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Abstract. A class of analytic (possibly) t ime-dependent Hamil tonian systems 
with d degrees of freedom and the "corresponding" class of area-preserving, 
twist diffeomorphisms of the plane are considered. Implementing a recent 
scheme due to Moser, Salamon and Zehnder, we provide a method that allows 
us to construct "explicitly" K A M  surfaces and, hence, to give lower bounds on 
their breakdown thresholds. We, then, apply this method to the Hamil tonian 
H -  y2/2 + e(cosx + c o s ( x -  t)) and to the map (y, x ) ~ ( y  + e sinx, x + y + e sinx) 
obtaining, with the aid of computer-assisted estimations, explicit approxi- 
mations (within an error of ,-~ 10-5) of the golden-mean K A M  surfaces for 
complex values ofe with lel less or equal than, respectively, 0.015 and 0.65. (The 
experimental numerical values at which such surfaces are expected to 
disappear are about,  respectively, 0.027 and 0.97.) A possible connection 
between break-down thresholds and singularities in the complex e-plane is 
pointed out. 
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1. Introduction 

a) Problem and Results 

As it is well known from Kolmogorov-Arnold-Moser (KAM) theory [21, 1, 27] 
most of the invariant surfaces of an integrable system do not disappear under the 
effect of a small perturbation but give rise to invariant tori on which the motion is 
quasi-periodic with (highly) incommensurate frequencies ("KAM surfaces"). For 
models with few degrees of freedom, numerical investigations (see, e.g., [18, 17]) 
and some rigorous results [26, 24] have shown that, if the strength of the 
perturbation is large enough, KAM surfaces break down. 

The existence of these surfaces is particularly relevant for stability theory. In 
fact, for systems with no more than two degrees of freedom, KAM tori separate the 
phase-space into disjoint invariant sets making thus possible confinement of 
motions. Also in higher dimension, where confinement is no longer possible [2], 
the existence and location ofinvariant sets might be relevant for practical purposes 
in view of the slow rate of diffusion allowed by Nekhoroshev's theorem [31, 5, 4, 
373. 

At a more phenomenological level, the breakdown ofKAM tori seems also to 
be closely related to the "onset of chaos" [i 8, 14, 20, 12]. In particular, it is believed 
that, as the perturbative parameter is increased, there is, in a suitable sense, a 
"last" KAM surface to disappear [17, 23, 12]. 

In this paper we shall address the problem of providing a rigorous and 
constructive method able to yield, in concrete cases, "good" lower bounds on the 
breakdown threshold. 

The model that we will mainly consider is a class of (possibly) time dependent 
Hamiltonian systems with d degrees of freedom with real-analytic Hamiltonian 
given, in standard canonical coordinates, by 

y2 
H(y,x,t;e) = - f  +f(x,t;e) y2=y.y= ~ y2 , ~ - ,  (H) 

i = 1  

where f has period 2n in each variable xl,.. . ,  Xd, t and depends analytically on the 
parameter e. 

Several physical systems are represented by such Hamiltonians. An example 
borrowed from statistical mechanics, describing a system of d rotators with short 
range interaction, is given by (H) with 

d - 1  

f(x,t;e)-f(x;e)=-e Y. cos(xi+l--xi). 
i = 1  

(For a KAM and Nekhoroshev analysis of these systems see [36, 37].) A low- 
dimensional example, which will be of particular interest to us, is given by 

y2 
H= ~ +e[cosx+cos(x-t)], (d=l ) .  (H1) 
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This Hamiltonian, which is the central object of the renormatization theory of [ 14] 
(see also [12, 23]), governs the motion of a particle of charge e, subject to the 
potential of two longitudinal (electrostatic) waves. The study of (HI) is also 
relevant in celestial mechanics: After minor modifications and under suitable 
assumptions, (H1) is a good description of a rigid body on an elliptic orbit with 
spin-axis parallel to the largest principal moment of inertia and perpendicular to 
the orbit plane [38]. 

Often, in applications with few degrees of freedom, it is preferred to work with 
area-preserving mappings, obtained as Poincar6 sections, rather than directly with 
Hamiltonian systems, and it might be useful to have available a method that can be 
applied to maps too. Therefore, we will also consider the following class of area- 
preserving twist maps [which might be considered a formal analogous of (/-/)]: 

(y,x) ,(yl, xl)-(y-L(x;~),x+ y-fx(x;~)), (M) 

f being a real-analytic function periodic in x. For f =e  cosx, 4~ is the well known 
Chirikov-Greene standard map. 

We will use the models (H) and (M) to illustrate a new KAM technique that 
allows us to construct analytic KAM surfaces and to have a careful control of the 
quantities involved. 

We will then apply this technique to the Hamiltonian (HI) and to the standard 
map, proving the existence of the "golden-mean KAM surface" for (complex) 
values of e with 

le1<0.015 (H1), [e1<0.65 (standard map). 

Furthermore, "explicit" approximations to such surfaces will be provided with an 
error of order 10- 5. 

To compare these results, we first report the numerical (non-rigorous) 
expectations. The breakdown threshold for the standard map is believed to be 
~ 0.971 [9, 17]. Less settled is a numerical determination of a reliable value for the 
threshold in the Hamiltonian case; however Escande, using a (non-rigorous) 
method based on renormalization theory, indicates a value of ,,~ 0.0276 ([13], see 
also [14]) and Greene's residue criterion [17], applied to a Poincar6 section for 
(H1) (the so-called "leap-frog integrator with large step size") yields a value of 
,--0.02758 [15]. 

As for known rigorous results, we recall that there are no homotopically non- 
trivial invariant curves for the standard map for values of e > 0.985 [24]. A lower 
bound on the existence of the golden-mean KAM surface, given by Herman [19-1, 
yields a ratio with the numerical expectation of 1/33 for the standard map, while a 
ratio of 1/40 is obtained in [8] in the Hamiltonian case. 

Finally, we mention that numerical extrapolations of our methods give results 
in good agreement with the above numerical expectations. 

(b) KAM Method 

Let us first consider the Hamiltonian case. We recall that a KAM surface with 
given frequency (or "rotation") vector (c01, .. . ,cod)=meR d for (H) is a (d+ 1)- 
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dimensional torus described parametrically by 

(01, ...,Od, t)=(O,t)ETd+l~(O+u(O,t),t)~T d+l , T-- R/27cZ, 
(T) 

0u~ 
det(I +u°)4:0' (I +u°)iJ=6iJ+ ~Ojj' (1 <i, j<d) ,  

where u is a (vector-valued) function, depending on the parameters e and co, with 
the property that the flow induced by H in the (0, 0-coordinates linearizes in 

(0o, to)-~(0o + cot, to + t). 

This definition, together with Hamilton's equation, is equivalent to require that u 
satisfies 

0 f  
D Z u i ' - ]  - ~ - ( O + u , t ; e ) = O ,  i=1  ... . .  d 

oxi 

or, more compactly 

DZu + fx(0 + u, t; e) = 0, (E) 

where D is the constant vector field on T a+ 1 given by 

D=-co~o+Ot - ~ coi + 

Remark 1. Equation (E) plays an important role in Percival's analysis [32] and 
(with d = 1) in a particular case of Moser's generalization [29] of Aubry-Mather's 
theory [3, 25]. For  a numerical treatment of (E) (with some special f )  see [-6]. 

Remark 2. Notice that if u(O, t; ~) is a solution of (E) so is (0, t) ~ c  + u(e + 0, t; e) for 
any constant vector c. In the following we will only consider solutions u with 
vanishing average on T d+ 1 

Following [30] and [35], one can solve, under suitable hypotheses, Eq.(E) 
using a Newton iteration procedure. Namely, one starts with an approximate 
solution of (E), i.e., with a function v for which the error term 

e = D 2 v  + fx(O + v, t; e) (AE) 

is small, and constructs, solving a linearization of (AE) a new approximation, v', for 
which the relative error term satisfies ]e'l "~ O(]e]) 2. In order to carry out such a 
procedure, we require that 

det~gd4~0, ~d=I+vo ,  (C) 

[which, in view of(T), seems quite natural] and that co satisfies the standard strong- 
irrationality assumptions: We assume that exists a number z > d such that 

? -  sup (]o~.n+ml]n]~)-l<~, (DC) 
O~n~Z d 

m~Z 
where 

CO ~ / ' / ~  

d ( )1/2 
2 co n,, J" l -  • 

/=1  i=1  
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The set of such "Diophantine" vectors will be denoted by ~a and, from now on, we 
will attach to any co e ~d some ~ (possibly the smallest) for which (DC) holds 
together with the relative constant 7- 

Thus, starting from some approximate solution v (°) and applying iterativety the 
Newton step, one obtains a sequence of new approximants v ~j), provided (C) holds 
for anyj.  One needs, then, to have a quantitative control of the functions involved 
in the procedure. 

For this purpose, we will construct an algorithm (which will refer to as "KAM 
algorithm") that given upper bounds on norms relative to the approximants v u) 
and e ~J) provides upper bounds on the corresponding norms of the next 
approximants v ~i+ 1) and e ~/+ 1). Here, the norms refer to a suitably chosen scale of 
Banach spaces to be described later (compare Sect. 5 below). We then say that such 
KAM algorithm converges if 

~ru) < oo, Vj > 0, lim E ~i) = 0, (K) 
j~oo 

where ~r(J) and E (j) are upper bounds on the norms of (~t/)) - 1 and d j). If(K) holds 
one obtains a solution of (E) as (uniform) limit of the v°~'s; it; for some j ~ 0, 3,~ (J) 
becomes infinite, we say that the algorithm diverges. 

It is quite remarkable that, with a finite amount of computations, one can 
usually decide with reasonable precision whether, for a given initial approximation 
v ~°~, the KAM algorithm converges or not. 

To  give an example, consider the system with Hamiltonian (H1) and let co be 

the golden-mean (V5-1)/2, for which z=  1 and 7=(1/~+3)/2. The KAM-torus 
equation takes the form 

DZu=~[sin(O+u)+sin(O+u-t)]' D-coCO + O~" (El) 

An obvious (but rather bad) initial choice is v (°)- 0, for which 

e (°) - ~[sin 0 + s in (0-  t)]. 

In this situation the KAM algorithm presented below converges for 
Is[ _<0.000028 but diverges at j = 7 for 15[ = 0.000029. 

To explain this fact we observe that one way to prove the convergence of the 
KAM algorithm, which we will actually follow, is to find a simple explicit 
condition ( - " K A M  condition") that if satisfied, for some Jo, by M (i°) (>  IJ¢~/°)l), 
~(Jo) and E ~j°) yields (K). Now, roughly speaking, if the algorithm converges then 
the KAM condition will eventually be satisfied and the fast rate of convergence of 
the scheme makes usually possible to check the condition after only few steps 
(typically 10,-~ 20). 

We discuss now briefly the mapping case. Analogously to the Hamiltonian 
case, a KAM curve with frequency (or rotation) number co is a circle represented 
parametrically by 

OeT-+O+u(O)eT, 1 +Uo4:O, 
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so that in the 0-coordinates, ~b n corresponds to 

Oo~Oo+n~, n ~ Z .  

The KAM-curve equation for (M) is the readily seen to be 

D2u + fx(O + u; ~) = O, (EM) 

where D denotes here the linear finite-difference operator 

( D u ) ( O ) = u ( O + 2 )  - u ( O - 2 ) .  (DM) 

At this point, the above discussion for the Hamiltonian systems holds word-by- 
word in the present situation with the only exception of the Diophantine condition 
(DC), which becomes now o~/2~r e ~ ,  necessary to control the inverse of D. 

