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Abstract We consider a dissipative spin-orbit model where it is assumed that the orbit of
the satellite is Keplerian, the obliquity is zero, and the dissipative effects depend linearly on
the relative angular velocity. The measure of the basins of attraction associated to periodic
and quasi-periodic attractors is numerically investigated. The results depend on the interac-
tion among the physically relevant parameters, namely, the orbital eccentricity, the equatorial
oblateness and the dissipative constant. In particular, it appears that, for astronomically rele-
vant parameter values, for low eccentricities (as in the Moon’s case) about 96% of the initial
data belong to the basin of attraction of the 1/1 spin-orbit resonance; for larger values of
the eccentricities higher order spin-orbit resonances and quasi-periodic attractors become
dominant providing a mechanism for explaining the observed state of Mercury into the
3/2 resonance.

Keywords Periodic attractors · Quasi-periodic attractors · Spin-orbit problem ·
Dissipative systems · Attraction bassins

1 Introduction and results

Nearly-integrable weakly-dissipative systems find many applications in Celestial Mechanics.
As far as natural bodies are concerned several examples of nearly-integrable dissipative sys-
tems can be obtained considering the N -body gravitational problem with the influence of a
dissipative force, like solar radiation, tidal torques, Yarkovsky effect, etc. As for artificial
satellites, low-thrust spacecrafts provide an interesting example within Space Manifold
Dynamics (i.e., a dynamical systems approach to spaceflight dynamics) of a nearly-inte-
grable system with a small dissipation due to the slow loss of mass during the travel.
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160 A. Celletti, L. Chierchia

In order to investigate analytically such systems, the starting point is the derivation of a
proper mathematical model apt to explain the astronomical behavior. Different studies in this
direction have been worked out during the past decades, both in the conservative and dissipa-
tive setting. Typically, the study in the conservative framework was based on the existence of
invariant tori, while in the dissipative case much effort was devoted to compute a probability
of capture into resonance.

As a concrete example, we consider the spin-orbit interaction with tidal dissipation. More
precisely we study the motion of a triaxial satellite rotating around a primary body under
the following simplifying assumptions: the trajectory of the center of mass of the satellite
is assumed to be a Keplerian orbit, the obliquity is set to zero, the rotation axis is assumed
to coincide with the smallest physical axis. Within the dissipative effects the strongest con-
tribution is provided by the tidal friction due to the internal non-rigidity of the satellite. As
in Correia and Laskar (2004), we consider a dissipative force with a phase lag depending
linearly on the relative angular velocity (see also Goldreich and Peale (1966, 1970); Mac-
Donald (1964); Peale (2005)). The equation of motion governing such model is described by
a second-order time-dependent differential equation. Three physical parameters enter into
the model: the orbital eccentricity, the equatorial oblateness and the dissipative constant. The
values of these parameters rule the dynamics and in particular affect the existence of periodic
orbit attractors, which are related to spin-orbit resonances occurring whenever the periods of
revolution and of rotation are commensurate.

Generally speaking, the dynamics of dissipative nearly-integrable systems reveals a very
rich structure composed by periodic orbits, invariant tori and (periodic/quasi-periodic/strange)
attractors. In the purely conservative regime, periodic orbits exist for all rational periods and
many quasi-periodic tori exist thanks to KAM theory,1 while, when the dissipation is turned
on, at most one quasi-periodic attractor may exist, provided the “driving frequency” is suit-
ably related to the angular velocities; (Celletti and Chierchia 2008) and co-existence with
many periodic orbits (spin-orbit resonances) is possible (Broer et al. 1996, 1998).

Astronomical observations show that a large number of satellites of the solar system moves
in (or close to) a synchronous periodic orbit (i.e., a 1/1 resonance), always pointing the same
face to the host planet. Only Mercury is observed in a 3/2 spin-orbit resonance, namely it
completes three rotations about its spin axis during two orbital revolutions around the Sun.
An example of chaotic rotation has been provided by Hyperion, since its spin axis is tumbling
chaotically in space (Wisdom et al. 1984). At the light of the phenomenology presented by
celestial bodies, the basic question concerning the spin-orbit interaction is: Why nature seems
to have selected only the 1/1 and 3/2 resonances?

