in Nekhoroshev’s theory (see, e. g., [2]), it is fundamental
to consider carefully the geometry of resonances, which allows for high-order averaging theory.

We recall that, given an integer vector k ∈ Z
n, a resonance Rk for the integrable Hamiltonian

h(y) is the set {y ∈ B : ω(y) · k = 0}; a double resonance Rk,� is a set given by Rk,� = Rk ∩R� with
k and 	 linearly independent integer vectors.

In these definitions, the integer vectors may be assumed to have no common divisors; indeed, it
is enough to consider integer vectors in the set Gn defined as the subset of integer vectors k ∈ Z

n

with coprime components and with first nonnull component strictly positive7); we shall also denote,
for K > 0, by Gn

K the vectors k ∈ Gn with 1-norm |k|1 :=
∑

|kj | not exceeding K.

As is well known, not all resonances have to be taken into account, and, typically, one introduces
a “Fourier cut-off” K corresponding to a prefixed “small-divisor threshold” α > 0, and considers
resonances corresponding to Fourier modes of order less than or equal to K, the higher ones being
negligible in view of the exponentially fast decay of Fourier modes. However, in singular KAM
theory a double scale of Fourier modes has to be taken into account, as explained, e. g., in the
introduction of [4]. In the present case the definition of these thresholds has to be slightly modified
(with respect to the natural systems case considered in [7]) in view of convexity and of the more
general assumption on angular analyticity. We therefore give the following definitions.

Let s ∈ R
n
+ be as above, and let k ∈ Z; we denote

s := min
1�i�n

si, s̄ := max
1�i�n

si, ŝ := s̄/s, |k|s =
n∑

i=1

si|ki|. (1.4)

Then, following [7] (compare, Eq. (20), p. 12), we introduce two Fourier scales K, Ko (to be eventually

defined as suitable functions of ε) and a small divisor threshold α satisfying8)

K � 6ŝ Ko � 6Ko � 12 , α :=
√
εKν , ν := 9

2n+ 2. (1.5)

Next, we define a covering of the action-space, according to a nonresonant zone, simply-resonant
zones and a doubly-resonant zone. Indeed, denote by π⊥

k the orthogonal projection on the subspace

perpendicular to9) k, and let10)

C = C(n,L, γ) := 12 c1 nL/γ , where c1 := 5n(n− 1)n−1;

7)This set coincides with the set of generators of maximal one-dimensional lattices in Z
n.

8)Here, the only (trivial) difference with [7] is the introduction of the constant ŝ � 1.
9)Explicitly, π⊥

k ω := ω − 1
|k|2 (ω · k)k.

10)Recall (1.2) and (1.3); observe that L � λmax and γ � λmin, where λmax and λmin are, respectively, the maximal
and minimum eigenvalue of the Hessian of h.
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then we define the following subsets of B:

R0 :=
{
y ∈ B : |ω(y) · k| � α

2C ,∀ 0 < |k|1 � Ko
}
,

R1k :=
{
y ∈ B : |ω(y) · k| � α

C
, and |π⊥

k ω(y) · 	| � 3αKn+3

|k| ,∀	 ∈ Gn
K \Zk

}
,

R1 :=
⋃

k∈Gn
1,Ko

R1k, (1.6)

R2 := B \
(
R1 ∪R0

)
.

Remark 2. These definitions are adapted from [7]: compare, in particular, Eqs. (21)–(23) on p. 12
of [7]. Notice, first, that in the mechanical case the frequency map is simply the identity map. The
second difference is the appearance here of the constant C � 1: this is technical and will become
clear below. Finally, in the lower bound on |π⊥

k ω(y) · 	| in the definition of R1k there appears Kn+3

in place of K (compare (22) in [7]); the choice of the power n+ 3 here is not optimal but it is done
for simplicity (as it allows for a single covering of the simply-resonant region), and does not affect
in any substantial way the strategy of [7] (which is robust with respect to powers of K, which, at
the end, are chosen as suitable powers of | log ε|).

Clearly, from the definition of R2 it follows that {Ri} is a cover of B, i. e., that

B = R0 ∪R1 ∪R2.

The set R2 contains all double (or higher) resonances, as well as resonances with high frequency
modes. But, as remarked in [7], R2 is a small set (as we shall shortly see), which is out of reach of

perturbation theories11).