(c) The Initial Guess 

The efficiency of a Newton algorithm is of course related to the initial guess. 
The choice of ¢o~, which in conjunction with the above KAM algorithm, will 

yield the mentioned results for (H1) and the standard map, is related to the 
analyticity properties of the KAM surfaces in the parameter e. 

As already pointed out in [-28], KAM surfaces [of systems like (H) with 
f (x ,  t; 0)= 0] are analytic in e near the origin (for a new proof avoiding the use of a 
Newton method, see [-11]). In fact, a trivial byproduct of the above Newton scheme 
will be that if one starts with an approximant v, which is analytic in e in some 
domain B C C and if (C) is satisfied uniformly in B, then also v' is analytic in B. 

Thus, it seems quite natural to try to compute explicitly a few terms of the 
e-expansion of a KAM-torus. 

Consider (H) and let, for simplicity, d = 1 and f (x ,  t; ~) = eg(x, t). Then inserting 
the series 

u(O,t;s)- Z u"~(O,t)~ ~ 
l = 1  

into (E) and comparing powers of e, one gets 

D2u~ll = _ gx(0, t) (EP) I 

D2u~t+l)=-- Z (O~l+...+k,gx)H t-->l, (EP)~ 
keKt i=I ki[ ' - 

where K~ is the set of all non-negative integer vectors k = (k 1 . . . .  , kz)e N ~ such that 

l 

2 iki=l. 
i = 1  

Notice that these are linear equations and that the right-hand side of (EP)z is a 
combination of u (~) . . . . .  u (°. Thus, one can solve (EP)z iteratively. [The same 
formulae hold for the mapping case (M) if one drops the t.] 



Cons t ruc t ion  of Analyt ic  K A M  Surfaces 125 

For example, in the (HI) case, one obtains immediately 

[ 1  I sin(O_t) 1 u(~)=-- ~ -  sin0+ (co_l)--- ~ 

1 I  1 ( 1  1 ) 1 sin(20--t) u(2)= ~ 4~--£ sin20+ ~ + (coZI)2 (2o)--1) 2 

( 1  1 )  sin2(O-t)]  
+ o~ 2 (o)--1)2 - s int+ 4(-~--l~-J" 

Our initial approximate solution will be 

lo 
v(°)--- E u(%t (IG) 

l = l  

with lo = 24 for (H1) and lo = 38 for the standard map. 

(d) The Role of Computers 

Even though the solution of (EP) is completely elementary, the concrete 
calculation of u (~) is not a trivial task: Even in the simple (H 1)-case, computing (IG) 
with lo = 24 means to evaluate 2756 non-zero Fourier coefficients. 

Here enters the aid of computers, which may be used to give rigorous lower and 
upper bounds on the result of (possibly) lengthy operations between real numbers. 
A possible way of using rigorously a computer is to perform the so-called interval- 
arithmetic in the fashion of [22] or [10]. This is the strategy that we followed in 
order to evaluate the Fourier coefficients of v (m, using a VAX 8600. Actually, we 
used mechanical computations also for the evaluation of the norms relative to the 
initial approximation and for the application of the KAM algorithm; however the 
latter computations are sensibly simpler and faster than the former. 

The above choice of the "order" lo has been made so as to obtain a compromise 
between a (relatively) little amount of computations and "reasonable" quantitative 
results; compare, also, Remark 13 of Appendix D. 

In proving our results, we will be careful in clearly separating the theoretical 
parts from the computational ones and we will provide and comment the main 
computer program that we used. 

(e) Concluding Remark 

The existence and construction of smooth but not analytic KAM surfaces for a 
given system is a relevant and difficult problem. Even in the case of the standard 
map it is not known whether a given KAM curve undergoes, as s is increased, a 
gradual loss of smoothness or if the transition from analyticity to discontinuity is 
an "instantaneous" phenomenon. Such problems remain beyond the reach of the 
techniques presented here. However, let ~,, denote the "maximum radius of 
e-analyticity" for a given KAM-torus, i.e., 

Qm- inf {radius of convergence of Zu(%l}. 
(0, t ) 
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It is quite clear that implementing further the above ideas and techniques one 
could in principle prove existence of KAM surfaces for lel < ~m. Our results and 
their numerical extrapolations (compare Sect. 9) seem to indicate that, at least for 
some special models, ~,, might actually coincide with the breakdown threshold. 
This would not only support the second hypothesis considered above, but would 
also show a deep connection between e-singularities and dynamics. 

2. Newton Method 

In this section we describe the Newton iteration procedure and solve the 
associated linearized equation [-Eq.(2.1) below]. To stress the algebraic 
character of this section we do not specify yet the functional spaces in which we will 
work. / 

Let v and e satisfy equation (AE) with ~¢'-1+Vo invertible {as above 
\ 

(vo) i j  = OOJ and denote with a superscript T matrix transposition. Then one has 

the following 

Lemma 1 (Moser-Salamon-Zehnder). Let z be a solution of 

D(JC/TJ/tDz) = - -  ~ '  re. (2.1) 

Then, setting w ==- ~//lz, v'-- v + w, 

the following equation holds: 

D2v ' +fx(O + v', t; e) = e' (2.2) 

with 
e ' - eoz+q l  +qz,  

~af where, denoting, by fxx the matrix with entries (f~x)o- ~xiOx , 

q l=  f x (O+v+w, t ; e ) -  f~(O+v,t;e)-  f~x(O+v,t;e)w, 

q2 =- (tier) - lo~Dz, d - JC/TDJ¢I -- (DJ/4~T)~. 

Furthermore the matrix-valued function d satisfies 

dOdt 

" " - -T)+I  
D d  = dgT eo-- eT ~ . (2.3) 

Remark 3. For Eq. (2.1) to make sense, ~ r e  must have vanishing mean value (over 
Te+ 1) and that this is indeed the case follows from (AE). In fact, denoting by 6~j the 
Kronecker symbol, 

[ (ddTe)i: ~ f  &" ( ~l~fx,(0+v,t ;e)  Ta+, t=l " (~0 i D2vI + 6u-t- ~Oi,] 

z=l OOi) vt+ f f (O+v,t;e)=O. 



Construction of Analytic KAM Surfaces 127 

P r o o f  o f  L e m m a  1. Using the definitions of w, v', and e', (2.2) can be rewritten as 

D2v + D2(~/'z) 4 fx  + Jxx J g z  = eoz + q2,  

where J~, and J ~  are evaluated at (0 + v, t; e,). Then, equation (AE) implies 

D2(~g//z) + f xxdgz  = - e + eoz + q2. (2.4) 

Take the gradient with respect to 0 of (AE) to get 

DzJ/t + f x s / g  = e0, (2.5) 

so that (2.4) becomes 

D2(JClz) - (D2dg)z = - e + q2 . 

Now, use the definition of q2 to get 

J¢ TD 2 (j¢/'z) -- J/dT(D2d/t)z .= _ d g r  e + ( ~ r  DJ¢{ - ( D j # T ) J ) D z ,  

which will be easily recognized as Eq. (2.1). 
It remains to prove (2.3). Integrating by parts one obtains, for any i, j ,  

a 92 
S d l j = - - 2 ~ [ ( D J / d r ) J / g ] i j  = 2  ~ .(vtD vl=0" 

Ta÷I I=1 

Finally, Eq. (2.5) and its transposed will yield easily the second equation in 
(2.3). [] 

We proceed now to solve (2.1), referring to the next sections for the precise 
assumptions and estimates. For  a (vector or matrix-valued) function on T d + 1, with 
vanishing mean value (h) ,  we denote 

~(n, ,n) ei(n . 0 + mr), (D- lh ) (O,  t)---: V 
(,,m)~'z~+ , i(oo . n + m) 

(n,m)~:O 

where the hat denotes Fourier coefficients and the dot the standard inner product. 
Then, the unique solution of (2.1) for which 

dOdt 
(w)  = ~ w - = ( J ~ z ) = 0  (2.6) 

T a+l (27~)d + 1 

is given by 

z = D -~ { ( ~ r ~ , ) - ~  [c ° -  D- ~(~re)]} + q ,  (2.7) 

where the constant Co is chosen so as to be able to invert D the second time and Cl 
so as to have (2.6): 

CO ~ ( ( , / ~ ' T ~ ) -  1 )  - 1( ( , /~¢T~/1)-  1 D-  l(./[/{re)), 
(2.8) 

c I --=- - (J/gD- 1 {(J~Td/)- 1[c o - D -  *(J/gre)]}). 

R e m a r k  4 (The Mapping Case). To adapt this section to the mapping case (M), 
(EM), (DM) one needs simply to make the following modifications. Set d = 1 and 
consider t-independent functions of 0 e T (this corresponds to substitute T a + ~ with 
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T in the above formulae); substitute the expression ~/drdg [appearing in (2.1), (2.7), 
and (2.8)] with 

finally for h with mean-value (on T) zero define D- lh ,  in the obvious way, by 
setting 

(D- 1 h) (0)--- Z - -  el"°. 

• o i2 sin 

Notice that the hypothesis that co/2~ e ~1 [see (DC)] implies 

< ~ InV, Vn•O. (2.9) 

After these modifications the whole section holds word-by-word for the present 
case, but notice that now, as welt as in the Hamiltonian case with d =  1, ~¢ and 
hence qz vanish identically. 

3. Norms and Function Spaces 

In order to provide the Newton procedure with estimates necessary to control the 
objects involved, we need to fix suitable function spaces with relative norms. 

The choice of norms (for d => 2) is a rather subtle point if one is interested in 
obtaining "optimal constants" and "optimal dependence" on the dimension d. 

We will consider complex functions with values in a vector space ~/:, where 
can be either C d, or the space of linear maps from C d into itself, denoted by A°(Cd), 
or the space of linear maps from C d into ~(Cd), denoted by ~ ( C  d, ~(Cd)). 

The norms that we will use in the vector spaces ¢: are the following. 
If c-(c 1 ..... Cd) belongs to C d (or to any subspace of C d) we set 

lc,: , 1c11- 2 Ic~[; 
i = I  i = 1  

if M e ~a(Cd) and T e A¢(C d, ~(Cd)) we set, respectively, 

IMI-  sup IMcl, ITI-- sup ITcl. 
c ~ C  ct c ~ C  a 
}cl = 1 Icl = 1 

NOW, by ~p(~, Q; ~U) we denote the space of real-analytic functions 

h: A¢,e~(O,t,e)-+h(O,t;e)~t : ,  
A ¢. e -  {(0, t, 5) s C a + z :lira 0~t <~ (i = 1 .. . .  , d), I Im tl < 4, Is[ < Q}, 

which are periodic (with period 2re) in each variable 01 . . . .  ,0a, t. We regard, then, 
~,(¢, Q; ~ )  as a Banach space with respect to either the supremum norm 

'/I¢'Q ~ ( ~'i=1 suplhi'2) 1 / z ' ~ , ~  



Construction of Analytic KAM Surfaces 129 

if h is Ca-valued, or with respect to the supremum norm 

Ihle, o -  sup [hcl¢.o, 
ceC d 
M = 1 

if h takes values in 5~(C a) or &°(Cd, ~(ca)).  
In treating the mapping case, without giving explicit notice, we will refer to the 

subspace of Nv(¢, Q; C) of t-independent functions, which we will still denote by the 
same symbol ~v(~, ~; C). 