This work tries to contribute to the understanding of the spin-orbit resonances, by pro-
posing an explanation of the actual state of the rotational dynamics based on the existence
of periodic and quasi-periodic attractors associated to the dissipative spin-orbit problem.
In the weakly dissipative regime, periodic attractors may be easily analytically shown to
coexist (Biasco and Chierchia 2008). The quasi-periodic case is more difficult in view of the
appearance of small divisors and it was proved in Celletti and Chierchia (2008) that KAM
tori smoothly bifurcate into quasi-periodic attractors for the dissipative system, provided that
the “driving frequency” is suitably tuned with the parameters of the model.

Here, for physical values of the parameters, we investigate numerically the occurrence of
periodic and quasi-periodic attractors by computing the basin-of-attraction measure (here-
after BAM) as follows. For each parameter sample, we consider 1000 initial conditions by a

1 See Arnold (1988) and Celletti and Chierchia (2006), for generalities, and Celletti (1990) for the spin-orbit
case.
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Monte–Carlo method; then we integrate the equation of motion using Yoshida’s algorithm up
to a long, experimentally determined, transient time. Once the leading attractors are detected,
we compute their frequency and we define the corresponding BAM by counting the percent-
age of the initial data which have evolved toward the attractor. As in Colombo and Shapiro
(1966), Goldreich and Peale (1966, 1970) or Henrard (1985), also the analysis presented here
clearly indicates that the dynamics is strongly affected by the orbital eccentricity: dissipative
forces contribute to drive the body toward the attractor whose frequency depends on the value
of the eccentricity of the Keplerian orbit around which the satellite is orbiting.

For the Moon’s parameter values (e = 0.0549), the 1/1 resonance is characterized by a
high BAM (over 95%) for all values of the dissipative constant considered. In the case of
Mercury (e = 0.2056) the results show that an invariant attractor with asymptotic frequency
of 1.256 is likely to attract about 73% of the initial data, while the 3/2 resonance has a
BAM of 14% vs. 5% associated to the 5/4 resonance and 6% to the synchronous resonance
(the rest pertains to the 2/1, 5/2 and 3/1 commensurabilities).

We stress that the BAM as defined in this paper is merely a measure of the basins of
attraction of a given (quasi-)periodic attractor and does not take into account any geomet-
rical information. For example, at contrast with other semi-analytical methods, such as the
Goldreich and Peale approach (see below), the BAM does not say anything regarding how the
limiting regime is achieved, nor where, in phase space, the dynamics evolution takes place.

In Correia and Laskar (2004) it has been shown that the eccentricity of Mercury might
have undergone, over large time scales, strong variations reaching the value of the eccen-
tricity e � 0.3; our results indicate that for e � 0.28 the 3/2 BAM has a peak above 90%,
while for lower values of the eccentricity quasi-periodic attractors show up with relatively
high BAM. Since quasi-periodic attractors separate the phase space, their appearance—in an
evolutionary model which takes into account variations over relative long time scales of the
orbital parameters—may be interpreted as a trapping mechanism preventing the evolution of
Mercury into the 1/1 spin-orbit resonance.

Finally, we compare the values of the BAM, as computed in this paper, with the values
obtained by the Goldreich and Peale probability-of-capture formula, which, as well known,
is an analytic approximate expression obtained (after a suitable averaging procedure) in order
to compute the probability of evolving towards and remaining captured by a given spin-orbit
resonance (see Goldreich and Peale (1966, 1970) and, for an interpretation in terms of adi-
abatic invariant theory, (Henrard 1985)). In doing such comparison one should, however,
keep in mind the relevant differences, both theoretical and computational, between the two
methods. Notice, in particular, that our method does not say anything about what happens
at the boundary of the basins of attraction, which is a clearly interesting problem and which
might be related with the Goldreich and Peale probability-of-capture formula (compare, in
particular to Henrard 1985).

