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Abstract: A general direct method, alternative to KAM theory, apt to deal with
small divisor problems in the real-analytic category, is presented and tested on sev-
eral small divisor problems including the construction of maximal quasi-periodic
solutions for nearly-integrable non-degenerate Hamiltonian or Lagrangian systems
and the construction of lower dimensional resonant tori for nearly-integrable Hamil-
tonian systems. The method is based on an explicit graph theoretical representation
of the formal power series solutions, which allows to prove compensations among
the monomials forming such representation.
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1. Introduction

1. Small divisors are ubiquitous in non-linear conservative dynamical systems; they
arise, for example, in: conjugacy problems such as linearizations of germs of ana-
lytic functions or linearizations of circle maps (see, e.g., [1] and references therein);
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acknowledges partial support by CNR-GNAFA. The authors gratefully acknowledge helpful discussions
with C. Liverani.
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in constructing invariant tori or curves for Hamiltonian flows or symplectic diffeo-
morphisms ([2] and references therein); in constructing periodic or quasi-periodic
solutions for non-linear PDE's (partial differential equations) carrying a Hamiltonian
structure (see, e.g., [25, 32, 12] and references therein) or for systems of elliptic
PDE's (see [10]).

Essentially, the only general technique used to overcome small divisor problems
has been the powerful KAM theory started by A.N. Kolmogorov in the early fifties
and developed in the early sixties by V.I. Arnold and J.K. Moser (see [2] and
references therein).

This paper might be viewed as an attempt to develop general tools, which are
different from those of KAM theory, apt to solve small divisor problems in the real
analytic category.

2. The strategy that we shall pursue here goes back to the 1942 work of C.L. Siegel
[29], who was the first to overcome a small divisor problem (namely the conjuga-
tion to its linear part of an analytic function of the form eιωz + z2g(z) with ω a
real number satisfying suitable generic conditions). SiegeΓs method consisted "sim-
ply" in computing the formal power series solution (for the conjugating function)
and estimating its kth coefficient by a constant to the kth power, thus showing the
convergence of the conjugating function. Generalizations of SiegeΓs method will
henceforth be referred to as direct methods.

Recently, such methods have been revived: In 1988 H. Eliasson, [13] (see also
[14, 15]), proposed a direct proof of the convergence of maximal quasi-periodic
solutions (or maximal invariant tori or Lindstetd series) for nearly-integrable, non-
degenerate Hamiltonian systems; in 1993-94 several preprints/papers appeared on
the subject: in [9,17-20] the convergence of maximal quasi-periodic solutions for
Hamiltonians of the form \y2 -\- εf(x) (x periodic vector variable, y canonically
conjugate vector variable) is proved by direct methods1; [21, 22] extend [17] and
use direct methods to prove the existence of "whiskered" (see [3]) tori (of di-
mension N — 1, if 2N is the dimension of the phase space) for certain special
Hamiltonians; in [10] direct methods are extended so as to prove convergence of
quasi-periodic solutions for elliptic systems of PDE's of the form Δu — εfu(u,y)
(where u is a vector-valued function of y G R M and / is periodic in all its vari-
ables).

3. The obstacle to the extension of SiegeΓs method to other small divisor problems
(motivating KAM theory and explaining the time gap between SiegeΓs work and
the one above mentioned direct proofs) is related to certain repetitions of small
divisors appearing in the formal series solutions. To describe this phenomenon, let
us consider the "mother of all small divisor problems," namely the convergence of
the Lindstetd series for nearly-integrable, non-degenerate Hamiltonian systems (see
[28]). Let H — h(y) + εf(x,y) be a real-analytic Hamiltonian, parametrized by ε,
periodic in the "angle variables" x = (xi,..., XN) and with the "action variables" y
varying in some ball around a point yo £ R^. Assume the following non-degeneracy

1 The approach in these papers is quite similar and is different from that of Eliasson (for a comparison
with Eliasson's method, see [9]). In [17-20] similarities between direct methods in classical mechanics
and some aspects of constructive field theory are pointed out. Also, in [17-22], it is assumed that the
perturbation / is an even trigonometric polynomial, a fact that makes the analyses in [9, 10] and the
present paper, on one side, and in [17-20], on the other, somewhat different. After the completion of
this paper, we received a preprint [23] which extend the analysis of [17-20].
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conditions: (i) the "frequency" vector ω = dyh(y0) is Diophantine, i.e.

\ω n \ ^ - ^ , VneZN\{0}9 (1.1)

for some positive constants y, τ (dot denotes the standard inner product in IR^);
(ii) the Hessian matrix δ2

yh(y0) is invertible. Then one can formally compute the
Lindstetd series, i.e. the formal series

X

withXy, Yj (vector-valued) real-analytic on the standard N torus ΈN = WLN/(2πZN),
Y° = y0 and such that t —> (x(t),y(t)) = (ωt+X(ωt), Y(ωt)) is a formal solution
(in the sense of formal power series in ε) of the (standard) Hamiltonian equa-
tions i = dyH, y = —dxlί (over dot denoting t derivative). The Fourier coefficients
(X%, Y%) may be recursively computed in terms of monomials made up of k Fourier
coefficients of the periodic functions x —> dyf(yo,x) (with s ^ k) and in terms of
the divisors ω m, m G ΈN (which appear in the denominator of the monomial),
and in terms, of course, of ds

yh(yo). Roughly speaking, what happens is that, in the
expression of some of these monomials, there appear products of a given divisor
ω ' m which are not accompanied by Fourier coefficients of the Hamiltonian with
Fourier index "related" to m. Since |ω m\ may be arbitrarily small (whence the
name "small divisors"), it is not clear what can counter-balance such products of
small divisors, which may accumulate in such a way to produce single monomials,
in the recursive decomposition of (X*,Y%)9 of size of the factorial k\ (compare,
e.g., [9], Appendix B). Controlling such formal series is therefore a difficult prob-
lem (which lead Poincare to say that convergence of the Lindstetd series is "fort
invraisemblable," [28], vol. II, Sect. XIII).

4. The direct method discussed here rests on two clearly distinct steps: (a) the
algebraic part of the method {compensations), which consists in showing that it
is possible to consistently group together the monomials with extra repetitions of
small divisors2 into quantities that behave effectively as if there were no extra
repetitions (on a technical level this will be achieved by showing that certain mero-
morphic functions have zeroes of high enough degree); (b) the quantitative part
of the method, which consists in implementing SiegeΓs estimates so as to prove
convergence of the formal series.

