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Abstract. – In this note, we present and briefly discuss results, which include as a particular
case the theorem announced in [Rend. Lincei Mat. Appl. 26 (2015), 423–432], concerning the
typical behavior of nearly-integrable mechanical systems with generic analytic potentials.
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In 2015, encouraged by our mentor, colleague, and friend Antonio Ambrosetti, we
published in Atti della Accademia Nazionale dei Lincei an announcement [2] concern-
ing “typical” trajectories of nearly-integrable Hamiltonian systems. In particular, we
stated a theorem [2, p. 426], which, can be roughly rephrased as follows:

In bounded regions of phase space, except for a set of measure "jlog "j , trajector-
ies of nearly-integrable mechanical systems on Rn � Tn with generic real-analytic
potentials of size "� 1 are quasi-periodic and span n-tori invariant for such systems.
This theorem is in agreement (up to the logarithmic correction) with a conjec-

ture formulated by Arnold, Kozlov, and Neishtadt in the Springer Encyclopaedia of
Mathematical Sciences [1, Chapter 6, p. 285].
A complete proof of the above result turned out to be much longer and more

delicate than we thought and it has been completed only recently in [6, 7] which in
turn exploit intermediate results published in [3, 5].
The purpose of this short note is to communicate the precise results of [7], which,

as a particular case, yield the above theorem.
In order to state the main results in [7], we need to recall a few notions and give

some definitions.
(a) Hamiltonian systems on Rn � Tn

Given a regionB�Rn, the “phase space”M WDB�Tn (where Tn WDRn=.2�Zn/),
and a real analytic “Hamiltonian function” H W M ! R, we denote by z 2 M !
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ˆtH .z/ 2M theHamiltonian flow generated byH , namely, the solution of the standard
Hamilton equations ´

Py D �Hx.y; x/;

Px D Hy.y; x/;
.y; x/jtD0 D z;

where, as usual, “dot” denotes derivative with respect to “time” t 2 R, and Hy , Hx
the gradient with respect to y, x.
A mechanical system on Rn � Tn is a Hamiltonian system with Hamiltonian

H.y; x/ D
1

2
jyj2 C f .x/;

�
where jyj2 WD y � y WD

X
j

jyj j
2
�
;

whose evolution equations are equivalent to the Newton equation Rx D �fx.x/; f is
called the potential of the system; “nearly-integrable” means that the potential is of the
form "f with " a small real parameter.
(b) Diophantine vectors
A vector ! 2 Rn is called Diophantine if there exist ˛ > 0 and � � n� 1 such that

j! � kj � ˛=jkj�1, for any non-vanishing integer vector k 2 Zn, where jkj1 WD
P
jkj j.

(c) Maximal KAM tori
A set T �M is a maximal KAM torus for a Hamiltonian functionH if there exist

a real analytic embedding � W Tn !M and a Diophantine frequency vector ! 2 Rn

such that T D �.Tn/ and for each z 2 T , ˆtH .z/ D �.x C !t/, where x D �
�1.z/.

For general information on KAM (Kolmogorov, Arnold, Moser) theory, see [1] and
references therein.
(d) Generators of 1d maximal lattices
Let Zn

�
be the set of integer vectors k ¤ 0 in Zn such that the first non-null

component is positive:

Zn
�
WD
®
k 2 Zn W k ¤ 0 and kj > 0 where j D min¹i W ki ¤ 0º

¯
:

G n denotes the set of generators of 1d maximal lattices in Zn, namely, the set of
vectors k 2 Zn

�
such that the greater common divisor (gcd) of their components is 1:

G n WD
®
k 2 Zn

�
W gcd.k1; : : : ; kn/ D 1

¯
:

(e) Resonances
A resonance Rk with respect to the free Hamiltonian 12 jyj

2 is the set ¹y 2 Rn W

y � k D 0º, where k 2 G n. We call Rk;` a double resonance if Rk;` D Rk \R`

with k and ` in G n linearly independent; the order of a double resonance is given by
max¹jkj1; j`j1º.



quasi-periodic motions 577

(f) 1d Fourier projectors
Given k 2 Znn¹0º and a periodic analytic function f W Tn ! C, we denote by

�Zkf the (analytic) periodic function of one variable � 2 T given by

� 2 T 7! �Zkf .�/ WD
X
j2Z

fjke
ij� :

Note that f .x/ D
P
k2G n �Zkf .k � x/.

(g) Morse functions with distinct critical values
A function � ! F.�/ is a Morse function if its critical points are non-degenerate,

i.e., F 0.�0/ D 0 H) F 00.�0/ ¤ 0; “distinct critical values” means that if �1 ¤ �2
are distinct critical points, then F.�1/ ¤ F.�2/.
(h) A Banach space of real analytic functions
Let s > 0. We denote by Bns the Banach space of real analytic periodic functions

on Tn having zero average:

Bns WD

²
f D

X
k2Zn

k¤0

fke
ik�x s.t. Nfk D f�k and kf ks <1

³
;

where kf ks WD supk2Zn jfkje
jkj1s .