2 The model

We consider a triaxial satellite S which rotates around an internal spin-axis and orbits about
a central planet. We investigate a simplified model where the mass center of the satellite is
assumed to move on a given Keplerian orbit of eccentricity e around the planet (or the Sun,
in the Mercury case); the rotation axis is taken to be constantly perpendicular to the orbital
plane and coinciding with the smallest physical axis of the satellite. Moreover, we assume
that a dissipative tidal torque T = T (ẋ; t) acts on the system. We normalize to unity the
mean motion n = 2π

Prev
, where Prev is the orbital period of the satellite; the equation of motion

can be written as follows (see Peale (2005)):

123



162 A. Celletti, L. Chierchia

ẍ + ε
(a

r

)3
sin(2x − 2f) = T (ẋ; t), (1)

where, ε denotes the equatorial oblateness of the satellite and it is given by ε ≡ 3
2

B−A
C ,

A < B < C being the principal moments of inertia; a is the semimajor axis of the Keplerian
orbit; r = r(t) is the instantaneous orbital radius; f = f(t) is the true anomaly; x is the
angle, in the orbital plane, formed by the direction of the longest axis of the ellipsoid and the
perihelion line (see figure below).

satellite

planet

x f

r

Since the center of mass of the satellite is assumed to revolve on an assigned Keplerian
orbit, the quantities r and f are known 2π -periodic functions of time t (recall that the mean
motion has been normalized to one), which are implicitly determined via the Keplerian
relations:

⎧
⎪⎨
⎪⎩

t − t0 = u − e sin u
r = a(1 − e cos u)

f = 2 arctan
(√

1+e
1−e tan u

2

) (2)

(t0 is an “initial reference” time of observation, which we shall take to be zero).
Let us remark that if the tidal torque vanishes, (1) becomes the evolution equation of

a Hamiltonian (conservative) system, which, in turn, becomes integrable whenever either
e = 0 (the Keplerian orbit is a circle) or ε = 0 (the satellite has a circular equator).

Considering the lift of the angle x on R, we define a spin-orbit resonance of type p/q
(and order p + q), for two relatively prime integers p, q with q > 0, as a solution of (1)
t ∈ R → x = x(t) ∈ R such that

x(t + 2πq) = x(t) + 2πp , ∀ t ∈ R .

This relation means that during q revolutions around the planet, the satellite makes p rota-
tions about its spin-axis. As is well known the Moon (as well as many other satellites of the
solar system) is observed to move in a 1/1 resonance; a remarkable exception is provided by
Mercury which is observed in a 3/2 spin-orbit resonance.

We next specify the analytical form of the tidal torque T . Assuming a phase lag depending
linearly on the relative angular velocity (Correia and Laskar 2004; Goldreich and Peale 1966;
MacDonald 1964; Peale 2005) and denoting by K a dissipative constant depending on the
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physical and orbital features of the satellite, we assume that the dissipative torque takes the
form (Peale 2005)

T (ẋ; t) = −K [L(e, t)ẋ − N (e, t)] , (3)

with

L(e, t) = a6

r6 , N (e, t) = a6

r6 ḟ.

A further simplification may be obtained by assuming (as in Correia and Laskar 2004) that
the dynamics is essentially ruled by the average of L(e, t) and N (e, t) over one orbital period:

T̄ := T̄ (ẋ) = −K
[

L̄(e)ẋ − N̄ (e)
]

(4)

with (see Peale (2005))

L̄(e) := 1

(1 − e2)9/2

(
1 + 3e2 + 3

8
e4

)

N̄ (e) := 1

(1 − e2)6

(
1 + 15

2
e2 + 45

8
e4 + 5

16
e6

)
. (5)

In Appendix, we point out that numerical comparisons between the model defined through the
time dependent functions L(e, t) and N (e, t) (see (3)) with the model where these functions
are replaced by their averages over a period (see (4)) are in remarkable agreement.

We are finally led to consider the following equation of motion (compare with Correia
and Laskar 2004):

ẍ + ε
(a

r

)3
sin(2x − 2f) = −η(e)[ẋ − ν(e)], (6)

with f = fe(t) and r = re(t) implicitly defined in (2), and with

η(e) := K L̄(e), ν(e) := N̄ (e)

L̄(e)
= 1

(1 − e2)3/2

1 + 15
2 e2 + 45

8 e4 + 5
16 e6

1 + 3e2 + 3
8 e4

. (7)

The function η(e) measures the strength of the dissipation while the function ν(e) (which is
a monotone increasing function of e and takes values between 1 and +∞) plays the role of
a “driving frequency”.

Notice that when ε = 0 but K �= 0, (6) admits a global attractor: in fact, the general
solution of (6) when ε = 0 and K �= 0 is given by

x(t) = x(0) + νt + 1 − e−ηt

η
(v(0) − ν),

where (x(0), v(0)) denote, respectively, the initial position and velocity; thus the particular
solution x(t) = x(0) + νt , ẋ(t) = ν is a global attractor; we point out that such attractor is
quasi-periodic for any ν irrational (remember that (x, t) ∈ T2).