Step (b) is practically common to all small divisor problems; a detailed version
of the needed estimates can be found, e.g., in [9] (see, in particular, Lemma 5.1 and
Lemma 5.2), and one can adapt such estimates (once the algebraic step is settled)
to other small divisor problems including the ones discussed in this paper.

The key step, changing from problem to problem, is the algebraic step (a) and
the rest of the paper is devoted to develop a formalism general enough to deal,
in a unified manner, with different small divisor problems (which, instead, need
quite different KAM approaches as explained below). The language we shall use to
prove compensations is borrowed from graph theory (see e.g. [4] or Appendix A
of [9] for the fundamentals and [9-11, 17-22] for use of graph theoretic language

2 "Extra" means, as above, that the small divisor ω m is not balanced by a proportional number of
Fourier coefficients with index m.
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in the context of dynamical systems). In particular we will introduce a natural
generalization of labeled rooted trees (called below "weighted trees") which will
turn out to be quite convenient in order to describe, in a completely explicit way,
formal solutions and in order to recognize the compensating families of monomials
in the (tree) decomposition of the formal solution.

In this paper we shall analyze the algebraic step (a) in various cases, while we
shall not deal with the quantitative part of the method (b) which is a technical issue
and, as mentioned above, may be recovered rather straightforwardly from [9].

5. Let us now discuss briefly the models and respective small divisor problems for
which we prove compensations.

PI (Maximal invariant tori, Hamiltonian case). The first problem for which we
prove compensations is that of convergence of the Lindstedt series for nearly-
integrable, non-degenerate Hamiltonian systems (see point 1 above). The compensa-
tions (step (a)) plus the estimates of [9] (step (b)) yield a new direct proof of the
classical theorem by Kolmogorov (sometimes called "KAM theorem") alternative
to that of [13].

P2 (Maximal invariant tori, Lagrangian case). We then consider the similar prob-
lem of finding maximal quasi-periodic solutions for the Euler-Lagrange equations
associated to a real analytic Lagrangian of the form L(x, y) = Lo(y) H- εL\(x, y).
As above, x — (x\,..., xN) is a periodic vector-valued variable and y varies in
some ball around a point yo G R^; the analogous non-degeneracy conditions are
assumed, namely one is given a vector ω satisfying the Diophantine condition
(1.1) and yo is such that the Hessian d2

yLo(yo) is invertible. A maximal quasi-
periodic solution is, then, a solution x(t) of ^Ly(x(t),x(t)) = Lx(x(t),x(t)) of the
form x(t) — ωt -f X(ωt) with X(θ) periodic in θ. Step (a) is then proved in essen-
tially the same way used in the Hamiltonian case PI. We point out that the KAM
theory needed to solve the Lagrangian problem is much more recent (1988) than
classical KAM theory and is due to Moser, Salamon and Zehnder (see [30] and
references therein). The Lagrangian approach is more convenient than the Hamil-
tonian one for rigorous stability bounds (see [6, 7]) and also for generalizations to
variational PDE cases (see [26, 10]).

P3 (Lower dimensional resonant tori). Maximal invariant tori correspond to analytic
continuation (in ε) of unperturbed tori having "all frequencies excited," i.e. tori
run by linear flow t —> ωt with ω rationally independent over ΈN and N = # of
degrees of freedom. We consider now the problem of analytic continuation (in ε)
of "resonant" tori, i.e. invariant unperturbed tori for which there exist n G ΈN\{0}
such that ω n = 0. We shall argue (see the next item P4) that in general, such tori
are not analytically continuable for εφO. Nevertheless we will show, under suitable
conditions, how to construct, with the (intrinsically analytic) methods outlined above,
lower dimensional invariant (unstable) tori when εφO. For simplicity, we shall
discuss only the following special case of a Hamiltonian of the form

H=l-y2+l-p2 + εf(x,q), (1.2)

where (x, y) are symplectic variables as above (i.e. with x G ΈN) and so are (q, p)
with q G ΈM; hence the number of degrees of freedom is N + M and we are in-
terested in Λf-dimensional invariant tori. For ε = 0, Λf-dimensional invariant tori
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(up to a trivial linear and symplectic change of coordinates3) are spanned by so-
lutions of the form (y,p) = (ω,0), (x,q) — (XQ + ωt^qo). From classical transfor-
mation theory it follows that (if ω satisfies (1.1)) the evolution equations of H
in (1.2) are equivalent to the evolution equations for a Hamiltonian of the form

y -f- Y + ε/o(#) + o(ε), where /o is the average (w.r.t. x) over ΈN of / . Moti-
vated by this observation, we consider the Hamiltonian

\y1 + %p1 + efo(q) + ε2f(x, q) = H0(q9 y9 p\ έ) + Hλ{x9 q; ε)
(1.3)

HX = ε2f .

Even though Ho is not, in general, integrable, if q0 is a critical point for / 0 , Ho still
admits the invariant iV-torus To spanned by (y, p) = (ω,0), q — q0 and x — JC0 + ωt
and we want to study the persistence of such torus for the full Hamiltonian. To
attack the problem perturbatively, we introduce a new analyticity parameter μ with
respect to which we shall make a formal (and eventually convergent with a radius of
convergence greater than one) power series expansion and consider the Hamiltonian
Ho + μH\ (so that for μ — 1 we recover the Hamiltonian (1.3)). We also make
the following hyperbolicity assumption: we assume that qo and ε are such that the
matrix εd2

qfo(qo) is negative definite. Under these hypotheses it is easy to check
that there exists a formal expansion

Z : ΈN -> W^N+M) , Z - ΣZ*(0;ε)μ* , (1.4)

such that t —> (x(t),y(t),q(t),p(t)) = (ωt,ω,qo,θ) + Z(ωt) is a formal quasi-
periodic solution of the Hamiltonian equations governed by HQ -f μH\. Then, we
can prove compensations for the formal solution (1.4). From this result, as al-
ready remarked, it follows that the formal power series is actually convergent
but, what is more interesting in this case, one can show that for εφO small
enough, the radius of convergence (in μ) is greater than one so that the set
{ωt, ω, qo,O) + {Z(θ) : θ £ T£N,μ = 1} is an invariant TV-torus for the Hamiltonian
(1.3). We mention that, in fact, these tori are whiskered in the sense of [3].

The proof of compensations (together with the estimates of [9]) yields a new
(direct) proof of the construction of lower dimensional resonant tori (with particular
emphasis on analyticity properties).