Finally, we recall here, for convenience, the following standard notation. If h is 
a (smooth) Ca-valued function defined on some domain of C a, h x (or 0xh) denotes 
the matrix-valued function with entries 

0h~ 
(h~)ij- ~x i 

and h~  (or 0~h) the L,e(C a, ~(Cd))-valued function defined by setting, for any 
C ~ C a, d t~2hi 

(h~xc)~j- iZ=l OxjOxl cl. 

4. Control of the Solution of the Linearized Equation 

In order to estimate the solution z of the linearized equation (2.1) we need two 
technical lemmata, which will be proven in Appendix A. The first is a standard 
inequality for holomorphic functions and the second is a result fi la Rfissmann 
[33, 34]. 

Before stating the lemmata, we define, for any 6 > 0 and l = 0, 1, the following 
"small-divisor series" for, respectively, the Hamiltonian and the mapping case: 

ch(6 )_= I2 n + a Z 
(n ,m)eZa+ 1 

( n , m ) * O  

( [ h i  ~ ~2e-,~(l,,h+lm[)ll/2 
o9" n+mJ 

] 1/2 
e-~"l , (mapping case). 

J 

(4.1) 

(4.2) 

Remark 5. At this point the formalism for maps is completely unified with that for 
the Hamiltonian system (with d =  1) and we will not need to make any further 
distinctions between the two models provided one keeps in mind the adjustments 
listed in the preceding remark. 

Lemma 2. Let h@~p(~,Q;Cd). Then for any 0<6=<4, 

Ihole - o,e < [hle.d 5-1. 

Lamina 3. Let h~Np(~,Q;C d) have mean value (on T a+l)  zero. Then, for any 
0 < 6 < ~ ,  and for l=0 ,  1, 

10~ D - lhi¢- ~, e < °-1(26) Ihl¢, 0" 

The same inequality, with I= O, holds/f h e Np(~, ~; Y(Ca)). 
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Now, let z be the solution of (2.1) given by (2.7), (2.8) and assume that v, 
e s Np(4, Q; C a) and that d[  =-(I + vo) is invertible on A~, ~. Denote by M, M, and E 
upper bounds on, respectively, I~¢I~,Q, I~-11~,~ and Lel~,~ and by s~(6) an upper 
bound on o-~(6). Then, one has, for any 0 < 6 < 4, 

Izle_~,.__< EMIQ2So(3)Zb, (4.3) 

Izol~-~,~ < EMlV12sl(6)So(6)ba , (4.4) 

where 
bl - 1 + (M;¢) z s°(24) 

So(~) ' 

b=-bl + M (s°(4)]2 [1 + (M2~f) 2 s°(24)] (4.5) 
\So(5)/ So(~) J" 

We remark in passing that usually (i.e., if 6 is not too close to 4) ao(8)>> %(4). 

Proof  o f  (4.3) and (4.4). We start by estimating the constants c o and c 1 given in 
(2.8). The relations t J / ]= lJ [ r l ,  ldd-at >]~g/I -~ and the positivity of the matrix 
~ r / ~  for (0, t) e T a+ ~ imply the estimates 

J~t- 2 ~ Idt'T./'gd[ --< M2, (O,t,e)eA¢,~, 

M-2<=I(J{TJ~)-II<)~/I2, (O,t,e)eA¢,~, 

]((~[T d//. ) -  1) - 1 t <= M 2 ' 

where A ~ o is defined in the preceding section and, as above,( .  } denotes average on 
the torus'T d+ 1 (or on T for the mapping case). Now, applying Lemma 3 with 3 = 4, 
one obtains 

Icol ~ M3ff/I2so(24)E, 

and, applying the same lemma twice with 5 = ~/2, one obtains 

tcll =< MtdZSo(4)(1%1 + [ D -  l(d'[re)l¢/z,e) 

_-< M~2so(4) [(M3~12So(24)E + Mso(4)E]. 

In the same fashion, applying Lemma 3 twice with 6 replaced by 6/2, one gets easily 
(4.3) and (4.4). []  

Remark 6. If f and v are odd functions of (x, t) [as it will be the case in our 
applications to (H1) and to the standard map], ca vanishes being the average of an 
odd function. Thus, in such case, (4.3) holds with b = b  v 

5. KAM Algorithm 

Maintaining the above notations and the assumptions 

v , ~ -  l, ee~p(4,Q;Ca),  

we collect the main estimates relative to the Newton iteration procedure in the 
following 
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Lemma 4 (Inductive Lemma). Let  w, e' be as in Lemma 1 and set ~' - ~ - 6 > O. Then 
one has , t ~ t [wl¢,o<W, Iwol¢,~<Wx le[e,,o=E 
with (b  being as in (4.5)) 

W - Ea ,  a - b(M)f/iso(5)) z , 

W l = E a  ( ~  f - l  + sl(~)~ 
So(~)/' 

and, denoting by F3 an upper bound on IL~l~,+v+w,~, 

E ' = _ E 2 a  + ~ -  d-Zd2(~-l)~I  So(O ) ' 

where 

(5.1) 

where the first estimate comes from Schwarz inequality and the second from 
Lemma 2 (with d = 1). Finally, to estimate the q2 term (appearing in the definition 
of e' for d>2)  apply Lemma 3 to [see (2.3) and (2.7)J 

~ '  = D -  l(J//{r e 0 -- e r  ~ )  

and D z = ( ~ / r d g ) - ~ [ c o - - D - ~ ( d l r e ) l .  [] 

The KAM algorithm, referred to in the introduction, is obtained by iterative 
applications of Lemma 4, after having fixed a suitable Banach-space scale. 

More precisely, assume to have some initial approximate solution of (AE), 
v=v  (°), belonging to Np(~o,~;Ca) for some ~o>0. For any strictly monotone 
decreasing sequence of {~j}j>__l, ~1 <~o, ~j>0, one can apply iteratively the 

) i~-  1 for  d > 2, XI = 0, b' - 1 + (MM) 2 s°(2~) 
= So(26)" 

Remark  7. If ~' + V + W exceeds the widths of the (0, t)-analyticity domain of f 
then F 3 - + oo and the lemma is trivially empty. 

The proof of the lemma in d = 1 is a straightforward application of the results of 
the preceding section, namely, Lemma 2, (4.3) and (4.4). But the same arguments 
(with the same constants !) work also for d > 2 thanks to the definition of Sect. 3. To 
give an example, let us estimate the "tensor-valued" function Voo appearing in v~: 

V'o - Vo + Wo - Vo + VooZ + JCdZo. 

( I  I. ivoof ..°--sup 
c,c'eC d i=1 j , l= l  OOlOOj ~-t~,~/ 

kl = lc'l = 1 

< sup i. 

<6  -1 sup [cj[ 2 ~ c~,o) 
t~t = tc'l = l 
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Newton procedure and the above inductive lemma to obtain a family of solutions 
of (AE), v t/) and e ¢/), belonging to ~p(~j, ~; Cd), provided ~/d{ (J) is invertible on A ~j. Q. 
To be completely explicit, one uses Lemma 4 substituting iteratively, forj  > 0, (4, 4', 
6, M, M, W, l;l/], E, E') with (43, 4~+ 1, Oj, M¢i), fl¢J), W(J), W~ j), E(J), E(J+ 1)), having 
defined j j 

vU+l)-v+ Y, w(i), v~J+l)-vl+ Z w~ ~), 
i=O i=0 

J 
M~J+I)=-M+ ~ W~ i), 

i=O 

2~ 1 - M  Wj ~j) , if 2 W~ <i)<1 
i=0 i=O 

J 
if ,:oY' w?__>l. 

That A4 <~+1) is a bound on [(J{~J+ 1))-lt~j+~, Q comes from 

I (~ '~J+ l ) ) -~ [  - ~ +  w~0 ~ - I + ~  - ~  y, w ?  
i=0 i=O 

_<[M//-11 l - I  J / -11  ~ Iw~0°t 
i=0 

Now, the scale-sequence that we choose is simply given by 

4j-- 40. i.e., 3 j -  ~0 (5.2) 
2 j , 2j+ ~ • 

Remark8. It would be rather lengthy to try tojustify, on a general level, why (5.2) is 
a "good" choice and we content ourselves by just mentioning that such a choice is 
related to the "quadratic convergence" of the Newton procedure (compare [-7, 
Appendix C]). 

Remark 9. Notice that the estimates in the Inductive Lemma involve upper 
bounds sI(J) on the small-divisor series al(6) given in (4.1). Even though it is rather 
easy to give rough evaluations of az(J), it is very important, for the efficiency of the 
algorithm, to have accurate estimates on at(3 ). We will show below how one can 
obtain satisfactory results, employing computer-assisted estimations (compare 
Lemma 9 and the following comments). 

We conclude this section by pointing out that, in applications, the above 
algorithm can be applied only a finite number of times. Thus, to establish the 
existence of solutions u one needs to combine the algorithm with a KAM theorem, 
which we proceed now to describe. 

6. KAM Condition 

Here, we prove a condition, which, if satisfied by M {J°), A~ ~j°), and E {j°) for some 
Jo => 0, yields the convergence of the KAM algorithm and hence the existence of 
KAM surfaces. 



Construction of Analytic KAM Surfaces 133 

Remark 10. In order to get a general, simple and explicit condition (in the style of, 
e.g., [16]) we will need to make various estimates certainly not optimal (see, e.g., 
next Lemma 5). Thus, the use of a KAM condition, in connection with the problem 
of obtaining good stability bounds, makes sense only in a suitable combination 
with the KAM algorithm of Sect. 5. 

Even though we will apply the KAM condition to v ~j°~ and e (j°~, we can state it 
independently of the preceding section. In order to do this, we need to introduce 
three constants K1, K2, and ko related to the upper bounds sl(6) on the small- 
divisor series oh(b): 

Lemma 5. Let al(6) be as in (4.1) with 0 < 6 < 1 / 2 .  Then 

o-1(6 ) < Kffb - k~, (6.1) 

where, denoting Euler's gamma function by F, 

d + l  
kl==_z+l+ 

2 ' 

K ° - 2  " \ C(d/2) J ' Kl=-K°l/(2z+l+d)(2"c+d)" 

The same inequality holds for at(6 ) as in (4.2) (mapping case) setting d = 0 in the 
definition of k l and d = 1 in the definition of K t. 

A proof of this simple lemma is given in Appendix B. 
Now, let v, eeNp(4. ,Q;C d) satisfy (AE) for some 5 . > 0 .  Assume that 

dg-  1 = (I + Vo) - 1 ~ Np( ~., q; C a) and denote, as usual, by M, M, E upper bounds on 
[J/]¢.,o, [~t'- ~1¢, Q, [e[~, o and by F 3 an upper bound on [f~[¢ +~ o" For  simplicity 
assume also that ~,~, 'M, lffl are greater or equal than one.* ' 

Lemma 6 (KAM Condition). Let 

v, z ) -  (10 2 + * /goK 

If 
~"(M, M3d, 4 ,  ~, F3)Iele., ~-  X E  < 1, (6.2) 

then equation (E) (respectively (El)) has a unique solution u ~ Np(4./2, Q; C a) with 
(u )  = (v) .  Furthermore, I + uo is invertible on A¢./2,o and one has 

4, (6.3) l u -  vl~,/2.~ < X E  64' 

~ E  
luo-vole./2,~< 2M" (6.4) 

Remark 11. In order to prove the convergence of the KAM algorithm of the 
preceding section, one has to check if, forjo = 0,1, ..., condition (6.2) is verified with 
4,, I~1~,,~, lye-~1¢,,~, lel¢,,Q replaced by, respectively, 40/2 j°, M ~j°), l~ ~j°), E ~j°). In 
case of convergence (6.3) and (6.4) hold with v replaced by v ~j°) and the final 
analyticity width in the periodic variables will be 4,/2 = 4o/2 j°+ 1. 
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Proof  of  Lemma 6. First of all observe that the invertibility of (1+ Uo) is a trivial 
consequence of (6.4) and (6.2). Now, let v ~ ) -v  (i- ~) + w ~i- 1), e(i) be the functions 
obtained by iteratively applying Lemma 1 of Sect. 2 (v ~°)- v, e (°) -  e). Let 

~(~)-= + 2i+1, - j - ~ ,  7, 2J+2 

and let V (j), V~ j), W ~i), W} i), M (j), M(J), and E (j) be the bounds on the corresponding 
norms yielded by the KAM algorithm described in the preceding section, with 
sk(6 ) = sk(6a) replaced by the right-hand side of (6.1). For simplicity, we replace W1 (i) 
by / 

Sl(t~j) ~ wp - E(J a(J   a;1 + So(a)/' 
which can be done recalling the original derivation of W1 and using the bound 

Ivool~,,~ = IOJ¢I¢,, ~ < M 6 - 1 .  