We next remark that the astronomical observations suggest that for the Moon and Mercury
the value of ε is of the order of 10−4, while the order of magnitude of K (and, hence, of η)
is about 10−8 (Correia and Laskar 2004; Cox 2000; Peale 2005).

In the parameter region of interest for us, i.e., |η| < ε � 1, periodic attractors for (6),
together with their positive measure of basins of attraction, may be analytically shown to coex-
ist for the main low-order resonances (see Biasco and Chierchia 2008). On the other hand,
quasi-periodic solutions, i.e. solutions of the form x(t) = ωt +u(ωt, t) with ω irrational and
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u(θ1, θ2) 2π-periodic in each variables θi , do not always exist: they exist only for Diophantine
frequencies ω and provided the driving frequency ν is sharply tuned with ω so that, in partic-
ular, ν = ω + O(ε2) (see Celletti and Chierchia 2008); however, when such quasi-periodic
attractors exist, they are unique and seem to have a large BAM, as shown below.

3 Measuring basins of attraction

As is well known (see, e.g., Feudel et al. 1996 or Biasco and Chierchia 2008 for the spin-orbit
case) for specific values of the parameters, periodic orbit attractors may coexist. For ε = 0
the frequency ω of the attractor is linked to the eccentricity e by the relation ω = ν(e) with
ν(e) defined in (7). We analyze quasi-periodic attractors as well as low-order resonances of
the form p

q with p, q ≤ 5 and p
q ≤ 3; moreover, we focus on the eccentricities of the Moon

(e = 0.0549) and Mercury (e = 0.2056) corresponding, respectively, to driving frequencies
ν = 1.01809 and ν = 1.25584.

In order to obtain reliable numerical data, we integrate the equation of motion (using
Yoshida’s algorithm (Yoshida 1990) letting the dynamics evolve for a long, experimentally
determined, transient time TK � 103/K . Such transient time gives a strong limitation on
the computer time needed in our experiments and for K = 10−8 (which is, presumably, the
correct value for the Moon and Mercury), TK goes far beyond our computer capabilities,
and, therefore, we had to limit our investigations to values of the dissipative parameter rang-
ing between 10−3 and 10−6 (values which have, nonetheless, physical relevance for some
satellites of the solar system).

For each parameter sample, we measure the basins of attraction by counting the num-
ber of initial data which evolve, after time TK , on a specific attractor. More precisely, by a
Monte-Carlo method we consider 1,000 initial conditions (x(0), ẋ(0)) in the compact region
{0 ≤ x ≤ 2π , 0 ≤ ẋ ≤ 5}; we integrate the equations of motion and let the dynamics evolve
up to the transient time TK and detect the leading attractors; finally, we compute the frequen-
cies ω of the detected attractors and calculate the relative BAM by counting the percentage
of the initial data which have approached them.

We underline that the BAM as defined here is a “global indicator” and does not reflects
the geometry of the boundary of the basins of attractions, nor gives any information about
the motions in a neighborhood of such boundaries.

We also observe that, in general, for a given eccentricity e0 the highest occurrences cor-
respond to the attractors with ω � ν(e0) (as already noticed, e.g., in Goldreich and Peale
(1966, 1970)).

In Table 1 we report the results obtained taking ε = K = 10−4 for e = 0.0549 (Moon’s
case) and e = 0.2056 (Mercury’s case). For the Moon’s eccentricity there appear only the 1/1
periodic attractor and the invariant curve with frequency ν(0.0549) � 1.018. On the other
hand, for e = 0.2056 the 1/1 and the 3/2 resonances have approximately the same (low)
BAM, while the invariant attractor with frequency ν(0.2056) � 1.256 plays a dominant role.