The KAM theory concerning "partially hyperbolic tori" (i.e. generalizations of
the case Ho + μH\ above, with μ as perturbative parameter and ε fixed) goes back
to [24]. For a KAM theory for resonant tori see [31]. In [17, 21, 22] a direct proof
is given for the existence of resonant tori (and their whiskers) in case (1.3) with
p, q scalar (M = 1), /o = cos q and / an even trigonometric polynomial. We finally
mention that the resonant tori (and their whiskers) are particularly relevant for the
study of "Arnold diffusion" (see [3, 11, 8]).

Different is the story for "partially elliptic tori" corresponding to εd2

qfo(qo) being
positive definite. Such a case is technically more difficult (due to the presence of
"extra small divisors") and it has been overcome, with KAM technique, by Eliasson

3 A transformation of (standard) symplectic coordinates {q, p) (of a 2J-dimensional phase space) is
called symplectic if it preserves the (standard) two form Yfι=λdqι Λ dpi.
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[16] (see also [27]). We believe that the direct method may be applied also to the
"partially elliptic case" and, more in general, to "mixed cases."

P4. Consider again the Hamiltonian (1.2). Indeed, one can consider formal power
series in ε and one can show that if qo is a non-degenerate critical point of the
x-average of f then there exist formal quasi-periodic solutions. However, we shall
prove that, in general, these series do not exhibit compensations (at least of the
algebraic type considered in this paper). In view of this fact it seems natural to
conjecture that such formal power series are divergent. As "indirect" (i.e. "without
looking at the structure of the formal series") motivation for divergence of these
series, we mention that, if εδ^fo(qo) is definite, the phase portrait around the N-
dimensional Ho -invariant torus % changes drastically as ε changes sign. It would
be nice to give a complete "direct" proof of the above conjecture.

6. Several amplifications of the results obtained here are possible. For example one
can treat, with essentially no changes, cases with Hamiltonians (or Lagrangians)
explicitly depending on time in a periodic or quasi-periodic way (of course, in such
a case, one will have to make the natural assumptions on the frequency vector ω).
Also, allowing more general families of weighted trees, one could handle the case
in which the perturbation is an analytic function of ε (say εH\ + ε2H2 + •••)•

As mentioned above, the results concerning lower dimensional resonant tori can
certainly be improved and, in fact, it should be possible to deal with "general"
situations. Also, in the "partially hyperbolic case," the construction of the associ-
ated stable/unstable manifolds (the "whiskers" of the tori) should not present new
difficulties.

There is lot of room for improvements in the direction of PDE's. For example
one can use the methods presented here in order to extend the results of [10] on
the existence of quasi-periodic solutions for elliptic systems (assuming, e.g., the
principal part of the operator not in a diagonal form). Also, these methods might
be used to construct quasi-periodic solutions for non-linear wave equations, etc.

2. A General Set-up for Small Divisor Problems

Let us describe more formally what we mean by compensations in small divisor
problems. Given a "nearly-integrable" real-analytic dynamical system (say, as in
P1-P3 of Sect. 1), one is interested in finding invariant surfaces on which the flow
is conjugated to a linear flow on a (standard) torus or, equivalently, in finding quasi-
periodic solutions. Quasi-periodic solutions are described in terms of functions on
the standard TV-dimensional torus T ^ = W.N/(2πZN) substituting the phase variable
θ G ΈN with ωt — (ω\t,..., co^t), where ω G WLN is a given (rationally independent)
vector and t denotes time4. The system being "nearly-integrable" means that there
is a perturbative parameter, say ε, such that for ε = 0 the system is completely
"solvable." It is therefore natural to try to establish the existence of formal solutions:
this constitutes the first part of step (a) (see 4 of Sect. 1). Formal quasi-periodic
solutions have already been considered in the last century; for a modern discussion

4 In the PDE case mentioned in 2 of Sect. 1, t = y is a multidimensional independent variable and
co is a matrix; see [10].
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of the formal solutions of the models discussed here we refer the reader to Appendix
B of [9]5.

The formal solutions we will be dealing with have the form

Z Ξ ( z h . . . , z , ) - Σzk(θ)εk, θeτN, (2.1)

where, for each k ^ 1, the vector-valued function Zk is a real-analytic function over
ΊLN having an exponentially fast converging Fourier expansion of the form6

Zk= ΣZk

ne
ίn'θ, (2.2)

nezN

while for k — 0, Z° is the solution of the unperturbed problem.
The second part of step (a) consists in giving Z a representation in terms of

trees, i.e. a representation of the form:

4 = Π Σ Σ Σ Λ(T,a,β)Y\7v(T,oί,β), (2.3)
Λ! -^π^ β:V-yB veV

where, intuitively speaking, T* is a suitable family of trees (with "set of vertices" V
and of "order &") taking care of the combinatorics coming out of Taylor's formula
and its repeated applications (see Sect. 3); the sum over the indices α attached to
each vertex comes from expanding everything in terms of Fourier series (hence the
constraint of the total sum of such indices to be n since on the left-hand side we
have the ^-Fourier coefficient of the solution); the final sum is finite and encodes
all possible (case-by-case depending) indices which may help in writing out "in the
most explicit way" the solution7; the summands of these sums are split into two
factors: /t(Γ, α, /?), which are complex vectors related to the derivatives of the given
function (the Hamiltonian or the Lagrangian) ruling the evolution of the dynamical
system and the products of y/s which are the small divisors. More formally: T£ is
a suitable family of labeled rooted trees8, V = V(T) denotes the set of vertices of
T and the suffix ("order") k refers to the following estimates on cardinalities

# T£ ^ k\c\ , # V(T) ^c2k, (V T e T£) , (2.4)

(for a suitable constant Q > 0); the second sum in (2.3) runs over all possible func-
tions assigning to each vertex v e V of a rooted tree T an integer vector otv e ΈN

with the constraint ΣveV0Lυ = n\ the third sum runs over a suitable set of (possibly)
vector-valued indices taking a finite number of values (#B < oo); A is a complex
vector depending on T, {ocv}vey, {βv}vev and on the Hamiltonian (or Lagrangian);
finally yv G 1R are divisors that are described as follows. Rooted trees can be
naturally equipped with a partial order: we say that v' S v if the path joining the

5 In [9] the formal expansion for PI is proved; formal solutions for P2-P4 can be proved in a
completely similar way.

6 Note that we are using the suffix k with different meaning as ek denotes the &th power of the number
ε while Zk is a vector valued function and k is used as an index. The hth power of the j t h component
of Zk will be denoted (Zk)h\ the / h component of the Fourier coefficients of Zk will be denoted Zk..