Indeed, we claim that the measure of R2 can be bounded as

meas(R2) � c� α
2 K2n+2 � c� ε K

b, (1.7)

where b = 11n+6 and c� = c
2·3nM

n−2 L̄n for a suitable c > 0 depending only on n. This is essentially
Lemma 2.1 of [7]; for completeness we reproduce the simple geometrical proof in the convex case.

Proof (of (1.7)). Let Ω := ω(B) and for k ∈ Gn
Ko , 	 ∈ Gn

K \Zk, define

Ω2
k,� :=

{
ω ∈ Ω : |ω · k| < α

C
and |π⊥

k ω · 	| � 3αKn+3

|k|

}
;

R2
k� :=

{
y ∈ B : ω ∈ Ω2

k,�

}
. (1.8)

Then, one checks easily that

R2 ⊆
⋃

k∈Gn
Ko

⋃

�∈Gn
K

�/∈Zk

R2
k,�. (1.9)

Now, denote by v ∈ R
n the projection of ω onto the plane generated by k and 	 (recall that, by

hypothesis, k and 	 are not parallel); then,

|v · k| = |ω · k| < α, |π⊥
k v · 	| = |π⊥

k ω · 	| � 3αKn+3

|k| . (1.10)

Set

	̄ := π⊥
k 	 = 	− �·k

|k|2k. (1.11)

Then, v decomposes in a unique way as v = ak + b	̄ for suitable a, b ∈ R. By (1.10),

|a| < α
|k|2 , |π⊥

k v · 	| = |b	̄ · 	| � 3αKn+3

|k| , (1.12)

11)Compare the Introduction in [7].
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and, since |	|2|k|2 − (	 · k)2 is a positive integer (recall that k and 	 are not parallel),

|	̄ · 	| (1.11)=
|	|2|k|2 − (	 · k)2

|k|2 � 1

|k|2 .

Hence,

|b| � 3αKn+3

|k| . (1.13)

Then, write ω ∈ Ω2
k,� as ω = v + v⊥ with v⊥ in the orthogonal complement of the plane generated

by k and 	. Since |v⊥| � |ω| < M and v lies in the plane spanned by k and 	 inside a rectangle of
sizes of length 2α/|k|2 and 6αKn+3|k| (compare (1.12) and (1.13)), we find that, for any k ∈ Gn

Ko

and 	 ∈ Gn
K \Zk, one has

meas(Ω2
k,�) � 2α

|k|2 (6αK
n+3|k|) (2M)n−2 = 3 · 2nMn−2 α2 Kn+3

|k| .

Since
∑

k∈Gn
Ko
|k|−1 � c Kn−1

o for a suitable c = c(n), by (1.3), Eq. (1.7) follows. �

1.2. Simple Resonances as Graphs over Adiabatic Actions

As already mentioned, a key role in singular KAM theory is played by simple resonances. It is
therefore important to have a precise analytic description of them. In this subsection, we express
neighborhoods of simple resonances as a foliation of graphs over (n− 1) adiabatic actions; see
Proposition 1 below. This is the first step to put the averaged secular Hamiltonian in the so-called
“generic standard form”; compare § 3 in [6].

To state the results in Proposition 1, we need some preparation.

Let k ∈ Gn. A simple resonance ω · k = 0 corresponds to a “resonant angle”, in the sense that
one can make a linear symplectic change of variables on B × T

n so that in the new variables one
transforms the resonant relation k · x into, say, the first new angle x1 = k · x. Indeed, one can find
a matrix A ∈ SL(n,Z) (i. e., integer-valued with determinant one) with first row given by k; such a

matrix A can be chosen so that12)

A :=

(
k

Â

)

, |Â|∞ � |k|∞ , |A|∞ = |k|∞ , |A−1|∞ � (n− 1)
n−1
2 |k|n−1

∞ . (1.14)

Then, the linear symplectic change of variables

Φ0 : (y, x) 
→ (y, x) = (AT y,A−1x), (x1 = k · x). (1.15)

transforms the unperturbed Hamiltonian h(y) into13)

hk0(y) := h(AT y), y ∈ Bk := A−TB. (1.16)

Note that hk0 is holomorphic on the complex set14)

Bk2rk , with rk :=
r

n|k|∞
. (1.17)

Notation 1. We shall adopt the following conventions: a vector y ∈n will be denoted

y = (y1, y2, . . . , yn) = (y1, ŷ), ŷ = (y2, . . . , yn) ∈n−1,

namely, the hat over n-vectors denotes the projection onto the coordinates with index greater than
or equal to two.