Next we try to better understand the effect of the dissipative constant; having fixed
ε = 10−3 we report in Tables 2 and 3 the different attractors and the corresponding per-
centages of initial data evolving towards them. For the Moon (Table 2), there appear only
periodic orbit attractors corresponding to the 1/1, 3/2 and 2/1 resonances. In the case of Mer-
cury (Table 3) there exist different periodic attractors (with frequencies 1, 5/4, 3/2, 2, 5/2, 3)
and an invariant curve attractor with rotation number ω � ν(0.2056) � 1.256. In both cases
the value of K has been decreased from K = 10−3 down to K = 5 · 10−6, while the result
for K = 10−6 appearing in Tables 2 and 3 (denoted in italics and marked with an asterisk)
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Table 1 Basin of attraction measure for ε = 10−4 and K = 10−4

Moon ω = 1/1 ω = 1.018
(e = 0.0549) 9.3% 90.7%

Mercury ω = 1/1 ω = 1.256 ω = 3/2
(e = 0.2056) 1% 97.5% 1.5%

For each frequency ω of the attractor we provide the percentage of initial data which are attracted

Table 2 BAM for e = 0.0549 (“Moon case”), ε = 10−3 and different values of K ; last value is obtained by
interpolating the previous data through a degree 8 polynomial

K ω = 1/1 ω = 3/2 ω = 2/1

10−3 100% – –
5 · 10−4 100% – –
10−4 98.3% 1.7% –
5 · 10−5 97.4% 2.6% –
10−5 97.6% 2.1% 0.3%
5 · 10−6 96.7% 3% 0.3%
10−6(∗) 95.8% 3.9% 0.3%

For each frequency ω of the attractor, we provide the percentage of initial data which are attracted by the
attractor over a sample of 1000 randomly chosen points

Table 3 “Mercury case”: as in Table 2 but for e = 0.2056, ε = 10−3

K 1/1 5/4 1.256 3/2 2/1 5/2 3/1

10−3 2% – 92.3% 5.7% – – –
5 · 10−4 3.9% 1% 87.5% 7.6% – – –
10−4 4.4% 6% 76.9% 10.9% 1.8% – –
5 · 10−5 4.4% 7.7% 72.7% 11.6% 3% 0.6% –
10−5 4.7% 8.4% 69.8% 12.6% 2.9% 1.1% 0.5%
5 · 10−6 4.7% 6.8% 71.6% 13.3% 2.7% 0.6% 0.3%
10−6(∗) 4.6% 5.1% 73.4% 14% 2.5% 0.2% 0.2%

has been computed by interpolating (with a degree 8 polynomial) the data corresponding to
the previous values of K .

By analyzing the results of Table 2 we notice that for the Moon the 1/1 resonance dominates
for all values of K ; decreasing the dissipative constant there start to appear different reso-
nances and precisely the 3/2 and the 2/1, though their BAM is definitely lower compared to
that of the synchronous resonance.

A different situation occurs for Mercury (Table 3), where many different resonances
emerge as K decreases. Looking at Table 3 the direct perception is that the the invariant
curve attractor with ω � ν(0.2056) � 1.256 dominates, though the 3/2 and 5/4 resonances
are marked by a relatively high BAM with respect to the other resonances.

Next, we analyze the behavior of the BAM with respect to a variation of the eccentricity.
More precisely, we consider fixed values of the perturbing and dissipative parameters, say
ε = 10−3 and K = 10−4 as in Fig. 1, while the orbital eccentricity is varied within a sample
of 100 values between 0 and 0.5 with step-size 0.005. Figure 1 shows the main resonances
(1/1, 3/2, 2/1, 5/2); for a given eccentricity the points corresponding to the label ‘invariant’
correspond to the quasi-periodic attractors whose frequency can be approximately computed
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Fig. 1 Measure of the basin of attraction (BAM) for a sample of 100 eccentricities with step-size 0.005; the
parameters are ε = 10−3 and K = 10−4. Each curve corresponds to a different frequency; for example,
‘res11’ is associated to the frequency ω = 1, ‘res52’ to ω = 5/2 and so on. The label ‘invariant’ is associated
to the invariant attractor with frequency ω � ν(e) as computed in (7). The behavior of the resonances 1/1,
2/1, 3/2, 5/2 and of the invariant attractors is displayed

through (7). For low eccentricities the 1/1 resonance dominates, while the 3/2 resonance
dominates around e = 0.28; the 2/1 resonance has a peak around e = 0.39 and the 5/2 reso-
nance attains its maximum for very large eccentricities. Between the peaks corresponding to
the spin-orbit resonances there appear large parameter regions where the invariant attractors
dominate.