1 E.g. βv will typically be related to the degree of the small divisors, see (2.7) below.
8 See any introductory book on graph theory, such as [4], for the standard terminology or Appendix

A in [9].
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root r of T with υ1 contains v; (obviously υ' < v means t/ ^ v and v' φ v and r ^ v
\/ v e V, i.e. the root r is the first vertex of the rooted tree T). Given a function α,
we define

Ξ Σ <V ( 2 5 )

The divisors γυ, which may assume arbitrarily small values, are defined in terms of
a real-valued function ( ) which satisfies the Dίophantine condition

\(n)\-{ Sy\n\τ , V neZN\{0} (2.6)

with suitable positive constants y,τ.9 Then

[ 1 i f^ = O,

where σv is, say, the first component of the index βv and takes value 0, 1 or 2. In
(2.3) only the second sum runs over an infinite set of indices: therefore we assume
that there exist positive numbers ζ,ξ',a > 0 such that, if we set

Σ Σ \Λ(T,a,β)\Ueξ'M , (2.8)
*

then, for all k and n one has

ι TeTk a:v->π
* Σaυ

ak

n S

In the models considered here, such an assumption is an immediate consequence
of the well-posedness of the (formal) problem and of the analyticity assumptions
on the Hamiltonian (Lagrangian). From (2.8) it follows at once that if one could
bound the product of the divisors as10

W) (2-9)
ver T

for some c3 > 1 and b > 0, then from (2.4), (2.8) and (2.9) it would follow

\4\ ^ i Σ Σ Σ \Λ{T,a,β)\ c* Π(l + W6) ^ cξβ-ίl-l,

(for suitable cs > 0) leading to "absolute convergence" (better: "convergence with-
out compensations") of the formal expansion Z. Indeed SiegeΓs original proof is
based on a similar argument, even though the set up is slightly different (and sim-
pler). Technically SiegeΓs problem corresponds to θ varying in a small (complex)
ball so that the Fourier series is replaced by Taylor series and otv ranges over Z+: in
such a case δv^δv> whenever v > v' and SiegeΓs method [29] yields the estimates

9 Typically, in dynamical systems, (n) = ω n (where the dot denotes the standard inner product in
R ^ ) but in other situations (e.g. [10]) the function ( ) might be more complicated (e.g.non linear);
in the case (n) = ω n it is well known that, if τ > N — 1 , up to a set of Lebesgue measure zero, all
ω G ΊR.N satisfy 2.6 for some γ.

1 0 From now on we will adhere to the common abuse of notation v G T in place of the more proper
v G V(T) and also if vυ1 = v'υ denotes an edge of T, we shall denote vv' G T rather than the more
proper vv' G E(T).
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(2.9).u The problem with <xv e 7LN is that one can have "resonances," i.e. δv — δV'
for υ > υ1 which may lead to obstinate repetitions of particularly small divisors. It
is well known (see e.g. [9], Appendix B) that, in general, one has, for arbitrarily
large k, subfamilies J7^ C T* and a choice of ά and β (depending only on the
subfamily) such that, for suitable ά,b > 0,

k B (2.10)

Such families are obtained by taking chains of resonances which are defined as
follows. Given T E T* and α (i.e. {ocυ}Vζτ), a resonance is a subtree12 R C T such
that: i) R is of degree two (i.e. R is connected to T\R by two edges); ii) if u is
the first vertex13 in R and z is the first vertex following R, then δu = <5zφ0; iii) R
cannot be disconnected, by removal of one edge, into two subtrees of degree two
satisfying i) and ii). It will be important to consider different choices of the index
β (i.e. {βv}veτ)' in particular given a resonance R and given β we call order of the
resonance the number (see (2.7)) σ = σu (u being the first vertex of R). A chain of
resonances is a maximal series of resonances R\9...9 Rh with Ri adjacent14 to Ri+\;
given a choice of β, the order of the chain is defined to be σ = σ\ -\ h 0Ά
where σz = σW|, w/ being the first vertex of i^ . From these positions it follows that
if C is a chain of order σ, if TZ = δz, where z is the first vertex following the chain
(i.e. following the last resonance, which by convention will be Rh), then

veC «ec

(where D G C means v E IJ,- V(Ri)). The examples for which (2.10) holds are based
on chains with σ ~ k and |(w)| ~ k~ι. This phenomenon may be counterbalanced
by compensations. To be more precise we introduce the notion of "compensable
chain." Consider a chain C = (R\,...9 Rh), (h ^ 1) and fix the indices βυ. Let, as
above, w/ be the first vertex in Ri9 let Ri be connected to Ri+\ by the edge w/W/+i
with wt G Ri and u\ ^ w\ > u2 ^ ^ w ;̂ let z be the first vertex following the
chain (i.e. following Wh) and n = δz; and, finally, let /^ be the path joining Ui with
wz. Consider the following function of t G (C,

πc(t 9T9a9β)=ίlπRχt'9T9x9β)9 π Λ l ( 0 = I Π 7« ) I Π 7 , ( 0 I , ( 2 . 1 1 )

1 1 For a detailed discussion, in the present language, of SiegeΓs methods see Appendix C of [9]; for
a different approach see [5].

1 2 When referred to trees the notation T C T will always mean "Γ / (unrooted) subtree of Γ." Other
special conventions we are adopting are the following: a) for rooted trees the root (usually denoted r)
may be identified by adding an extra edge ηr, where η is a symbol (not a vertex of the tree) sometimes
called the "earth"; with these positions one has, for trees, #E = #V — 1 and, for rooted trees, #E = #V;
b) the degree of a vertex v is the number of edges vv' incident with υ and if v = r is the root, the edge
ψ is included in the count; c) the degree of a subtree T' C T is the number of edges connecting T'
with T\T'; if T is rooted and the root r belongs to T' the edge ψ must be included in the count.

1 3 Recall that T is a rooted tree and hence partially ordered (the order being such that the first vertex
of T is always its root).