We claim that condition (6.2) implies, for a suitable 2(( o < 24# and for any j, 

E (j) < ()floE) 2~ , (6.5)j 

~ )  + V (j) < ~, + V, (6.6)j 

/~/) < 22~. (6.7)i 

Before proving the claim, observe that (6.5), (6.6) yield easily the first part of the 
lemma. In fact, since ~ )$  ~,/2, (6.5) and (6.6) imply the uniform convergence in 
Mp(¢./2, 0; cd) of V ~) to a unique solution u with, by construction, ( u ) =  <v) 
(compare Lemma 1). 

We proceed now by induction onj.  For j = 0  the claim is obvious. Assume the 
claim true for 0, l , . . . , j  and notice that (6.7)i is equivalent to 

~ j - 1  
2M Z W~ (°<1 ,  (6.8)j 

i=0 

which, since M and M are greater or equal than one, implies, for 0 < i < j ,  

M (i) < ~ m .  (6.9)i 

Now, by the estimates in Lemma 4, by (6.6)i, (6.7),, and (6.9)i with i<j,  observing 
that ko>3/2, Ko>9,  K~ > V ~ K 0  and 7>2,  one obtains easily the following 
bounds for i< j  

with 

E" + 1)< (E(i)) 2flt/~, (6.10) 

W (° <E(Oflorl~o, (6.11) 

W~ i) < E(i)fl, tl], (6.12) 

fl = 100" K4742Sk°M2(M_M)SF3~, 4k° , 

flo --- 14" K2o7224k°M(M)~l)4¢, ' Zko, 

fix --- 73" K~KoTe24k°M(M2~/I)*~, (2ko+ 1) 

/I ~ 24k° 

/10 ~ 22k°, 

, ~1 "~ 22k°+ 1 ' 
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To give an example we derive (6.10) [-the derivation of (6.11) and (6.12) are 
completely analogous]. By (5.1), observing that b'/b < 2 k° and using the inductive 
assumptions together with (6.9)~, one has for i<j, 

AZFa [ 2 2  ~+2 8 2~  2] 
E('+'__<(E(')): ~ ...... 1 + ) ¢~- + ~ _~ ---~, ~' 

where A [which is a bound on a of (5.1)] is given by 

+ 3  

x [3MMKoV (2~+2~k°~ 2 
\ { , )  j 

Since ? > 2, k o > 3/2, K o > 9, and 4, < 1, 

43222~4 { .  2k°22k°i < A < 14KZ?224k°M(MiVl)4{.  2k°22k°i, 

from which (6.10) follows. 
Now, notice that S can be written as 

S = rfl~l]/'2M~ (6.13) 
with some r>11/10.  

To prove (6.5)j+1, let S o - f i r / ( < S )  and use (6.10) with i=1  . . . . .  j, to get 

E(J+I)-<E2'+' (1 (fl~j-,)2, 
i=0 

= LE/> . . . .  ~ " = '  ~A 
<(SoE) v+~ . 

In order to prove (6.6)j+1, observe that conditions (6.2) and (6.13) imply the 
following bounds 

fl0 1 - 11 5 fl0/~0~g ~2 ~ .  S 
- -  < 0 ~*'  S ~ < 7-2' S S o l o  >4579.  

Now, (6.6)j+ ~ is equivalent to 

W(i)<={,(~ 
i=O 

and, by (6.11), (6.12), (6.14), and (6.2) one has 
J 

E 
i=0 

2J-+2 , 

i=1 

< X E  ~ 

(6.14) 

(6.15) 



136 A. Celletti and L. Chierchia 

Analogously, in order to prove (6.8)j+ a use condition (6.2), (6.13) and the fact 

that (K1"~1/21 1 

\Ko]  K~o < 27~ 

to get the bounds 

2Mill .-~&l n/~-. 1 
< 2 1 0  - 9  - ' u V " l  < . . . . .  • 

SU ' ~ 3238 

Thus, recalling that r > 11/10, one obtains 

2M ~=o ~ W(~°<2Jf/I~IE+2JfI~a(X°E)2~t 1 + log(XoE]/~)_~ ~ 

<SUE 10-9+ r y -  1+  log3238 <SUE. 

Finally, (6.15) and (6.16) imply immediately (6.3) and (6.4). [] 

(6.16) 

7. Application to the Hamiltonian (HI) 

In this section we apply the above KAM algorithm to the KAM-surfaces equation 
associated to the Hamiltonian (H1), namely 

D-=c° ~-0 + ~7' (7.1) D2u = 8[sin(0 + u) + sin(0 + u -  t)~, 

and prove the following 

Theorem 1. Letco=(~/5-1)/2andlet¢=(21t.  10) -1 (~4.8 .10-s) ,  ~o=0.015. Then 
Eq. (7.1) admits a unique solution u in ~p(~, Q; C) with vanishing mean-value 

For such solution one has 

(u) ==- S u(O,t;e) dOdt 

lul¢,Q<0.182, (7.2) 

0.22 < tUo(~Z, 0; 0.015)1 < luol¢,Q < 0.2419. 

Furthermore, if v is the polynomial approximant, 

lo 
v(O,t;e) =- Z um(O,t) d,  (urn) = 0 ,  (7.3) 

/ = 1  

where the ut°" s are the unique trigonometric polynomials (of  degree l) satisfying (EP) 
with g = cosx + cos (x-  t), then, for t o = 24, one has 

lu--vle, Q < 6.84,10 -5 , lUo-Vole, o<3.096.10 -3 . 

We split the proof of the theorem in four further lemmata, two of which can be 
proven with the aid of a computer. The first is a general estimate on the error 
function relative to approximants of type (7.3). 
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Lemma 7. Let  f ( x ,  t; e.) = eg(x, t), let v be as in (7.3) and let e be the associated error 
function ( c f  (AE)). Let ~, ~ > 0 and denote by P the polynomial in ~ given by 

IO 
P -  Z lu">l¢o ~, l=l 

which is an upper bound on [vie e. Then 

f Uo lele, e < e  to+l _ _  Ic~ gl,+v Io! 

+ (sup ,a:g],)'o~' (U-0' 
\2<-1<10 I=1 l~- 

Proof  By definition of u (t) one has 

e =- Day + egx(0 + v, t) 
I l 1 l ] 

= e gx(0 + v, t ) -  [io ~xg~ 

{I (lu(i)l¢)k'~l (7.4) 
~ , , , : ~  U,., ) J '  

AFg l~ll6~xg xI! 10(I0- 1 ' 2  gh 2 l' I~1 (U(i))ki , 
l=l h=lo k~X~ "= ki! 

Ikh =l 
which implies 

Uo ) 

10x gle+v,~ lo! \2~l~to 
lej¢,o< O ~o+* - -  + ( sup k~gl¢ 

k t=l h=Io ke•h i=l ki! J J  
Ikh =t 

Now, the term in curly brackets in the above expression can be written as 

' o -*  e '  , o - ,  , o - ,  h fU.)[{, 
2 1 ]  2 2 0 h E  ~1 /=1 1=1 h=l ke~h i= ki! 

Ikh =z 
=21!10--1 p1 /O--IZ /°--12 Ol ~ FI [u(i)]~i 

1=1 h=l /=1 k e;TUt i=1 /~i ] 
[kh =h 

,o-1 pt Io-1 ~ lu(i)[~ 
= Z  1~ Z o ' Z  []  I=1 /=1 k e,zUl i=1 ki! 

Lemma 8 (Computer-Assisted). Let  Go = 1/10; let v and O be as in Theorem i 
(1 o = 24) and let e be the associated error fimction. Then 

Jr[co, Q<0.1819= V, [v0[¢o,~<0.2388 =- V1, [eleo,~< 8.023 ' 1 0 - 1 ° - E .  

This lemma has been proven by the computer program "INITIAL" reported in 
Appendix D. The ideas on which the program is based are the following. The 
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system (EP) is readily solved in Fourier representation. In fact 

:1 sin(0_t) 1 u " ' = - [ ~ s i n 0 +  (, ~)2 

= 2 ( e i ° - e - i ° )+  (1--o)) 2 ( e i ( ° - ° - e - i ( ° - ° )  ' 

and the Fourier coefficients of u (~+ 1), for l>  1, are given by 

- 1  ~ ( 1 +  1 ) _ _  ~(k)  ' ,  ~ ( l +  1 ) _ _  (~ 
(.,m~ (con + m) 2 ~x~, y' ~'~"'m' "C0, o~ = " ,  

where the qo (k) for k e @ are the trigonometric polynomials given by 

qCk) -- 0~ +... + k~ [sin 0 + sin (0-- t)] [I - -  
j= ~ kfl 

= 1 [((- l)N~eiO e_iO ) + ( ( _  l)lki~ei(O_,) _e_i~o_~))] [I - -  
2 j= 1 kj! 

By induction on t, it is easy to see that 

u (l) 
- -  = 2 t'(l) °i(nO + mr) 

i Inl =< l ~(n ,  m) ~ , 

Iml-<z 
where the (t) %.,,) are real coefficients odd in (n, m), i.e., 

_ , , ( l )  clO-., -,,) = ~(~,m)" 

NOW, the first and main part of the program "INITIAL" gives, using interval- 
arithmetic, an accurate evaluation of the numbers p(0 l = I, lo = 24. More ~(n.  m),  ."  ", 

precisely, it is proved in Appendix D that 

%('~ ,,,~- ~ ~ - d (c{~, m)) - (xL, x v ) ,  
(t) where, for each c(,, m), XL, and xv  are rational numbers (with a finite fractional part 

in binary representation), verifying 

lx~-  xLI 
< 4- 10-7. (7.5) 

min(lxd, IXvl) 

The second part of "INITIAL", which, from a computational point of view, is 
trivial with respect to the first one, evaluates the supremum norms according to the 
formulae 

lu~l)[¢ <= Y~ c (°(.,,.) all,l+ re)C_= U (~) , (7.6) 

lU(oOt¢ < F, n c (t) o(I. + ml)~-- rra) (7.7) = (n ,m)  ~ = ~ 1  , 

lo lo 

I%o <- Z ~tg"), Ivole, o <-- E olU] z), (7.8) 
l = i  l = 1  

together with formula (7.4) with ]u(l)]¢ replaced by U (l), sup (la~g]¢) and 
2<=1<=lo 

01o+1,. replaced by Ch(~)=cosh~+cosh2~ and Ch(~+P). x ,5 ~ + P  
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Remark 12. We point out that the program "INITIAL" yields actually much more 
than the bounds indicated in Lemma 8. In fact, it gives "explicitly" the Taylor and 
Fourier representation of the initial approximation v. [The quotation marks refer 
to the fact that the real numbers involved in such representation are given in terms 
of intervals (XL, XU) verifying (7.5).] 