A different situation occurs as the parameters are varied, as, for example, in the case of
Fig. 2 where ε = 10−1.5 and K = 10−3 (i.e., K = ε2). The resonant attractors show a
behavior similar to that presented in Fig. 1, while the invariant attractor almost disappears.

Finally, we compare, for some chosen parameter values, the BAM, as numerically eval-
uated in this paper, with the well known probability capture Pcapt, as derived by Goldreich
and Peale (1966, 1970) and later reinterpreted, in terms of adiabatic invariant theory, by
Henrard (1985). The results are reported in Table 4.

As one can see, there is a relatively good agreement as far as the 3/2 resonance is con-
cerned, but there are also a few discrepancies, as, for example, for the 1/1. Clearly, in making
this comparison, one has to keep in mind that the Goldreich–Peale capture probability is
evaluated in terms of a formula derived after several approximations,2 while our approach
is based upon direct (numerical) integration of the full model; furthermore, as already men-
tioned, the BAM is a global indicator and does not distinguish what happens in a neighborhood
of the boundary of basins of attraction, while the Goldreich and Peale analysis (see, also, the
Hamiltonian discussion in Henrard 1985) is suited to give information about the evolution
of data close to instability regions so as to determine the eventual “capture” by a particular
resonance.

2 The Goldreich–Peale formula is based upon an averaging of the Newtonian potential and, in particular, does
not depend explicitly upon the dissipative parameter K , which plays a major role in our analysis.
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Fig. 2 As in Fig. 1, but with parameters ε = 10−1.5 and K = ε2 = 10−3

Table 4 Comparison between the probability capture Pcapt calculated according to the Goldreich and Peale
formula and the extrapolated BAM for the “Mercury case” (e = 0.2056, ε = 10−3, K = 10−6); compare
Table 3

1/1 5/4 1.256 3/2 2/1 5/2 3/1

Pcapt 0% – – 17.4% 4.3% 1.8% –
BAM 4.6% 5.1% 73.4% 14% 2.5% 0.2% 0.2%

4 Conclusions

In the conservative spin-orbit problem for suitable values of the parameters one can find a
multitude of invariant tori with irrational winding number and periodic orbits of any period;
furthermore, periodic orbits can be used to approximate KAM tori by taking sequences of
periodic orbits with frequency given by the rational approximants of the winding number.

In the dissipative spin-orbit problem the situation is drastically different, since one can
find at most one (smooth) quasi-periodic invariant attractor, though the dynamics can be also
attracted toward a number of coexisting periodic orbits. However, for typical astronomical
values of the parameters, only low-order resonances (1/1, 5/4, 3/2, 2/1, 5/2 and 3/1) seem to
dominate, a fact that is partially confirmed by the theory in Biasco and Chierchia (2008).

Keeping this in mind we have studied periodic and quasi-periodic attractors by looking
at their behavior as the main parameters are varied, namely, the eccentricity, the equatorial
oblateness and the dissipative constant. We have provided a measure for the basins of attrac-
tion simply by computing the percentage of initial conditions evolving to the attractor; not
surprisingly, the results show that the occurrence of attractors strongly depends on the value
of the eccentricity through the relation (7).

A first conclusion is that the synchronous resonance heavily dominates when the eccen-
tricity is small (like for the Moon), while higher order resonances appear as the eccentricity
increases.
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Furthermore, a number of conclusions can be drawn by looking at the data corresponding
to Mercury’s eccentricity. First, there happen to exist an invariant attractor with frequency
between the 1/1 and 3/2 resonances, actually lying very close to the 5/4 resonance since
its rotation number amounts to about 1.256. This attractor is characterized by a large BAM
and its existence prevents the dynamics “above” the attractor to move toward the 1/1 reso-
nance (see below). Moreover, within the resonances which arise for low values of K , the 3/2
resonance most likely captures the majority of initial data.

However, let us remark that these results do not exploit the evolutional history of the planet,
as done in Correia and Laskar (2004), where the perturbations induced by the other bodies
of the solar system on Mercury’s eccentricity are taken into account. More precisely, accord-
ing to Laskar (1996), Mercury’s eccentricity experienced large excursions from e � 0.1 to
e � 0.3. The upper value is compatible with the capture of Mercury in a 3/2 resonance,
corresponding to an eccentricity about equal to 0.285 (namely ν(0.285) � 1.5); our results
(see Fig. 1) show that for such value the BAM is around 93%, while for lower eccentricities
there exist quasi-periodic attractors with higher BAM. The existence of quasi-periodic attrac-
tors provides a strong confinement property (at least, according to the low-dimension model
considered here), due to the fact that they separate the phase space; therefore, as the eccen-
tricities vary according to an evolutionary model a trapping mechanism might have prevented
Mercury to evolve toward the synchronous resonance. Furthermore, we have shown that the
decrease of the dissipative effects contributes to increase the BAM of the 3/2 resonance. We
remark that this scenario does not hold for the Moon, since its eccentricity is too low to lead
to a capture in a non-synchronous resonance.