1 4 I.e. connected by one edge.
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where: if ut = Wj (i.e. Pt — {w*}), the product over Pt is absent; if υ e Pi φ {ut} and
vή=Ui we set

γv(t)= ( Σ^'+tn) (2.12)
\ /

if 1̂ 1 = 1 (hence U[ = w/ and otUι = 0) we set π/?,(0 = 1.
If t e l J j Λ , the function t -^ πc(t;T,oί,β) is a meromorphic function of

and since, by definition of resonance, ΣυΈR, (V+O, for any uφWj and v £ P

7ic(t; T,cc,β) is analytic at ί = 0. Moreover, yv — yv(l) and

vec

We say that a chain C CT eT* (i.e. C = (i?i,..., Rh) with /?,- c T) is compens-
able if there exists a family of trees Tc C Zf whose elements Γ7 have C as a
common chain of resonances, and, for each T\ there exists a choice of indices
βf = β'(T'\ such that the function15

πc(t)= Σ AiT'^foncitiT',*,?) (2.13)

has a zero in x of order at least σ — 1.
We can now reformulate analytically the result described in the introduction.

Consider first the problem PI of Sect. 1, and observe that quasi-periodic solu-
tions of the Hamilton equations with frequencies ω, i.e. solutions of the form
( J C ( O , X O ) = Z ( ω 0 w i t h Z ° ( 0 ) = (0> >Ό) and Z^ : 0 e T ^ -> Zk(θ) e 1R2ΛΓ, satisfy
the equations

DZ=JdH(Z(θ)) , (2.14)

where D = ω do, J is the standard symplectic matrix (_/Q ) and 3 is the gra-

dient d(Xiy) with respect to the variables (x,y). Then it is well known16 that there

exists a unique formal solution Z ~ Σk>o£kZk °f (2.14) with the normalization

condition

fτNπιoZkdθ = 0 (k ^ 1) , (2.15)

where πi is the projection onto the first coordinates: πi(x, y) = x. The following
result then holds.

Theorem 2.1. 7%er£ exists a tree expansion (2.3) for Z such that all chains of
resonances are compensable.

Consider the Lagrangian problem P2 of Sect. 1. Quasi-periodic solutions x(t) =
Z(ωt) - Σ*Ξ>oε*z*(ωO> where now Z°(0) = θ and Zk : 0 G ΈN -> Z*(0) G R^,

1 5 In other words, the elements Γ ; of ^ c are obtained from T and C by (possibly) changing the
edges connecting T\C with R\, R\ with R2,...,Rh with 71\C, and by (possibly) changing the values of
the indices β on C.

1 6 See [28] or Appendix B of [9].
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satisfy the equations

DdyL(Z(Θ\DZ(Θ)) = dxL(Z{θ\DZ{θ)), (D = ω d0) . (2.16)

Mimicking the proof of Appendix B in [9] one can easily show that there exists a
unique formal solution Z ~ Σk>0£

kZk of (2.16) with the normalization condition as
in (2.15) but without the projection %\. Then, Theorem 2.1 holds also in this case.

Consider problem P3 of Sect. 1. It is easy to see that (recall the hyperbolicity
assumption) there exists a (unique) formal expansion

Z ΞΞ (Zu...,Zd)~ ΣZk{β\ε)μk , θ e ΊN , d = 2{N + M)
/c^O

such that t —* Z(ωt) is a formal quasi-periodic solution of the Hamiltonian equa-
tions governed by HQ + μH\. Uniqueness is achieved by requiring (2.15), where π\
denotes again the projection onto the x variable. Then, Theorem 2.1 holds also in
this case.

Finally consider problem P4 of Sect. 1. Indeed, if qo is a non degenerate critical
point of the x-average off then there exists a {unique) formal power series (2.1)
{with d — 2{N + M)) such that t —> Z{ωt) (ω satisfying (1.1)) is a formal quasi-
periodic solution for (1.2) and the set {Z°{θ): θ G TLN} coincides with the torus
spanned by y = ω, p = 0, q = qo, x = xo + ωt. Uniqueness, again, is enforced by
the requirement (2.15). Also for such a formal series one can write down a tree
expansion completely analogous to those referred to in P1-P3 above. However, we
shall prove that there exist chains C = {R\,..., Rh) such that if T§ denotes the
family of all trees with chain C then

Σ Λ{Tf) π c ( 0 ) * 0 .

In view of this fact it seems natural to conjecture that in the present case the
formal power series Z is divergent.

3. Weighted trees

Here we describe the tree family Z/c, which appears in the basic formula (2.3).
For the models P3 and P4 introduced in Sect. 2, Tk is simply the family

of all labeled, rooted trees with k vertices17, which we will denote by Tk. In
this case, as is well known (see e.g. [4]), #Tk = kk~x and (2.4) is clearly sat-
isfied.

To treat the cases PI and P2 one has to distinguish, in the Taylor's expansion,
the contributions coming from HQ and LQ from those coming from H\ and L\.
To do this we introduce the following family of "weighted trees." Given a rooted
(unlabeled) tree T we call a function of the vertices of T

χ : v e V(T)->χve{0,\}

1 The basic terminology can be found in any introductory book on graphs or in Appendix A of [9].
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0 0

Fig. 1. The elements of T3. (The numbers 0, 1 are the values of the index χ for the corresponding
vertices and the encircled vertex is the root of the tree).

1 1 1 1 0 J*U\

Θ— Θ— ®CΛ

Fig. 2. The elements of Ύ2 (u\ and U2 are the labels of

a weight function. A weighted rooted tree is a couple (Γ, χ) with Γ a rooted tree and

χ a weight function. We now denote Tk the set of weighted rooted trees satisfying

(1) d e g t ; ^ 2 = * X l ? = l , (ii) ΣXv = k .

Notice that, in particular, all final vertices (i.e. vertices of degree 1) have weight 1
and that, for any T G fk, W(T) ^ 2k - 1, as is easy to verify.18 We now define
the class Tk of labeled, weighted rooted trees obtained from Tk by labelling with k
different labels the k vertices with weight 1.

In cases PI and P2 we let T* = Tk; it is easy to check that (2.4) holds also in
this case.19

The relation between Taylor's formula and trees may be based on the fol-
lowing operation τ (that we now briefly discuss for the case of Tk\ for the case
Tk see Appendix B of [9]). If T G Tk we denote by T the tree in fk ob-
tained by removing the labels from T\ we also denote T° (or T°) the unrooted
tree obtained from T (or T) by removing the edge ηr, i.e. by not distinguish-
ing any more the root from the other vertices; finally if T (or T) is an un-
rooted labeled (or unlabeled) tree and r is one of its vertices, we denote by Tr

(or Tr) the rooted tree obtained by adding the edge ψ (i.e. by decreeing that
r is the root). Let χ G {0,1} and ί ^ 1, let hi be / positive integers such that
h\ + - +hf = k — χ and pick trees 7/ G Ίhr We can form a tree T G Tk with root
r (r being a vertex different from the vertices of Tu V /) of weight χr = χ by
setting

where rz is the root of Γ/ (and summing an edge e to a tree 5 means, obviously,
to add e to E(S)). Then, one has the following

1 8 Let Vi= {υ e V : χv = i}, and let kt = Wi} so that k = £j. It is well known (see, e.g., [4] and
recall our convention on degree of the root) that ΣVQ deg v + Σvχ ^ e β v = ^(^o +k\) — l.lf v € Vo then
degu ^ 3, thus the sum over VQ can be bounded from below by 3&o while the sum over V\ can be
bounded from below by k\. This leads to £0 ^ h — 1 which is the claim. Such an inequality is optimal.