In order to apply the KAM algorithm we still have to provide accurate bounds 
Sk(6) on the small divisor series o-k(6). To do this, we will use the following 
elementary lemma, which is proven in Appendix C. 

Lemma 9. Let co ~(0, 1) be a quadratic irrational number (i.e., co ~ ~1 with z = 1). 
Let 0<6=< 1/2 and let o-k(6) be as in (4.1). Then for any integer N>_ 1 one has 

o-k((~) < Sk (6)-- Z e-~(tnl+lmI) (,,m)~au \con--m~ + 2(yzs~) + Ik) A 

where 

A N-- {(n, m) E Z2\(0, 0) such that - ( N -  1) < n__< ( U -  1), con-  ~ < m < con + ~}, 

and, setting ~ -  6(1 + (n), 

S~) = 3e~/2 e-~(u- 1) 1__ (2 + (2N + l)e + N2c~2), 
- -  ( Z 3  

Sire = 3e~/2 e -,(N- 1) ~ (24 + (24N + 36)e 

+ (12N 2 + 24N + 14)e z + (4N a + 6N 2 + 4N + 1)c~ 3 + N4~4), 

io__ _4 i1 = 1 + 6  . 
~ '  U 8(1 - 

In order to apply this lemma in an effective way one should use it in 
conjunction with a straightforward computer-assisted evaluation of the finite sum 
over As appearing in the definition of s~V)(6). To give an example, one can prove 
bounds of the following type: 

120 < ao(~o) < S(o 1 v o)(~o) < 122 ,  

242 < o-o(~o)< S(o35 °)(~o) < 244, 

485 < o-0(1) < S(ol ° °°)(~o)< 486, 

where the left-hand-side values are obtained by replacing the series in o-k by the 
finite sums over Au. 

Finally, we have 

Lemma 10 (Computer-Assisted). Let v, e, V, VI and E be as in Lemma 8 and set 
M--1 + V~, ~t = ( 1 -  VO-1. Let v (j) and e (j) (v (°) - v ,  e (°) - e )  be the sequences of  
functions yielded by iteratively applying Lemma 1 of Sect. 2. Let V (j), V(~ j), and E (j) 
( V (°) - V, V(1 °) =- V 1, E (°) ~ E)  be the sequences of  numbers obtained by applying the 
KAM algorithm of Sect. 5 with 

~j- ~- 6j=-~j-~j+~= ~ f  , ~o--1/10, 
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and with s k replaced by (see Lemma 9) s~NkJ~)(bj) with 

g(d)=250.2  ~ , N(~i)= 350 • 2J ( j< 10); N~J)- 50000 (]> 10). 

(Recall that in Lemma 4 one can take b'= b.) Then the KAM algorithm converges. 
More precisely, if ~ is as in Lemma 6, setting ~ . -  ~ao, one has 

~f~E ~1°) < 2.884.10- 6, (7.9) 

[U - -  V(10)1{,/2, Q "~ 4.4" 10-12, (7.10) 

]uo - V(oa°)l~,/z,Q < 1.093- 10- 6,  (7.11) 

where ~ is computed at (M (~°), M(~°)M ~°), ~,~, F3) with F3---max{l, 
oCh(~, + V~°))}. 

Theorem 1 is a corollary of this lemma with ~ -  ~,/2. 
The proof of Lemma 10 is based on a straightforward translation in computer- 

language of the explicit formulae indicated above. 
The upper bounds in (7.2) are obtained by observing that 

[u[e,~<iu-v[e,~+[vl¢,~, [Uole,~<[Uo-Vole,~+[vo[~,~, 
and using Lemma 8. The lower bound in (7.2) is based on a computer-assisted 
evaluation of Vo(rC, 0; 0.015) and on the inequality 

lUo(rC, 0; 0.015)1 > lVo(rC, 0; 0.015)1 - l u o -  vol~,/z,o. 

8. Application to the Standard Map 

Here we consider, in a way completely analogous to the preceding section, the 
KAM-curve equation for the standard-map, i.e., 

Theorem 2. Let ~ o = ( ~ - 1 ) ~  and let ¢ =(2 9. 10)-1 (~ 1.96' 10 -% ~ =0.65. Then 
Eq. (8.1) has a unique solution u s~p(~, ~; C) with vanishing mean-value on T. For 
such a function one has 

tul~,e <0.2528, 

0.35 < lu0(rc; 0.65)1 < luol¢.~ < 0.3684. 

Furthermore, if v is the analog of(7.3) in Theorem 1 with lo=38, 

lo 
v(O; ~) = Z u~Z)(O) el , (u (1)) = 0, (t o = 38), 

/=1 

then 

[u-v[¢,e <2.512.10 -5 ,  tuo-vol¢,Q<l.588.10 -3 . 

The proof of this theorem is obtained by following the strategy of the preceding 
section with few obvious changes. More precisely, Lemma 7 and its proof hold 
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identically for e, v satisfying the analog of (AE), i.e., 

e : O Z v  q- egx(O + v). (8.2) 

As for the bounds s~N)(6) on the small-divisor series (4.2), one sees easily from the 
proof of Lemma 9 (see Appendix C) that one can take 

s~m(6)- ~ e + S~ m 
n=l in (~_~)J 4 

where the S~ m are as in Lemma 9. 
Now the modifications indicated in Appendix D of the program "INITIAL" 

~together with the KAM algorithm yields 

Lemma 11 (Computer-Assisted). Let v, ~, and ~ be as in Theorem 2 (I0 = 38) and let e 
be given by (8.2). Then 

[vl~,e <0.2527, [Vo1¢,o<0.3668, lel¢,~ < 4.392' 10 .9 . 

Moreover, setting ~. = ~.8 and Ch(~)=-cosh ~, Lemma 10 holds word-by-word if one 
substitutes (7.9), (7.10), (7.11) with 

SUE (s) < 2.247.10-  29, 

lu - v(8)1~./2, ~ < 1.372" 1 O- 34, 

lU0 - -  V(8)t¢,/2, 0 < 7.1" I0 -  30. 

9. Two Numerical Hints 

There are several numericalexperiments that one can carry out in relation with the 
methods presented in this paper. 

4 . 5  

3 . 5  

0 

Fig. 1 

h i 2  ~ 3/4"~ 2~ 
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To mention an example related to the (H1)-model, a numerical evaluation of 

sup sup te(O,t;e)f=-m(~), 
(0, t)~T 2 leI=Q 

where e is the error function associated to the polynomial approximation (7.3) with 
l 0 = 38, indicates that M(Q) < 10- 5 ( ~ ~) for Q < 0.026, while for ~ ___ 0.031 M(Q) ~ Q, 
suggesting that a drastic phenomenon takes place for complex values of e around 
the believed break-down threshold (~  0.027). 

Another type of experiment, related to the standard map, is synthesized by 
Figs. 1-4. 

3°5  

0 

Fig. 2 

4 . 5  

3 , 5  

Fig. 3 
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4 . 5  
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3 . 5  

0 

Fig. 4 

n / 2  n 3 / 4 n  2 n 

Figures 1 and 3 reproduce the graphs of 

(x, y) = (0 + v(O; ~), co + v(O; ~ ) -  v (O-  co; ~)) 

for, respectively, e=0.97 and e =  1, where v is the polynomial approximation of 
Theorem 2. In Figs. 2 and 4 we took some initial (x0, Yo) lying on the graphs ot, 
respectively, Figs. 1 and 3, and plot the evolution of such initial data according to 
the standard-map flow (20000 iterations). Figures 1 and 2 seem to be identical. 

Appendix A 

Proof  of  Lemma 2. Consider first a holomorphic  function ho: A¢,QcCd+2~C. 
Then, Cauchy's integral formula implies, for any j, 

Oho(O,t;e) = i ho(O 1 . . . .  ,~i,...,Od, t;e) 
00i ¢-0.0 2rci I~-!A =a (~1- 0j) 2 

Now, if h e Np(¢, ~; Ca), (A1) implies 

th0te_~,e = sup c i 
Icl=l i=1 ~ 1 -  

< tclsup= ~ Z. 00i e-~,~ tcll 

< sup Ihil¢,e~) 11c i 
I~1=1 " 

~ - 2  2 Ihle, e. [ ]  

d( ~ - l l h l e ,  Q. J ~-,~,~ 

(At) 
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Proof of Lemma 3. As above, let us first prove 

[0~o~D - ~hol¢-~,o = o-~(2c3)Jhol¢,~ (A2) 

for a holomorphic function ho : A¢,Q-+C, with vanishing mean value. 
Denote by ]1' H¢,~ the LE-norm 

dOdt 2 - -  Ilhol]e,e= sup ~ Iho(O+ia, t+ib;e)l 2 (27z)a+l. 
la~l . . . . .  taat < ~ T a + 

I,q__<~, 

Then, for any v =(v~ .. . .  , vd)~ ( -  l, J}'~, ~ ( -  1,1), one has 

sup Z e2("~+~mlfio,.,~,(e)l z< z Ilhol[¢,~. (A3) 
I~1 _-< e (n, m) 

To prove (A3), let, first, 4 '<  ~ and consider the function 

h'o - ho(O -- ivy', t --  i#~' ; e). 

Such function belongs to Np(~-4 ' ,  ~; C) and Cauchy's theorem implies 

Thus, Parseval's identity yields 

dOdt 2 
E fo(.,m, 2e2¢'("'"+mu)= xd+ ( , th'°tz (27Z) d + ~  < Ilhol]¢.o. 

Taking the supremum over 4' <4  one obtains (A3). Now, consider first the 
differential case D = co. S0 + 0t. F rom the maximum principle, Schwarz inequality, 
(DC) and (A3), it follows (dropping the index 0) 

e i (n 'O + mt) 

' (co.n+m) ¢_~,~ 

= sup sup Z e (n .  v + mu) ( ¢ -  a) 

I~J_-<o(v, tO~{-1,t} a~ (n, *o ' (CO'n+tt0 

=<sup~[~(n'm)l(.~,~e2(n'~+mtO¢) 1 / 2 e - ' ~ ( I n l l + l m l ) l ' t  =<o Ico" ]nXn + m] 

-<ai(26 ) sup 2 I~i.,m)l 2 Z e2("'~+m")¢ 
M < ~ (., m) u, 

< at(26) If hll ¢.e ~ o-,(26) Ih[¢, e. 

The case of the finite difference operator O [see (DM)] is proved in exactly the same 

way substituting Ta+ 1with T, (co • n + m) with 2sin ( ~ )  and using (2.9) in place of 

(DC). 
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Now, let h~-_~p(~,~;C d) and 1=0. Then, by (A2), 

- 1  2 - -  i [D hl¢-a,o= ~ ID-~h~l~-~,e<ao(26) 2 ~ lh~l~,e-O'o(2CS)21hl~,e. 

If 1 = 1, then 

lOoD-1 2 - -  D-1 ~.Ohi 2_,~,~ hle_~,~= sup ~ ~ c~ 
Ici = 1 j ~ j  

--< I~'sup: 1 ~" (~ [O°'D-lh'[¢-°'°[c'i[) 2 

< I~Isup= 1 ~" (~ (Tl(2~)[hil{'°lCJl) 2 

= crl(2~)2 Ihle, o. 