The results presented in this paper indicate that the present spin-orbit resonant state of the
celestial bodies might be explained by using a nearly-integrable dissipative model. Indeed,
the entangled structure of the phase space in the conservative framework is thinned out by
the dissipation, whose action contributes to leave at most one quasi-periodic attractor and a
few periodic orbits. Based on this scenario, in agreement with Colombo and Shapiro (1966)
we have provided a possible explanation of the present state of Mercury in a 3/2 resonance
by means of the interaction of two factors: the high orbital eccentricity and the effect of the
dissipative tidal torque.

The analysis of the results provided in this work opens many questions in the framework of
the dissipative spin-orbit problem or, more generally, of weakly-dissipative nearly-integrable
systems. To outline future lines of research, we mention, for example: the investigation of
the relation between periodic and quasi-periodic attractors: in particular, the analysis of the
behavior at the boundary of the basins of attractions and relations with the Goldreich–Peale
probability of capture; the generalization of the results to a model with non-zero obliquity
and, more in general, to more realistic models; the evolution of Mather sets in the dissipative
setting; the dependence of the results upon the form of the dissipation.

Appendix: Time-dependent dissipation

In order to discuss the validity of the model (6) we compare the tidal-averaged model with
that including the time-dependent tidal force. More precisely, with reference to (3) we expand
r and ḟ in powers of the eccentricity; neglecting terms of order 5 one obtains (Peale 2005)

T (ẋ; t) = −K [L5(e, t)ẋ − N5(e, t)] (A.8)

with
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Table A.1 Computation of the BAM for different eccentricities with ε = 10−3 and K = 10−4

e ω = 1 ω = 3/2 ω = 2 ‘invariant’

0.0549 98.4% ; 98.3% 1.6% ; 1.7%
0.08 14.2% ; 13.6% 2.6% ; 3.9% 83.2% ; 82.5%
0.1 15.7% ; 12.2% 4.6% ; 4.8% 79.7% ; 83%
0.12897 8.3% ; 9.1% 6.8% ; 6.9% 0.1% ; 0.1% 84.8% ; 83.9%

The rows indicate different eccentricities, while the columns denote the frequencies of the attractors (the
column ’invariant’ corresponds to the frequency of the invariant attractor associated to the given eccentricity
through (7)). Two models of tidal friction are considered: the time-dependent formulation (A.8)—(A.9) and the
averaged model (4)—(5); the first number corresponds to the percentage obtained through the time-dependent
model, while the second number is the percentage derived from the averaged model

L5(e, t) = 1 + 15

2
e2 + 105

4
e4 + 6e cos t + 117

4
e3 cos t + 27

2
e2 cos(2t)

+ 101

2
e4 cos(2t) + 107

4
e3 cos(3t) + 197

4
e4 cos(4t) + O(e5)

N5(e, t) = 1 + 27

2
e2 + 573

8
e4 + 8e cos t + 65e3 cos t + 22e2 cos 2t

+ 400

3
e4 cos(2t) + 51e3 cos(3t) + 1283

12
e4 cos(4t) + O(e5). (A.9)

This expansion is valid for small values of the eccentricity (for example those considered
in Table A.1); larger values of the eccentricity would need a series development to a higher
degree. As we did for the model (6) we compute the BAM associated to the model (1)—
(A.8)–(A.9) over a random set of 1,000 initial data, for ε = 10−3, K = 10−4 and various
values of eccentricity. The results reported in Table A.1 show that the models (1)–(A.8)–(A.9)

and (6) provide very similar behaviors, indicating that the oscillations of the terms a6

r6 and
a6

r6 ḟ can be neglected in a first approximation. The numbers reported in Table A.1 for the
time-dependent and the averaged model are typically of the same order of magnitude.
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