12)Compare Lemma 2.6, (i) in [6]; |M |∞ , with M matrix (or vector), denotes the maximum norm maxij |Mij | (or
maxi |Mi|).

13)Notice that also B is convex.
14)By (1.14) ‖A‖ := max|v|=1 |Av| � n|A|∞ = n|k|∞.
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Now, since

∂y1h
k
0(y) = ∂yh(A

T y) · k = ω(ATy) · k (1.18)

and noting that the first column of AT is exactly k (by (1.14)), by (1.2) and (1.3) we obtain

|∂y1hk0(y)− ∂y1h
k
0(y0)| � L|k||y− y0|, ∀ y, y0 ∈ Bk2rk (1.19)

and, by convexity, for (y1, ŷ), (y
′
1, ŷ) ∈ Bk2rk ,

∂y1h
k
0(y1, ŷ)− ∂y1h

k
0(y

′
1, ŷ) � γ|k|2(y1 − y′1), ∀ y1 > y′1. (1.20)

Indeed, by Lagrange’s theorem, there exists a point z1 between y1 and y′1 such that15)

∂y1h
k
0(y1, ŷ)− ∂y1h

k
0(y

′
1, ŷ) = ∂2

y1
hk0(z1, ŷ)(y1 − y′1)

(1.16)
=

(
∂2
yh

(
AT (z1, ŷ)

)
k · k

)
(y1 − y′1)

(1.2)

� γ|k|2(y1 − y′1).

In these new variables the simple resonance ω(y) · k = 0 becomes ∂y1h
k
0(y) = 0.

We therefore define a (suitable) real neighborhood of the simple resonance in Bk by letting

Zk :=
{
y ∈ Re

(
Bk5

4
rk

)
: ∂y1h

k
0(y) = 0

}
. (1.21)

We also set

Zk� :=
{
y ∈ Re(Bkrk) : ∂y1h

k
0(y) = �

}
, (1.22)

so that Zk ⊇ Zk0 .

Now, for a fixed k ∈ Gn, one may express (because of convexity) the resonant hyper-surface Zk

in (1.21) as a graph over the last n− 1 actions ŷ := (y2, . . . , yn), finding y1 = η(ŷ).

Let

rk :=
τ̃kr

8n3/2|k|
� rk

8
√
n
, τk :=

γ|k|
2L

, τ̃k := min{1, τk}. (1.23)

and define the following (n− 1)-dimensional cubes of edge rk and the lower left corner in rkj with
j ∈ Z

n−1:

Qj := rk ·
(
j + [0, 1)n−1

)
⊂ R

n−1, j ∈ Z
n−1. (1.24)

Note that Qj ∩ Qj′ = ∅ if j �= j′, while
⊔

j∈Zn−1 Qj = R
n−1. Define the projection of a set S ⊂ R

n

on a set Ê ⊂ Rn−1 as

ΠÊS := {ŷ ∈ Ê : ∃y1 ∈ R with (y1, ŷ) ∈ S}.

Set

J := {j ∈ Z
n−1 : ΠQjZ

k �= ∅}. (1.25)

Since Zk is bounded, J is a finite set. Note that

ΠRn−1Zk ⊂ Q :=
⊔

j∈J
Qj ⊂ ΠRn−1

(
Re

(
Bk3

2
rk

))
. (1.26)

15)Note that (z1, ŷ) ∈ Bk2rk since Bk2rk is a convex set.
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Proposition 1. There exists a real-analytic function

ηk0 : [−�k
0 ,�

k
0 ]×Q ⊂ R× R

n−1 → R, �k
0 :=

√
nL|k|rk, (1.27)

such that

∂y1h
k
0

(
ηk0 (�, ŷ), ŷ

)
= � (1.28)

and, for any � ∈ [−�k
0 ,�

k
0 ],

Zk� ⊆ Z̃k� :=
{(

ηk0 (�, ŷ), ŷ
)

: ŷ ∈ Q
}
⊂ Re

(
Bk3

2
rk

)
. (1.29)

Moreover,

sup
[−�k

0 ,�
k
0 ]×Q

|∂�ηk0 | � 1

γ|k|2 . (1.30)

Finally, ηk0 (0, ·) possesses a holomorphic extension on16) Qr̂k , with, for 0 < r � rk,

sup
Qr̂k

| Im ηk0 (0, ·)| � 1

τk
r̂k, r̂k :=

1

29n
τ̃2kr. (1.31)