Finally, if h e~p(¢, Q; Aa(Ca)), applying (A2) to the functions ~ cjhij, one has 
i 

iD-1 2 _ ~ D-lhiycj2 h]¢_~,Q-- Hsup= 1 ~" l¢-~,~ 

<0"0(25)2 ,clSUp: 1 ,~" ~cihiJ¢% 

= O'o(26)2 Ihl~,o. [] 

Appendix B 

The estimates of Lemma 5 (for both the Hamiltonian and the mapping case) are 
based on the following fact. Let t >___ 1, 0 < 6 <=2, ± then 

,~z. Ini'e-~i"h <2(ez)a/2 F-(-d) 

To prove (B1), let Q , -  {x e R d : ni < xi < ni + 1, i-- 1 .... , d}. Then 

y. lnlte -~1"t~ 
n ~ Z  a 

<2a E lnl te-~l'l~ 
n ~ N  a 

<2a ~ eaa .f Ix[ te-~i;'ldx 
h e N  a Qn  

=e a~ j Ixlte-'~lXtdx 
R a  

=eae'(~÷rt+a-le-e'~dr).area{xeRa:]x[=l} 

= ea ~ F(t + d) 2~ a/2 
(~t + d 

(m) 
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Now, in the Hamiltonian case, since ? > 2, z > d > 1 

cq(6)<2 2 0 m-2 e-alml+?2 .*o2 ~ e-@"l 

< 2  2 +272(]//7+l)(en)al 2 f (2 ( z+ l )+d)  6_(2(,+o+~+d ) 
r(d/2) 

( 1 "~112 (F(2(.r_t_l)_t_d)~,iz 6_(~+t+~ ) 
< ?(4en)a142(l//~ + 1)1I 2 

\1  + 16(e+V~) j \ r(dl2) ) 
< KD,( 5 - k,. 

For the mapping case, using (2.9) and again (BI) with d= 1, 

7(.~nZ(~+',e-~.) ',2 

t 2 - *+1+~-  

which actually gives a better bound than the one indicated in the lemma. 

Appendix C 

Proof of  Lemma 9. Let 

A~v-~ {(n,m)e ZZ : n> N, (on---} < m  < oon + 3} , 

B=- {(n,m) eZZ:mn+-}<m}  , 

,,(k) e - 0(Inl + Iml) 
t*(n'm) ~ \(DH -- m /  

Then, one has 

Since, for any n, 

/ (n,m)eZ '~(n, mJ 
\ ( n ,  m) * (0, o) 

=2/}-]a(k) a_ 2 ,,(k) ± 9  r,(k) \ 1 / 2  
(n,m) " E ~B "*'(n,m)) ~(n,m) ~ ~ 

a g  

using (DC) with z = 1, one gets 

Y, alk,!m)<372e ai2 ~ e-a(i+<°)"nZ(k+l). 
A~ n =N 

This last sum can be computed explicitly, using the formula 

d t e-aN 
e-~"nl=(--1) t l ~ N .  

.=N dil I 1--e -p '  
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Thus, using the estimate 

one sees that 

Now, let 

Then 

where 

e - / ~  

1 - e  -a  

1 mm<~, Vfl>0, 

V' ,~(k) . I  if(N) 
~(n, m) ~" '-'k " 

A* 

D ( . , m ) = _ { ( x , y ) ~ R 2 : n - i  <_xNn, 

co(x- n) + m -  1 <= y <= co(x - n) + m}. 

e-a(Ixl +fyl) 
..(k) < e ~ ~ u(,,m) Y~ ~ xZkdxdy=e'5I'k, 

n n o,,,,.., ] c o x - y l  

e- a(Ixt + lr[) 
I'k = (, x2kdxdy. 

Making the linear change of variables (4, rl) = (x, y -  cox) one obtains 

I'k= e 6~ eO(l+~)¢~2kd~ +e-6" I e~(l-~)~2~d~ 

+e-a' l ie- '~( l+~°g~2kd~)~dq.  

Thus, recalling that ~-= 6(1 + co), one obtains 

2 6/~, e - ,  2 6/2!21 4 
I'o= I--CO = Xz ~ dq< l--co2 ~ ~lg d q = - a -  I°" 

Analogously, one obtains 

8 1 
1'1 = 6 a (1 - c~2) 3 (e- 6/2(1 + 3(9 2) - e - ~/2~°(3co + co 3) - r) 

with some r > 0. Thus 

r~< 63 (1-co~)3 (1-~o)3+60-co2)+ ~- (1 +3o~ ~) 

< ~  1+68(1-co)~ -i~. [] 

Appendix D 

Here, we report the program "INITIAL",  which evaluates strict upper bounds on 
the norms relative to the initial approximant v. 

The program is written in F O R T R A N  and must, because of the interval- 
arithmetic subroutines, be run on a VAX. The basic informations on the structure 
of a VAX machine can be found in [39]. 



148 A. Celletti and L. C6ierchia 

We will try to maintain the notation as close as possible to that of Sect. 7, which 
illustrates the basic strategy of the program. 

All the functions involved in the program will be trigonometric polynomials of 
the form (7.3) and, with abuse of language, we will refer to the real number c as to 
Fourier coefficients. A function "a" of the form (7.3) will be represented by (A, N l, 
N2, NA, MAXA), where A is a vector of length NA listing the Fourier coefficients 
of a, NI,  and N2 correspond to the relative Fourier indices (n, m) and MAXA is the 
maximum of {InJ, ImJ}. 

The functions u(1),..., u(24) will be represented by a unique quintuple (C, N 1, N2, 
NC, MAXC); in this case NC represents the sum of the number of Fourier 
coefficients of all the u's and MAXC is now also a vector [MAXC(i) refers to u(i)]. 

All the real numbers R (or vectors) will be represented by a couple of numbers, 
RD and RU, which are left and right ends of an interval containing R. (In the 
comments R will refer, for short, to such a couple.) 

Comments are preceded by "C...". Rigorous bounds on results of a sequence of 
elementary operations will be obtained by successive calls of the relative interval- 
arithmetic subroutines and, to simplify the reading, these sequences of calls will be 
preceded by "C-OP." followed by the FORTRAN standard notation relative to 
the sequence of elementary operations in question. 

PROGRAM INITIAL 
C 
C...This program must be run in "G_floating" (compare FUNCTION UP). 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION CD(5512),CU(5512),NI(5512),N2(5512),NC(0:24),MAXC(24) 
DIMENSION AD(5512),AU(5512),NAI(5512),NA2(5512) 
DIMENSION FACTD(0:24),FACTU(0:24),K(24) 
DIMENSION RMD(-24:24,-24:24),RMU(-24:24,-24:24) 
DIMENSION UD(24),UU(24),UID(24),UIU(24) 
PARAMETER (PI=I.D+OO,P2=2.D+OO,P5=5.D+00,HALF=.5D+O0) 

C 
C...The numbers RHO = 0.015 and CSI = i/i0 are given (Since such numbers 

do not have a finite binary expansion we will substitute them 
with upper bounds provided by the interval-arithmetic subroutines, 
the relative lower bounds RHOD and CSID will never be used.) 

X=I5.D+00 
Y=I000.D+00 
CALL DIV(X,X,Y,Y,RHOD,RHO) 
X=PI 
Y=I0.D+00 
CALL DIV(X,X,Y,Y,CSID,CSI) 

C 
J0=24 

C 
C...Table of the factorials used in the program: FACT(n)=n! 
C 

FACTD(0)=I 
FACTU(0)=I 

DO 50 I=l,J0 
C-OP. FACT(I)=FACT(I-I)*I 

FACTD(I)=I 
FACTU(I)=I 
CALL MUL(FACTD(I-I),FACTU(I-1),FACTD(I),FACTU(I)) 

50 CONTINUE 
C 
C... Definition of omega : OM=(SQRT(5.D+00)-I)/2 

XD=P5 
XU=P5 
CALL SQR(XD,XU) 
CALL SUM(-PI,-PI,XD,XU) 
CALL DIV(XD,XU,P2,P2,OMD,OMU) 
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C 
C... The function u(1) is given: 

NC(1)=4 
~AXC(1)~I 
Nl(1)=l 
N2(I)=0 

C-OP. C(I)=.5/0M*'2 
XD=OMD 
XU=OMU 
CALL SQ(XD,XU) 
CALL DIV(HALF,HALF,XD,XU,CD(1),CU(1)) 
NI(2)=I 
N2(2)=-I 

C-OP. C(2)=.5/(I-OM)*'2 
XD=PI 
XU=PI 
CALL SUM(-OMU,-OMD,XD,XU) 
CALL SQ(XD,XU) 
CALL DIV(HALF,HALF,XD,XU,CD(2),CU(2)) 
NI(3)=-I 
N2(3)=0 
CD(3)=-CU(1) 
CU(3)=-CD(1) 
NI(4)=-I 
N2(4)=I 
CD(4)=-CU(2) 
CU(4)=-CD(2) 

C 
C...u(J) is constructed from u(J-l),u(J-2), .... u(1): 
C 

DO 1 I=l,J0 
E(1)=0 

1 CONTINUE 
DO 2 J=2,J0 

C 
C...The vector K (defined in the next comment )is reset equal to 
C zero (for this it is enough to set K(1)=0,see FUNCTION NK): 
C 

E( 1 )=0 

:...The FUNCTION NK(K,N) provides iteratively the integer vectors 
K(1),...,K(N), such that K(1)+2*K(2)+...+N*E(N)=N (the first 
call must be done with the vector K identically zero and the 
first output is K=(0,...,0,1), the last one is K=(N,0,...,0); 
NK is equal to zero after the last call, otherwise is one). 

1000 NNK=NK(K,J-I) 

MODK=0 
DO 100 I=l,J-i 
MODK=MODK+K(I) 
CONTINUE i00 

Z 
2 . . .  the function A=(d/dtheta)**Ik I 

NA=4 
MAXA=I 
NAI(1)=I 
NA2(1)=0 
AD(1)=HALF*(-I)**MODK 
AU(1)=AD(1) 
NAI(2)=-I 
NA2(2)=0 
AD(2)=-HALF 
AU(2)=AD(2) 
NAI(3)=I 
NA2(3)=-I 
AD(3)=AD(1) 
AU(3)=AD(3) 
NAI(4)=-I 
NA2(4)=I 
AD(4)=AD(2) 
AU(4)=AD(4) 

[sin theta + sin(theta-t)] is given: 
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C 
RD=PI 
RU=PI 

DO 3 I=l,J-I 
C 
C...The Fourier coefficients of the function phi(k) are computed: 
C 

DO 4 II=I,K(1) 
C 
C...The subroutine FMULT computes the Fourier coefficients of the 
C product of a function A with u(I).The result is called again A. 
C 

CALL FMUL(CD,CU,NI,N2,NC,MAXC,I,AD,AU,NAI,NA2,NA,MAXA) 
4 CONTINUE 

C 
C 
C...Computation of kl!*k2I*...*kJ! 
C 

IF (K(I).GE.2) THEN 
C-OP. R=R*FACT(K(I)) 

CALL MUL(FACTD(K(I)),FACTU(K(I)),ED,RU) 
ENDIF 

C 
3 CONTINUE 

C 
C...The (n,m)-Fourier coefficients of phi(k) are added up in the 
C auxiliary matrix RM(n,m). 
C 

DO 5 N=I,NA 
C-OP. RM(NAI(N),NA2(N))=RM(NAI(N),NA2(N))+A(N)/E 

CALL DIV(AD(N),AU(N),RD,RU,XD,XU) 
CALL SUM(XD,XU,RMD(NAI(N),NA2(N)),RMU(NAI(N),NA2(N))) 

5 CONTINUE 
C 
C...Update of MAXC(j): 
C 

IF (MAXA.GT.MAXC(J)) MAXC(J)=MAXA 
IF (NNK.EQ.I) GOTO I000 

C 
C...Definition of u(j) and clearing of the matrix RM: 
C 

NN=NC(J-I) 
C 
C...Since we chose to work with functions with vanishing mean value, we 
C have RM(0,0)=0 (the computer will actually give a value of about 
C + or - 10"*-16 ,due to approximations involved in evaluating cancel- 
C lations): 
C 

RMD(0,0)=0. 
RMU(0,0)=0. 