19 Since ([4]) #fh ^ 4h and #V(T) g 2Jt - 1 for any Γ G % one sees that #7^ ^ 42^. Since the
labels are attached to k vertices, one has #7^ ^ k\A2k.
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Proposition 3.1. Let F be a complex valued function defined on trees in T^ (for
any k). Then

^ Σ Σ^ Σ Π^y Σ F(τ(τhί,...,fhί)) .
o i / 2 ^ ! * h k i \ n i T r

For the proof we refer to [9] (Corollary B.I of Appendix B).2 0

4. Compensations I (Maximal Hamiltonian Tori)

4.1. Tree expansion. Consider the model introduced in PI of Sect. 2 and recall that
there exists a unique formal solution Z ~ J2k>o£kZk satisfying (2.14) and (2.15).
Denote by Z^k the x-component (i.e. the first N components) of the vector Zk and
by Z^k the j^-component; consistently, let d^ = dx and d^ = dy. We also let

denote the &th order operator which to a (possibly formal) power series a ~ Y^akεk

associates its &th order coefficient: [α]^ = a^. Finally, let

A ~ d2

yHo(yo) . (4.1)

With these definitions, we can rewrite (2.14) as

^k ^ ^ , (4.2)

where the suffix ( ^ - 1 ) means that the argument of the function within square
brackets is, for k §: 2, the polynomial in ε of degree (k — 1) given by

x = 0 + ΣεhZ^h , y = yo+ *f)e*Z<2>* , (4.3)

and, for k = 1, is (x,^) = (Θ,γ0). We rewrite (4.2) in a more compact way as

DZ(p)k = ( 2 _ p μ Z ( 2 ) ^ + £ ( - l ) 3 - ^ ^ 3 - ^ / / , ] ^ - 0 , (p - 1,2) . (4.4)
z=o,i

Notice that while, by (2.15), the average of Z^k vanishes, the average of Z^k can
be read (for p = 1) from (4.4) by integrating over ΊΓ^:

f-l)- (4.5)

Since the average of [d^Hi]^^ vanishes (as it is clear from the second of (4.2))

one can apply to it the operator D~ι obtained by inverting the constant coefficient

2 0 In [9] the case of Tk is treated (the τ operation in Tk is defined as above, replacing χ systematically
by 1); adapting the proof to 7^ is a trivial exercise.
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operator21 D. Taking the w-Fourier coefficient of (4.4), (4.5) one gets

Z(

n

p)k = Σ in)'* {[^p)Hχ]tχ

l)} , «*> = ω n) , (4.6)
σe{o,i,2}* n

where D ( σ ' p ) is the vector-valued operator22

D(σ,p) Ξ (_!)l-σp r σ ^σ-1 ^(4-σ-p) ? ( 4 < 7 )

and the * attached to the range of σ means that the following constraints have
to be satisfied: σ -f- p G {2,3} and σ = 0 <̂=̂> « = 0 in which case we adopt the
convention that (n)σ = 0° ΞΞ 1. Notice that D^p)Hχ = 0 if χ = 0 and σ + p = 3
(as in such a case 3^4~σ~p^ = dx and Ho is independent of x).

We shall now use Taylor's formula in the following form. If / : x G R m —>
/(*) G 1R is a C°° function and if a(ε) ~ Σs>\ εSa(s) i s a R m-valued (possibly
formal) power series, then

E ^ Σ ^ Σ Σ g / \ (0)^> ^ > . (4.8)

Thus, if z = (x,y) and z ( 1 ) = x, z ( 2 ) = y, by (4.6) and (4.8) we get for the j t h

component of the vector Z« , and for A: ̂  2,

zίf = Σ Σ ^ Σ Σ Σ Σ <«)"σ (4-9)

(lgiSO (OS/SO

where the derivatives of Hχ are evaluated at (θ9yo) and then one takes the

Fourier coefficient

the simple formula
Fourier coefficient (with respect to θ); for k — 1, since [Z)(σ>p)//o]iO) = 0, one has

4 P ) 1 = Σ {nΓσ{Dfp)Hλ}n . (4.10)
σG{0,l,2}*

We are ready to prove the following tree expansion formula (recall (2.7), (2.5))

a

v<ΞT, v v<ΞTr

2 1 If / is a (smooth) function on ΈN with vanishing mean value, we denote by D γf the unique

solution with vanishing mean value of the equation for g: Dg = / . Expanding in Fourier series one has

g(θ) = D~ιf(θ) — — ΐΣneΈN\{Q} J" n

 e x P θ " * θ), where i = y/^Λ: the inversion of D introduces the

small divisors.
2 2 For example the / h component of D^ is given by ϋfl) = Σ j ^
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where: the index set B, which depends on the function δv, is defined as

B = {β = (σ,p): σe {0,1,2}; p e {1,2}; s.t.

σ + p e { 2 , 3 } ,σ = 0 <=> δv = θ} (4.12)

the scalar operator Λv(Tr,β,j) is given by

Λv(Tr,βJ) = D{^pυ) Π d{ff] , λίv = {vf e Tr s.t. v' < v and υ' adjacent to v} ,
v'eK v

(4.13)
(if J\fυ = 05 i.e. degy = 1, the product is omitted). To recover (2.3) from (4.11),
one simply defines the component jo of Λ(Tr, α, β) as

(yl(ΓΓ>α,/?))Λ = Σ ΠK(7V,JWU«,. , (4.14)
y:F->{lv..,iV} ϋ€7V

jr=jθ

where, obviously, V is the set of vertices of Tr.
The proof of (4.11) is by induction. For k = 1, (4.11) is an immediate conse-

quence of (4.10). Assume that (4.11) holds with k replaced by 1,..., k — 1. Given
Λ ^ 1, po, jo, n, consider the function of (unlabeled) trees Tr G 7^, given by

^ W Ξ Σ Π7, ΠW^fti)^,},, (4.15)

and observe that if Tr = τ(Tu...9 7>) with Γ, e ί , and AH h A/ = A, then
(fixing χ, Λ, po, 7o)

I \J ΛS

Σ Σ w>) \ ( )
σG{0,l,2}* no+ -+n,=n Pι,-,P/ { OZjχ ' — OzJ^' J /=1

(4.16)

Equation (4.11) follows now from (4.9), (4.16) and Proposition 3.1.