Proof 1. We first construct the function ηk0 . Fix � ∈ [−�k
0 ,�

k
0 ] and ŷ ∈ Qj for some j ∈ J (recall

(1.24)). By (1.21) and the definition of J in (1.25) we know that there exists a given

z = (z1, ẑ) ∈ Re(Bk5rk/4)

with ẑ ∈ Qj and ∂y1h
k
0(z) = 0. Since ŷ, ẑ ∈ Qj, by (1.23) we have that

(z1, ŷ) ∈ Re(Bk11rk/8). (1.32)

Setting

r̃k := 2

√
nL

γ|k| rk
(1.23)

� r

8n|k|
(1.17)

� rk

8
, (1.33)

we have that the segment [z1 − r̃k, z1 + r̃k]× {ŷ} belongs to the convex set Re
(
Bk3

2
rk

)
, namely,

[z1 − r̃k, z1 + r̃k]× {ŷ} ⊂ Re
(
Bk3

2
rk

)
. (1.34)

Since, by (1.19), we get

|∂y1hk0(z1, ŷ)| = |∂y1hk0(z1, ŷ)− ∂y1h
k
0(z1, ẑ)| � L|k||ŷ − ẑ| �

√
nL|k|rk ,

we have that

∂y1h
k
0(z1 + r̃k, ŷ)−�

(1.20)

� −�k
0 + γ|k|2r̃k + ∂y1h

k
0(z1, ŷ)

� −�k
0 + γ|k|2r̃k −

√
nL|k|rk = 0,

by (1.27) and (1.33). Analogously, ∂y1h
k
0(z1 − r̃k, ŷ)−� � 0. Note that, since the domain Re(Bk2rk)

is convex, the function y1 → ∂y1h
k
0(y1, ŷ) is defined on an interval, which contains [z1 − r̃k, z1 + r̃k];

moreover, it is continuous and strictly increasing by (1.20). As a consequence, there exists a unique
value

a ∈ [z1 − r̃k, z1 + r̃k]

16)Obviously, one could holomorphically extend ηk
0 also in its first variable, but we need here only the extension in

the second variable.
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such that ∂y1h
k
0(a, ŷ) = �. Then we set ηk0 (�, ŷ) := a. Recollecting, we have defined ηk0 in (1.27),

satisfying (1.28). Moreover, the last inclusion in (1.29) follows by (1.34). The fact that ηk0 is real-

analytic follows since hk0 is real-analytic.

We now prove the first inclusion in (1.29). Fix � ∈ [−�k
0 ,�

k
0 ]. Recalling (1.22), let us take a

point

u = (u1, û) ∈ Zk�,

namely, u ∈ Re(Bkrk) and ∂y1h
k
0(u) = �. If û ∈ Q, by unicity u1 = ηk0 (�, û), and, therefore, u ∈ Z̃k�.

On the other hand, it is not possible that û /∈ Q. Indeed, assume, e. g., that � = 0; then u ∈ Zk0 ⊆ Zk

and, by (1.26), û ∈ Q. On the other hand, when � is negative, by (1.33), we have that the segment

[u1, u1 + r̃k]× {û}

belongs to the convex set Re
(
Bk5

4
rk

)
. Moreover,

∂y1h
k
0(u1 + r̃k, û)

(1.20)

� γ|k|2r̃k + ∂y1h
k
0(u1, û) = γ|k|2r̃k +� � γ|k|2 r̃k −�k

0 > 0,

by (1.27) and (1.33). Again, by continuity, there exists a value b such that

∂y1h
k
0(b, û) = 0.

Since (b, û) ∈ Re
(
Bk5

4
rk

)
we have that (b, û) ∈ Zk, then, by (1.26), û ∈ Q. The case when� is positive

is analogous. We conclude that û ∈ Q in all cases. The proof of the inclusion (1.29) is completed.