C 
C... (D**-2) phi(k) is computed: 
C 

DO 6 I=-MAXC(J),MAXC(J) 
DO 6 II=-MAXC(J),MAXC(J) 

C-OP. IF (RM(I,II).NE.0.) THEN 
IF ((RMD(I,II).NE.0.).OR.(RMU(I,II).NE.0.)) THEN 
NN=NN+I 
NI(NN)=I 
N2(NN)=II 

C-OP. C(NN)=RM(I,II)/(OM*I+II)**2 
XD=I 
XU=I 
CALL MUL(OMD,OMU,XD,XU) 
R=II 
CALL SUM(R,R,XD,XU) 
CALL SQ(XD,XU) 
CALL DIV(RMD(I,II),RMU(I,II),XD,XU,CD(NN),CU(NN)) 
RMD(I,II)=0. 
RMU(I,II)=0. 

ENDIF 
6 CONTINUE 

NC(J)=NN 
2 CONTINUE 



Construction of Analytic KAM Surfaces 151 

C 
C...The computation of the Fourier coefficients of u(j) (j=l .... ,24) is 
C completed. 
C...The second part of the program, where V, vl, E of Lemma 8 are compu- 
C ted according to formulae (7.6),(7.7),(7.8), and (7.1), follows. 
C 
C... EXC=EXP(CSI) 

CALL EXPN(CSI,CSI,EXCD,EXCU) 
DO 7 J=l,J0 
DO 7 I=NC(J-I)+I,NC(J) 

C 
C...Since the u's are odd~ 

IF ((NI(I).GT.0).OE.((NI(I).EQ.0).AND.(N2(I).GT.0))) THEN 
C-OP. EX=EXP((NI(I)+ABS(N2(I)))*CSI) 

M=NI(I)+ABS(N2(I)) 
CALL POWER(M,EXCD,EXCU,EXD,EXU) 

C-OP. U(J)=U(J)+(EX+I/EX)*ABS(C(I)) 
CALL DIV(PI,PI,EXD,EXU,XD,XU) 
CALL SUM(EXD,EXU,XD,XU) 
CALL MUL(ABS(CD(I)),ABS(CU(I)),XD,XU) 
CALL SUM(XD,XU,UD(J),UU(J)) 

C-0P. UI(J)=UI(J)+(EX+I/EX)*ABS(C(I))*NI(I) 
X=Nl(I) 
CALL MUL(X,X,XD,XU) 
CALL SUM(XD,XU,UID(J),UIU(J)) 

ENDIF 
CONTINUE 7 

C 
DO 8 J=l,J0 

C-OP. V=V+RHO**J*U(J) 
CALL POWER(J,RHO,RHO,YD,YU) 
XD=YD 
XU=YU 
CALL MUL(UD(J),UU(J),XD,XU) 
CALL SUM(XD,XU,VD,VU) 

C-OP. VI=VI+RHO**J*UI(J) 
XD=YD 
XU=YU 
CALL MUL(UID(J),UIU(J),XD,XU) 
CALL SUM(XD,XU,VlD,VIU) 

8 CONTINUE 
DO 9 J=l,J0-1 

C-OP. S=0. 
SD=0. 
SU=0. 
K(1)=0 

!010 NNK=NK(E,J) 
C-OP. P=I. 

PD=PI 
PU=PI 

DO 10 N=I,J 
C-OP. P=P*U(N)**K(N)/FACT(E(N)) 

M=K(N) 
CALL POWER(M,UD(N),UU(N),XD,XU) 
BD=FACTD(E(N)) 
BU=FACTU(E(N)) 
CALL DIV(XD,XU,BD,BU,XD,XU) 
CALL MUL(XD,XU,PD,PU) 

10 CONTINUE 
C-OP. S=S+P 

CALL SUM(PD,PU,SD,SU) 
IF (NNK.EQ.I) GO TO 1010 

C-OP. E=E+V**J/FACT(J)-RHO**J*S 
CALL POWER(J,VD,VU,YD,YU) 
CALL POWER(J,RHO,RHO,ZD,ZU) 
XD=YD 
XU=YU 
BD=FACTD(J) 
BU=FACTU(J) 
CALL DIV(XD,XU,BD,BU,XD,XU) 
CALL MUL(SD,SU,ZD,ZU) 
CALL SUM(-ZU,-ZD,XD,XU) 
CALL SUM(XD,XU,ED,EU) 

9 CONTINUE 
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C-OP. EX=EXP(CSI) 
EXD=EXCD 
EXU=EXCU 

C-OP. E=E*RHO*(EX+I/EX+EX**2+I/EX**2)/2 
C-OP. EXI=EXP(CSI+V) 
C-OP. E=E+(V**J0/FACT(J0))*RHO*(EXI+I/EXI+EXI**2+I/EXI**2)/2 

CALL MUL(VD,VU,YD,YU) 
BD=FACTD(J0) 
BU=FACTU(J0) 
CALL DIV(YD,YU,BD,BU,YD,YU) 
ZZD=YD 
ZZU=YU 
CALL MUL(RHO,RHO,ED,EU) 
X=2.D+00 
AAD=ED 
AAU=EU 
CALL DIV(AAD,AAU,X,X,ED,EU) 
CALL DIV(PI,PI,EXD,EXU,XD,XU) 
YD=XD 
YU=XU 
CALL SQ(YD,YU) 
ZD=EXD 
ZU=EXU 
CALL SQ(ZD,ZU) 
CALL SUM(EXD,EXU,XD,XU) 
CALL SUM(YD,YU,XD,XU) 
CALL SUM(ZD,ZU,XD,XU) 
CALL MUL(XD,XU,ED,EU) 
XXD=CSI+VD 
XXU=CSI+VU 
CALL EXPN(XXD,XXU,EXID,EXIU) 
CALL DIV(P1,PI,EXID,EXIU,XD,XU) 
YD=XD 
YU=XU 
CALL SQ(YD,YU) 
ZD=EXID 
ZU=EXIU 
CALL SQ(ZD,ZU) 
CALL SUM(EXID,EXIU,XD,XU) 
CALL SUM(YD,YU,XD,XU) 
CALL SUM(ZD,ZU,XD,XU) 
CALL MUL(XD,XU,ZZD,ZZU) 
CALL MUL(RHO,RHO,ZZD,ZZU) 
X=2.D+00 
AAD=ZZD 
AAU=ZZU 
CALL DIV(AAD,AAU,X,X,ZZD,ZZU) 
CALL SUM(ZZD,ZZU,ED,EU) 

C 
C...Tbe computation of the intervals containing the numbers 
C 
C 
C 
C 

C 
C. FUN. 
C 

V, VI, E 
is completed. Now we let the computer convert the result in de- 
cimal notation. That the numbers given in Lemma 8 are (generous) 
upper bounds on VU, vlu, EU follows from, e.g., [39]. 

WRITE(*,*)VD,VlD,ED 
WRITE(*,*)VU,VlU,EU 
END 

FUNCTION NK(K,N) 
DIMENSION K(N) 

KS=K(1) 
K(1)=0 

DO i I=2,N 
IP=I 
IF (K(1).GT.0) GO TO 2 
CONTINUE 
K(N)=I 
NK=I 
IF (N.EQ.I) NE=0 
RETURN 
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2 K(IP)=K(IP)-I 
KS=KS+IP 
IP=IP-I 

DO 10 I=IP,I,-I 
E(I)=ES/I 
KS=KS-I*K(I) 
IF(ES.EQ.0) GOTO 3 

10 CONTINUE 
3 NK=I 

IF (E(1).EQ.N) NE=0 
RETURN 
END 

SUBROUTINE FMUL(CD,CU,NI,N2,NC,MAXC,I0,AD,AU,NAI,NA2,NA,MAXA) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION CD(5512),CU(5512),NI(5512),N2(5512), 

1NC(0:24),MAXC(24) 
DIMENSION AD(5512),AU(5512),NAI(5512),NA2(5512) 
DIMENSION RMD(-24:24,-24:24),RMU(-24:24,-24:24) 
MAXA=MAXC(I0)+MAXA 

DO I0 I=-MAXA,MAXA 
DO 10 II=-MAXA,MAXA 
RMD(I,II)=0. 
RMU(I,II)=0. 

10 CONTINUE 
DO 1 N=NC(I0-1)+I,NC(I0) 
DO 1 M=I,NA 
I=NI(N)+NAI(M) 
iI=N2(N)+NA2(M) 

C-OP. RM(I,II)=RM(I,II)+C(N)*A(M) 
XD=AD(M) 
XU=AU(M) 
CALL MUL(CD(N),CU(N),XD,XU) 
CALL SUM(XD,XU,RMD(I,II),EMU(I,II)) 

1 CONTINUE 
NA= 0 

DO 2 I=-MAXA,MAXA 
DO 2 II=-MAXA,MAXA 

C-OP.IF (RM(I,II).NE.0.) THEN 
IF ((RMD(I,II).NE.0.).OR.(RMU(I,!I).NE.0.)) THEN 
NA=NA+I 
AD(NA)=RMD(I,II) 
AU(NA)=RMU(I,II) 
RMD(I,II)=0. 
RMU(I,II)=0. 
NAI(NA)=I 
NA2(NA)=II 

ENDIF 
2 CONTINUE 

RETURN 
END 

C 
C 
C...The subroutines for the interval-arithmetic follow. 
C We point out that the machine we used indicates automathically 
C several arithmetical errors like overflows or square roots of 
C negative numbers. Running this program on other machines might 
C require the addition of routines controlling such errors. 
C 
C.FUN. 

DOUBLE PRECISION FUNCTION UP(R) 
C 
C...This function gives the smallest strict upper bound on a real number 
C R represented in G_floating (double precision) notation. 
C 

INTEGER*2 KP(4) 
REAL*8 R,X 
EQUIVALENCE (X,EP(1)) 
X=R 

IF (X.GT.0.) THEN 
IF (KP(4).EQ.32767) THEN 
KP(4)=-32768 
UP=X 
RETURN 

C. SUB. 
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ENDIF 
EP(4)=KP(4)+I 

IF (KP(4).NE.0) THEN 
UP=X 
RETURN 

ENDIF 
IF (KP(3).EQ.32767) THEN 
KP(3)=-32768 
UP=X 
RETURN 

ENDIF 
KP(3)=KP(3)+I 

IF (KP(3).NE.0) THEN 
UP=X 
RETURN 

ENDIF 
IF (KP(2).EQ.32767) THEN 
KP(2)=-32768 
UP=X 
RETURN 

ENDIF 
EP(2)=KP(2)+I 

IF (KP(2).NE.0) THEN 
UP=X 
RETURN 

ENDIF 
EP(1)=EP(1)+I 
UP=X 
RETURN 

ELSE IF (X.LT.0.) THEN 
IF (KP(4).EQ.-32768) THEN 
KP(4)=32767 
UP=X 
RETURN 

ENDIF 
KP(4)=KP(4)-I 

IF (KP(4).NE.-I) THEN 
UP=X 
RETURN 

ENDIF 
IF (KP(3).EQ.-32768) THEN 
KP(3)=32767 
UP=X 
RETURN 

ENDIF 
EP(3)=EP(3)-I 

IF (EP(3).NE.-I) THEN 
UP=X 
RETURN 

ENDIF 
IF (KP(2).EQ.-32768) THEN 
KP(2)=32767 
UP=X 
RETURN 

ENDIF 
KP(2)=KP(2)-I 

IF (KP(2).NE.-I) THEN 
UP=X 
RETURN 

ENDIF 
EP(1)=KP(1)-I 
UP=X 
RETURN 

ELSE 
UP=X 
RETURN 

ENDIF 
END 

C.FUN. 
DOUBLE PRECISION FUNCTION DOWN(R) 
IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DOWN=-UP(-R) 
RETURN 
END 
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C 
C...The subroutines for the elementary operations follow. That taking, 
C basically, UP and DOWN of the results given by the computer is 
C enough to get rigorous results follows from [39], pag. 177. 
C 
C.SUB. 