(i?) The generic set Pns of potentials
We denote by Pns the subset of the unit ball of Bns given by the set of functions

f 2 Bns such that the following two conditions hold:

lim
jkj1!C1
k2G n

jfkje
jkj1sjkjn1 > 0;

8k 2 G n; �Zkf is a Morse function with distinct critical values:

We remark that all the above definitions are standard, except for the last one which
describes the class of potentials for which our results hold.

Pns is a typical set in many ways: it contains an open and dense set (in the topology
of Bns ), it has full measure with respect to standard probability measures on the unit
ball of Bns . For a detailed discussion of the properties of Pns , see [5, Section 3] and
[7, Appendix A.2]. We also remark that the definition given here simplifies and extends
former definitions given in [2, 5].
We can now state the main results in [7].

Theorem 1. Let n � 2, s > 0, 0 < " < 1, f 2 Pns , B an open ball in Rn, and
H.y; xI "/ WD 1

2
jyj2 C "f .x/. Then, there exists a constant c > 1 such that all points

in B � Tn lie on a maximal KAM torus for H, except for a subset of measure bounded
by c "jlog "j with  WD 11nC 4.



l. biasco and l. chierchia 578

Theorem 2. Fix 0 < a < 1. For any " > 0, there exists an open neighborhood
D2 � B of double resonances of order smaller than 1="b , with b WD 1�a


, which

satisfies meas.D2 � Tn/ � co"a, for a suitable constant co (depending only on n),
such that the following holds. Under the assumptions of Theorem 1, there exists a
positive constant Oc (independent of a) such that all points in .B nD2/ � Tn lie on
a maximal KAM torus for H, except for an exponentially small subset of measure
bounded by e�Oc="b .

Theorem 3. Let the assumptions of Theorem 1 hold and let n D 2. There exists a
constant Nc > 0 such that, for every 0 < a < 1, all points in ¹y 2 B W jyj > "a=2º � T2

lie on a maximal KAM torus for H, except for an exponentially small subset of measure
bounded by e�Nc="b , with b D .1 � a/=24.

Let us a make a few observations.
Theorem 1 – which extends the result in [2] – may be viewed as the “ultimate

frontier of KAM Theory”, in the sense that, as remarked by Arnold et al., near double
resonances, there are regions of order " where the dynamics of H is equivalent to the
dynamics of the parameter-free Hamiltonian 1

2
jyj2 C f .x/ and, therefore, it is natural

to expect that in a generic system with three or more degrees of freedom the measure
of the “non-torus” set has order " [1, Remark 6.18, p. 285]. Theorem 1 provides an
upper bound on the measure of the non-torus set in agreement (up to the logarithmic
correction jlog "j ) with this expectation. On the other hand, rigorous lower bounds
on such a measure appear to be extremely hard to be proven in the analytic case; for
partial results in the Gevrey case, see [8].
The KAM tori constructed in Theorem 1 are not uniformly distributed in phase

space. Indeed, if one stays away from a finite number of double resonances, the density
is exponentially small: this is the main content of Theorem 2.
Theorem 3 is a consequence of Theorem 2, since in dimension 2, the only double

resonance in a mechanical system is the origin. Theorem 3 is in agreement with the
conjecture formulated by Arnold et al. in [1, Remark 6.17, p. 285].
A related (weaker) result was announced in [4].
We recall that classical KAM theory yields only primary tori (which are graphs

over Tn)
p
"-away from resonances, while the new tori constructed in the above

theorems fill, with an exponential density, a neighborhood of (simple) resonances far
from double resonances. Furthermore, the new KAM tori include, besides primary
tori, also secondary tori, which exhibit different topologies and, in particular, are not
graphs over Tn.
Secondary tori close to resonances have been also investigated in [9].
To prove the above results, it is essential to study regions close to resonancesRk

for jkj1 !1 as "! 0. Away from doubles resonances, the “secular” dynamics in
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Rk is, up to exponentially long times, ruled by the integrable Hamiltonian

Hk WD
1

2
jyj2 C ".�Zkf /.x � k/:

Therefore, it should not surprise that one needs non-degeneracy assumptions in (i?)
above; in particular, the first condition implies that for jkj1 � N large enough, but
independent of ", the secular potential �Zkf is essentially a rescaled and shifted cosine
(as fully discussed in [5]). Notice that for low modes (jkj1 < N) the secular potential
�Zkf is a generic periodic function. In particular, the phase portrait of Hk is quite
arbitrary and may have an arbitrary number of equilibria and separatrices. The main
point here is to prove the persistence of all integrable tori of Hk up to an exponentially
small set (away from double resonances).
We finally remark that one of the main issues in the proof of measure estimates is

to show that the integrable secular Hamiltonian Hk above, in its action variables, is
Kolmogorov non-degenerate; namely the action-to-frequency map is invertible. While
Hkj"D0 D

1
2
jyj2 is obviously non-degenerate, it is a fact that this is not always true for

Hk (in its action variables) when " > 0. Indeed, this is a singular perturbation problem,
as suggested by the fact that the level sets of Hk have different topologies, due to the
presence of secondary tori for " > 0.
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