4.2. Compensations. Here, we show how to choose families of trees T and cor-
responding indices so that all chains of resonances are compensable (recall the
definitions given in Sect. 2).

Given T — Tr, a and β, consider a resonance R and let u denote its first vertex
and wf < u the first vertex following R. By the definition of resonance one has δu =
δwt φO (i.e. Σ i Etf aυ = 0) and δv φ δw> if u > υ > wι. We shall classify resonances
by assigning to them an integer s = SR G {0,1,2}, which we shall call index of the
resonance R. Then, to each resonance R C T we shall associate a family TR of trees
T' obtained by (possibly) changing the edges connecting R with T\R and choosing
a suitable set of indices. The family TR and the index β' = β'(T') will be chosen
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so that (recall (2.11))

Σ Λ(T'9a,β') πR(t;T\ocJf) = O{?) (4.17)

and the family Tc will simply be given by

h

^Rι (4.18)

Let i? be a resonance and let u be its first vertex and wf the first vertex following
R. We define the index of R as

SR = σu + p u — pw> .

Thus if C — (/?i,..., i^) is a chain of resonances and if σ denotes its order (see
Sect. 2), then

ΣsRl =σ + pUι -pZ9 (4.19)
z = l

where z is the first vertex following Rk (which, by convention, is the last resonance
in the chain C). Hence, if (4.17) holds, from (4.18), (4.19), (2.11) and the definition
of A (4.14) it follows easily that

Σ

which implies that the chain C is compensable.
Let R C T be a resonance and let ύu and wwr be the edges connecting R with

T\R9 with M > u ^ w > w' (hence u,w e R). Let /? be the maximal subtree of
R such that δv(Ru)ή=0 Wv^u in R. We proceed by constructing the family TR. If
pw/ φ l we set T'R — {T}; if pw/ = 1 we let T'R be the family of all trees T obtained
from T by replacing the edge ww' with the edge ww\ as w varies in R. Hence,
T eTR and if pw> - 1, # ^ = #R. If σw + puφ3 we set ^ = {Γ}; if σw + pu = 3
(i.e. (σM,pM) = (1,2) or (σU9pu) = (2,1)) we let TR be the family of all trees T'
obtained from T by replacing the edge ύu with the edge ύΰ, as ΰ varies in R. As
above, T e TR and if σu + pw = 3, # J ^ = M. In the first case (i.e. for V G T'R) we
do not modify the values βv (i.e. β'(T') = )9). In the second case (i.e. for Tf e FR)
we define βf = βf(T') as follows. If v £ R then β'υ = βv. Recall that, by definition,
the first vertex of R considered as a subtree of Tr is M, while the first vertex of R
considered as subtree of T is u. Let wφw (otherwise, obviously, we set β' = β)
and consider the path P(u,ΰ) connecting u with ύ. The path P will be formed by
p ^ 2 ordered vertices that we denote fy : the order is such that v\ =u9 vp = ΰ and
the edges of the path are v\V2,...,vp-ιVp. We then set

β'v, Ξ βv, ,

β'v, = (σv,+ιA - σ»I+1 - P»I+1) , for 1 g Ϊ g /> - 1 ,

^ Ξ ^ , V ί ^ H , ! ) ) . (4.20)

It is easy to see that this definition is well posed (see also (ii) of the following
remark). Finally, we define
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Remark 4.1. (i) If sR = 0, one has TR = {T} and β' = β.
(ii) The map β -» β' is involutive: more precisely, if we denote by β\β\u,u)

the map defined in (4.20) (the definition which depends on the ordered path P(u,ΰ))
then β'(βf(β',u,ύ) ,ΰ,u) = β. More in general, it is immediate to check that, for all
u, ΰ, v in R, one has

β' (β'{β; u, ύ), ΰ, tl) = β'(β; u, v) , (4.21)

which makes transparent the well posedness of the β —> β' transformation.
(iii) One might say that the families TR and T^ are constructed "going around"

the resonance R with a "discrete curve" obtained by moving, respectively, the edge
connecting R with W and the edge connecting ύ with R. This interpretation might
explain the name "index" given to the quantity sR: TR is obtained by "going around"
R exactly sR times.

(iv) (On the definition of J7^) In practice, moving around the edge wz produces
a factor proportional to α^ in (4.14) coming from the δ ( P z ) = δ ( 1 ) appearing in
(4.13) (as z G Λ/"vp). It is easy to see that, for x = 0, summing A nR(x) over the
family T'R produces a common factor ΣW<ER α ^ w r n c n vanishes by definition of
resonance.

(v) (On the definition of J7^) The idea is similar: one wants to produce a factor
proportional to α^ when moving around the "first" edge ύΰ connecting R with ύ.
But now the situation is more delicate as changing the connection ύΰ changes the
order in R and, consequently, change the small divisors and also the structure of
the derivatives (since both yv and Av depend on the order). Since one wants eventu-
ally to set x = 0 and collect the factor ΣύeR ota one sees the necessity of changing
the values of the indices β. In fact β1 is defined in such a way that, when x = 0,
one can factor out the product of divisors and the products of the operators (deri-
vatives) Λv.

By the above discussion, it is clear that Theorem 2.1 is implied by (4.17). The
proof of (4.17) is rather straightforward although a bit technical. We give a detailed
proof of (4.17) in Appendix.

5. Compensations II (Maximal Lagrangian Tori)

Consider the model introduced in P2 of Sect. 2 for a real-analytic Lagrangian
L = Lo(y) + εL\(x,y). Formal quasi-periodic solutions of the Lagrangian equations
have the form x(t) = Z(ωt) for an ω satisfying (1.1) and a function Z(θ) which
is the (unique) formal solution Z - YJk^£kZk, with Z € WLN, of (2.16). The vec-
tor valued function Zk can be put in a form which is amazingly similar to the
Hamiltonian case PI.