We finally show that ηk0 (0, ·) has a holomorphic extension on Qr̂k and satisfies the esti-

mate in (1.31). Fix a point y0 = (y01, ŷ
0) =

(
ηk0 (0, ŷ

0), ŷ0
)
∈ Z̃k0 with ŷ0 ∈ Q ⊂ ΠRn−1

(
Re

(
Bk3

2
rk

))

by (1.26). By construction, ∂y1h
k
0(y

0
1, ŷ

0) = 0. Let Y1 be the complex closed ball of radius

r1 :=
1

τk
r̂k, (1.35)

centered at y01 and let Ŷ be the complex closed ball of radius r̂k centered at ŷ0. Note that, by (1.31),

r1, r̂k � 1

29n
τ̃kr � 1

29n
τ̃krk � 1

29n
rk. (1.36)

Since, by (1.29), y0 ∈ Z̃k0 ⊂ Re
(
Bk3

2
rk

)
, we have

Y1 × Ŷ ⊂ Bk7
4
rk
. (1.37)

Let E be the Banach space of the continuous functions η : Ŷ → C that are holomorphic in the
interior of Ŷ, endowed with the sup-norm. Let C be its closed subset formed by the functions
η : Ŷ → Y1. We claim that the map

η(·) → η(·) − ∂y1h
k
0

(
η(·), ·

)
/d, d := ∂2

y1
hk0(y

0)

is a contraction on C. The fixed point of the above map is the required (local) holomorphic extension

of ηk0 (0, ·), proving (1.31) by the definition of r1. Since, by (1.20), d � γ|k|2, it is immediate to see
that the fact that the above map is a contraction on C follows from the following two estimates:

sup
ŷ∈Ŷ

|∂y1hk0(y01, ŷ)| � 1

2
γ|k|2r1 , sup

y1∈Y1,ŷ∈Ŷ
|∂2

y1
hk0(y)− ∂2

y1
hk0(y

0)| � 1

2
γ|k|2. (1.38)

Note also that the estimate in (1.31) follows since the image of ηk0 is contained, by construction,
in Y1 and by the definition of r1.

REGULAR AND CHAOTIC DYNAMICS Vol. 30 No. 4 2025



546 BARBIERI et al.

It remains to prove (1.38). Since ∂y1h
k
0(y

0) = 0, for any y ∈ Bk2rk we obtain

|∂y1hk0(y)| = |∂y1hk0(y)− ∂y1h
k
0(y

0)|
(1.19)

� L|k||y − y0|, (1.39)

in particular,

sup
Bk2rk

|∂y1hk0(y)| � 2L|k|rk. (1.40)

Then the first estimate in (1.38) follows by (1.39) since, for ŷ ∈ Ŷ,

|∂y1hk0(y01, ŷ)| � L|k||ŷ − ŷ0| � L|k|r̂k
(1.31), (1.35)

=
1

2
γ|k|2r1.

Let us finally prove the second estimate in (1.38). Fix y = (y1, ŷ) with y1 ∈ Y1 and ŷ ∈ Ŷ;
by (1.40), (1.37) and Cauchy estimates we obtain

|∂2
y1
hk0(y)− ∂2

y1
hk0(y

0)| � 64nL|k|r1 + r̂k

rk

(1.36)

� 1

8
L|k|

(
1

τk
+ 1

)

τ̃2k
(1.31)

� 1

2
γ|k|2,

concluding the proof of the second estimate in (1.38).
Since

∂�η
k
0 (�, ŷ) =

1

∂2
y1
hk0

(
ηk0 (�, ŷ), ŷ

)

and, by (1.20) ∂2
y1
hk0 � γ|k|2, we get (1.30). �

Recalling (1.6) and (1.16), we have that

Dk := A−TR1k (1.41)

=
{
y ∈ Bk : |ω(ATy) · k| � α

C
, and |π⊥

k ω(A
Ty) · 	| � 3αKn+3

|k| ,∀	 ∈ Gn
K \Zk

}

and, by using (1.18), (1.28) and (1.29), we obtain

Dk =
{
y ∈ Bk : ηk0 (−α

C
, ŷ) � y1 � ηk0 (

α
C
, ŷ) , (1.42)

and |π⊥
k ω(A

Ty) · 	| � 3αKn+3

|k| ,∀	 ∈ Gn
K \Zk

}
.

Let us define the normal set

Ďk :=
{
y = (y1, ŷ) : ηk0 (−α

C
, ŷ) � y1 � ηk0 (

α
C
, ŷ), ŷ ∈ D̂k

}
, D̂k := ΠRn−1Dk. (1.43)

It is obvious that

Dk ⊆ Ďk. (1.44)

We recall that, given lattice Λ ⊂ Z
n, one says that a set D ⊆n is (α,K) nonresonant modulo Λ

for a Hamiltonian h(y) defined on D, when |∂yh(y) · k| � α for every 0 < |k| � K, k /∈ Λ, y ∈ D.

Lemma 1. For K large enough, the set Ďk is
(
2αKn+3

|k| , K
)
nonresonant modulo Λ := Z(1, 0, . . . , 0).