SUBROUTINE SUM(AD,AU,BD,BU) 
C 
C... B=A+B 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
BD=DOWN(AD+BD) 
BU=UP(AU+BU) 
RETURN 
END 

C.SUB. 
SUBROUTINE NUL(AD,AU,BD,BU) 

C 
C... B = A * B 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IF (AD.GE.0.) THEN 
IF (BD.GE.0.) THEN 
BD=DOWN(AD*BD) 
BU=UP(AU*BU) 
RETURN 

ELSE IF (BU.LE.0.) THEN 
BD=DOWN(AU*BD) 
BU=UP(AD*BU) 
RETURN 

ELSE 
BD=DOWN(AU*BD) 
BU=UP(AU*BU) 
RETURN 

ENDIF 
ELSE IF (AU.LE.0.) THEN 
IF (BD.GE.0.) THEN 
B=DOWN(AD*BU) 
BU=UP(AU*BD) 
BD=B 
RETURN 

ELSE IF (BU.LE.0.) THEN 
B=DOWN(AU*BU) 
BU=UP(AD*BD) 
BD=B 
RETURN 

ELSE 
B=DOWN(AD*BU) 
BU=UP(AD*BD) 
BD=B 
RETURN 

ENDIF 
ELSE 
IF (BD.GE.0.) THEN 
BD=DOWN(AD*BU) 
BU=UP(AU*BU) 
RETURN 

ELSE IF (BU.LE.0.) THEN 
B=DOWN(AU*BD) 
BU=UP(AD*BD) 
BD=B 
RETURN 

ELSE 
B=DOWN(AD*BU) 
R=DOWN(AU*BD) 
IF (R.LT.B) B=R 
C=UP(AD*BD) 
R=UP(AU*BU) 
IF (R.GT.C) C=R 
BD=B 
BU=C 
RETURN 

ENDIF 
ENDIF 

END 
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C • SUB. 
SUBROUTINE DIV(AD,AU,BD,BU,CD,CU) 

C 
C... C=A/B 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IF (AD.GE.0.) THEN 
IF (BD.GT.0.) THEN 
CD=DOWN(AD/BU) 
CU=UP(AU/BD) 
RETURN 

ELSE IF (BU.LT°0.) THEN 
CD=DOWN(AU/BU) 
CU=UP(AD/BD) 
RETURN 

ENDIF 
ELSE IF (AU.LE.0.) THEN 
IF (BD.GT.0.) THEN 
CD=DOWN(AD/BD) 
CU=UP(AU/BU) 
RETURN 

ELSE IF (BU.LT.0.) THEN 
CD=DOWN(AU/BD) 
CU=UP(AD/BU) 
RETURN 

ENDIF 
ELSE 
IF (BD,GT.0.) THEN 
CD=DOWN(AD/BD) 
CU=UP(AU/BD) 
RETURN 

ELSE IF (BU.LT.0.) THEN 
CD=DOWN(AU/BU) 
CU=UP(AD/BU) 
RETURN 

ENDIF 
ENDIF 

R=0. 
CD=I/R 
RETURN 
END 

C.SUB. 
SUBROUTINE SQ(AD,AU) 

C 
C... A = A**2 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
IF (AD.GE.0.) THEN 
AD=DOWN(AD*AD) 
AU=UP(AU*AU) 
RETURN 

ELSE IF (AU.LE.0.) THEN 
B=AD 
AD=DOWN(AU*AU) 
AU=UP(B*B) 
RETURN 

ELSE 
B=AD 
AD=DOWN(AD*AU) 
C=UP(B*B) 
AU=UP(AU*AU) 
IF (C.GT.AU) AU=C 
RETURN 

ENDIF 
END 

C.SUB. 
SUBROUTINE SQR(AD,AU) 

C 
C... A = SQRT(A) 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
BD=AD 
BU=AU 
AD=SQRT(AD) 
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I AD=DOWN(AD) 
IF (UP(AD*AD).GT.ED) GO TO 1 
AU=SQRT(AU) 

2 AU=UP(AU) 
IF (DOWN(AU*AU).LT.BU) GO TO 2 
RETURN 
END 

C.SUB. 
SUBROUTINE POWER(M,XD,XU,YD,YU) 

C 
C... Y = Y**M , M positive integer: 
C 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
DIMENSION N(0:20) 

IF (M.EQ.0) THEN 
YD=I.D+00 
YU=I.D+00 
RETURN 

ENDIF 
CALL BIN(M,N,IMIN,IMAX) 
YD=XD 
YU=XU 

DO i I=I,IMIN 
CALL SQ(YD,YU) 

1 CONTINUE 
ZD=YD 
ZU=YU 
II=IMIN 

DO 2 I=IMIN+I,IMAX 
IF (N(1).NE.0) THEN 
12=I 

DO 3 J=l,I2-Ii 
CALL SQ(ZD,ZU) 

3 CONTINUE 
CALL MUL(ZD,ZU,YD,YU) 
Ii=I 

ENDIF 
2 CONTINUE 

RETURN 
END 

C.SUB. 
SUBROUTINE BIN(M,N,IMIN,IMAX) 

C 
C...This subroutine gives the binary decomposition of any strictly 
C positive integer M < 2**20. 
C...The outcomes are the vector N , IMIN and IMAX: 

M = Sum(i=IMIN,..,IMAX) N(i)*2**i. 

DIMENSION N(0:20) 
M0=M 

DO 1 I=0,20 
N(1)=MOD(M0,2) 
M0=M0/2 

I CONTINUE 
C 
C...Computation of IMIN and IMAX: 
C 

I=-i 
2 I=I+l 

IF (N(I).EQ.0) GO TO 2 
IMIN=I 
I=21 

3 I=I-I 
IF (N(I).EQ.0) GO TO 3 
IMAX=I 
RETURN 
END 

C.SUB. 
SUBROUTINE EXPN(AD,AU,BD,BU) 

C 
C... B = EXP(A) , 0 < A < 1/2 : 
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C 
C°°. 
C 

1 
C 
C...R = 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
XD=I .D+00 
XU=I .D+00 
BD=I .D+00 
BU=l .D+00 

R = K! 

RD=I.D+00 
RU=I.D+00 

DO 1 K=1,15 
CALL MUL (AD, AU, XD, XU) 
C=K 
CALL MUL(C,C,RD,RU) 
CALL DIV(XD, XU, RD, EU, YD, YU) 
CALL SUM(YD, YU, BD, BU) 
CONTINUE 

10"*-17 is an upper bound on Sum(k=16,17,...){(i/2)**k/k!} : 
R=I.D-17 
BU=UP ( BU+R ) 
RETURN 
END 

We indicate, now, the modifications necessary to use the above program for the 
standard map case (for ease of notation we symbolically indicate intervals with 
numbers and sequences of calls of interval-arithmetic subroutines with the 
standard F O R T R A N  notation). 

Suppress N2 and NA2; substitute (everywhere it appears) 5512 with 760, 24 
with 38; RM becomes a ( - 3 8 ,  38)-vector. 

Define OM as (SQRT(D5)-- 1) * PI, where "PI" denotes an interval containing 
3.141592653589793 .... 

Add a subroutine COSINE, which evaluates cosx with an accuracy of about 
1 0 " * - 1 6  in the fashion of the above SUBROUT IN E EXPN. 

The function u(1) is given by the following sequence of instructions: NC(1)= 2, 
MAXC(1) = 1, Ul(1) = 1, C(1) = - 1/(4*(COS(OM)- 1)) ,  Nl(2) = - 1, 
C(2)= - C(1). 

The function A = (did theta)**[k[ (sin theta) (which substitutes the function 
A =(did theta)**[k[ [-sin theta + sin(theta-t)] above) is given by the following 
sequence of instructions: NA = 2, M A X A  = 1, NAI(1) = 1, 
A(1) = H A L F * ( -  I)**(K + 1), NAI(2) = - 1, A(2) = HALF. 

In the second part of the program one needs simply to recall that, now, Ch(esi) 
is defined as cosh(esi) (compare Lemma 11). 

Remark 13. It is clear that the efficiency of " INITIAL" can be certainly improved, 
however in order to get "significantly" better results one should probably turn to 
more efficient computers (compare the data reported in Appendix E). Also, we 
tried to make the program as simple as possible so as to reduce the possibility of 
mechanical (and human, of course,) mistakes. 

We conclude by mentioning that the running-time of " INITIAL" on the 
VAX 8600 of the E.T.H. in Zfirich was about, respectively, 60 min of CPU time for 
the standard map and 140min for (H1). The running-times of the "numerical" 
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version of  " I N I T I A L " ,  i.e., a version wi thout  interval-arithmetic,  were about ,  
respectively, 8 and 14 minutes. 

Appendix E 

Here  we repor t  some data  relative to the behaviour  of  the K A M  algor i thm (see 
Sect. 6) with respect to the initial approx imat ion  v in the Hami l ton ian  case (HI). 

Let  vz0 = v be the polynomial  approx imant  (7.3) of  " o r d e r / o ' .  
In  the following table we report  "with four significant digits" (see below) and for 

lo = 1, 2 . . . .  ,24, the m a x i m um  Q for which the K A M  algor i thm with initial 
approx imant  Vto converges yielding a K A M  torus  analytic in ~p(¢, Q; C) for some 

> 0. "With  four significant digits" means that  the K A M  algor i thm diverges if one 
increases the values of  p by 1/10000. (The value of j  at which the a lgor i thm diverges 
is, in the present situation, between 5 and  18.) 

lo e ¢ I o ~o 

1 0.0008 0.8/2 l° 13 0.0108 0.16/2 i3 
2 0.0023 0.6/2 il 14 0.0116 0.15/2 il 
3 0.0033 0.5/2 i° 15 0.0122 0.15/216 
4 0.005 0.5/213 16 0.0126 0.14/216 
5 0.0055 0.4/212 17 0.0132 0.14/2 il 
6 0.0068 0.3/2 ll 18 0.0135 0.13/2 ll 
7 0.008 0.3/2 u 19 0.0140 0.13/2 ll 
8 0.0078 0.25/2 ll 20 0.0145 0.12/2 i3 
9 0.009 0.2/213 21 0.0138 0.106/2 i4 

10 0.0097 0.19/2 ll 22 0.0144 0.105/2 i3 
11 0.0104 0.18/2 il 23 0.0146 0.I03/2 ii 
12 0.0113 0.17/2 lz 24 0.015 0.1/2 ia 
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