Proof. Let y = (y1, ŷ) ∈ Ďk. Then ηk0 (−α
C
, ŷ) � y1 � ηk0 (

α
C
, ŷ) and there exists z1 with ηk0 (−α

C
, ŷ) �

z1 � ηk0 (
α
C
, ŷ) such that z = (z1, ŷ) ∈ Dk. For any 	 ∈ Gn

K \Zk we have that |π⊥
k ω(A

T z) · 	| � 3αKn+3

|k| .

Since

|z− y| = |z1 − y1| � ηk0

(α

C
, ŷ

)
− ηk0

(
−α

C
, ŷ

) (1.30)

� 2α

γ|k|2C ,

by (1.3) we get

|π⊥
k ω(A

T y) · 	| � 2αKn+3

|k| ,

for K large enough. �
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2. OUTLINE OF PROOFS

We are now ready to outline the main steps needed to extend singular KAM theory, which, as a
consequence, yields the announced lower bound on the measure of primary and secondary tori for
generic perturbation.

(1) Applying the symplectic transformation Φ0 in (1.15) to the Hamiltonian H in (1.1) one
obtains (recall (1.16)),

H(y, x) = hk0(y) + εf(A−1x). (2.1)

Now, one can do high-order averaging theory. More precisely, by Lemma 1, Ďk in (1.43) is
(
2αKn+3

|k| , K
)

nonresonant modulo

Λ := Z(1, 0, . . . , 0),

and, taking K suitably large with ε small, e. g., K ∼ | ln ε|2, via a close-to-the-identity symplectic

transformation defined in a suitable complex neighborhood of Ďk ×T
n, one can put the Hamiltonian

(2.1) in normal form:

hk0(y) + ε
(
gko (y) + fk

1 (x1) + gk(y, x1) + fk(y, x)
)
,

where:

• gk(y, x1) = o(1) as ε → 0;

• fk
1 (x1) is the average of f(A−1x) with respect to the fast angles x2, . . . , xn;

• fk is (almost17)) exponentially small.

For details, see, e. g., Section 2 of [6].

(2) Disregarding the exponentially small term fk, we consider, now, the “effective Hamiltonian”

hk0(y) + ε
(
gko (y) + fk

1 (x1) + gk(y, x1)
)
,

which is a one-degree-of-freedom Hamiltonian (in the dynamic variables y1 and x1) depending on
the “dumb actions”

ŷ := (y2, . . . , yn)

as parameters. Then, one can construct a symplectic transformation

y1 = p1 + η̃k0 (p̂), x1 = q1, ŷ = p̂,

for a suitable function18) η̃k0 (p̂) = ηk0 (0, p̂) +O(ε), such that, in the new variables, the effective
Hamiltonian takes the form

hk(p) + ε
(
fk
1 (q1) + gk(p, q1)

)
,

where19)

∂p1h
k(0, p̂) = 0 (2.2)

and gk = o(1).

Note that the above transformation can be sympectically completed in the variables x̂ =
q̂− q1∂p̂η̃

k
0 (p̂), however, this transformation is not well defined on T

n, since it is obviously not
periodic in q1. The way to overcome this problem is explained in Section 3 of [7].

17)I.e., smaller than any power of ε.
18)Recall Proposition 1.
19)Recall (1.28) with � = 0.
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(3) Fixing an arbitrary point p̂0 ∈ D̂k (compare (1.43)) and a Taylor series expanding the
Hamiltonian at p1 = 0, one gets, by (2.2),

hk(0, p̂) + mk

(
1 +O(|p̂ − p̂0|) +O(|p1|)

)
p2 + ε

(
fk
1 (q1) + gk(p, q1)

)
, (2.3)

where, by convexity,

mk :=
1

2
∂2
p1
hk(0, p̂0) > 0.

It is easy to see that, up to the inessential term hk(0, p̂) and rescaling by mk, the Hamiltonian in
(2.3), for |p̂− p̂0| small, can be put into the “standard form”

(
1 + ν(p, q1)

)
p2 + ε

(
G0(q1) +G(p, q1)

)
,

where

G0(q1) := fk
1 (q1)/mk

and ν and G are small; compare Section 2.2 of [7]. This Hamiltonian is suitable for action-angle
variables as discussed in [5].

At this point no further technical difficulties arise and the singular KAM theory applies as in [7],
leading to the announced measure estimates on primary and secondary tori.
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