Let us denote by Z{x)k the full vector Zk e WiN and by Z (2^ the vector
DZk =DZil)k (where D = ω dθ) and, as before, let 3 ( 1 ) = dX9 δ ( 2 ) = dy and
Aι = d2

yLo(yo). Equation 2.16 can then be written as

AφZP* = -D[d^L0f-
ι) - DtfVL^Z? + [d^Lλ]tχ

λ), (5.1)

adopting the same convention used in (4.2): in particular the arguments of the
functions within square brackets are as in (4.3). As for the previous case
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(see (4.6)), the ^-Fourier coefficient of (5.1) is

y(p)k v~̂  ίn\~(

σe {0,1,2}*

χe{o,\}

where £>[σ'p) is now the vector-valued operator

L V ) L '

and {0,1,2}* is the same set of Eq. (4.6).
The Lagrangian problem is now in a form which is identical to the Hamiltonian

case, except for the definition of D^p . Therefore the tree expansion formula for
the component jo of the ^-Fourier coefficient of Zk, with fixed values of po and jo
at the root r, is given again by (4.11) with the only proviso of replacing D^1"^ in

(4.13) with D[σ2Pv).
Also, the families T of trees for which there are compensations are found exactly

as in the Hamiltonian case and we refer to Sect. 4.2 and the Appendix for details.

6. Compensations III (Lower Dimensional Tori)

Recall the notations of Sect. 2, P3. Because of the particular form of the Hamil-
tonian, the formal solution23 Z(0,μ) is of the form Z = (X9Q,DX,DQ) where, as
usual, D = ω - dθ, θ eΈN mάX e ΊBLN

9 Q e R M . Denote

β , dW = a x , ^ E ^ , A=-ε%f(qQ)(>0).

One checks immediately that the recursive equations for Z^k (p = 1,2) are

- D 2 + (p - 1 )A)Z^k = Σ [d^H^ , p=l,2, (6.1)
y χ=o,i

where the argument of the derivatives of Hχ is x = θ, q = qo. From (6.1) one can
see that the average (over ΈN) of Z^k vanishes, while the average of Z^k is as
in (4.5) but with the minus sign replaced by a plus. Taking Fourier coefficients of
(6.1) we get the analogue of (4.6), namely

<τG{0,2}* ^ A >

which differs from (4.6) for the range of σ and relative constraints:

σe {0,2}* Φ=> σ + p e {2,3} , n = 0 => σ = 0 , (6.2)

and for the definition of the vector valued operator Dn :

\-p

2 3 Recall that here ε is a fixed real number different from zero, while the (complex) perturbation
parameter appearing in the formal power series is μ.
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Notice that the components Dnj are N if p = 1 and M if p = 2; we therefore let

Nχ=N , N2=M => je{l,...,Np} . (6.3)

Recall that A = εd2fo(qo) is positive definite, and so is a + A for any a ^ 0; thus

\\(a+AΓι\\ S A (6.4)

for a suitable constant & depending only on <92/o(go) We also remark that, by (6.2),
p = 2 implies σ = 0 (hence no divisors) while if p = 1, then σ — 2 and rcφO, in
which case the divisors are (n)2. In view of these remarks, we see that (4.11) holds
also in the present case provided we change the following items: N in the fourth
sum is replaced (see (6.3)) by NPυ; the index set B is defined as

B = {β = (σ, p) : σe {0,2}; p e {1,2}; s.t.

σ + pe {2,3} A = 0 = > σ =

finally the operator Λv now depends also on α: Λυ(Tr,β) in (4.11) is now replaced
by

ΛΌ(Tr,*,β,j) = Dίf£ Π Ϋ ; θ (6-5)

Also (4.14) is readily adapted replacing N by NPv and Λy with (6.5). We can proceed
to define the families of trees T and relative indices β' which exhibit compensations.
Given a resonance R (and a choice of α and jβ), we define the index of R and the
family T'l and relative indices β' exactly in the same way we did in Sect. 4.2.
Also the family T'R is defined in the same way but the relative indices β' are now
defined in a slightly different way (due to the different definition of Ui ): we let
(same notations as in Sect. 4.2)

βf

Vι = βVι+ι , for 1 g / g p - 1 ,

With these definitions it is easy to check that (4.17) holds and hence that Theo-
rem 2.1 is valid in case P3 too.

We close by a remark on the μ-radius of convergence of Σ^.>i μkZk. It is an
easy exercise to adapt the estimates in [9] to the present case and to check how the
radius of convergence depends on ε. In fact, observing that, by (6.4), one has

g max jy2, ^

leading to an estimate on the radius of convergence μo of the type

μo ^ const min{ε,7~2} .

Thus μ = ε2 (or μ = εc with any c > 1) is within the domain of analyticity provided
ε is small enough.
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7. An example with no compensations

Consider the Hamiltonian (1.2) with

K"W-χ+m") q) , (7.1)

where n(s) G ΈN, m{s) G ZM are given integer vectors (with \n(s)\ + |ra(5) | > 0)
and the Fourier coefficients fs decay exponentially fast with \n^\ 4- \wf s\ Let
qo be a non-degenerate critical point of the x-average of / (i.e. of

/o = Σ 5 > i Λ^m* ' 9 ) ; m e n > a s f° r t n e previous cases, there exists a (unique) for-
mal power series

with d = 2(N+M), such that f —» Z(ωί) is a formal quasi-periodic solution for
(1.2) and the set {Z°(θ) : θ G ΊΓ^} coincides with the torus spanned by y — ω,
p — 0, q = qQ, x = χ0 -\- ωt, where ω G IR^ satisfies condition (1.1).

Expanding Zk in Fourier series also in the variable q, besides the variable x
(see (2.2)), it is still possible to write Z^ as in (2.3) provided one makes the
following changes. T* = Ίk\ B is the trivial set B = {β = σ = 2}; Λ(T,a,β) is
replaced by

Λ(Γ,ά,j8)= Σ Π / α , Π α» «»' ,

where ά, = (o^X) G Z ^ + M ; finally yy = (δΌ)~2 = (ω Σ , / ^ ^ ) " 2 -
It is then clear that in order to have compensations it would be sufficient to

have resonances in the variable ά whenever there are resonances in the variable α.
In other words compensations take place if the Fourier modes in (7.1) are such that

Σ/ι ( 5 ) =0 = » Σseimis) = ° ( ? 2 )
sei

V7 C N; in fact in such a case one could repeat word-by-word the argu-
ments in [9]. In general, (7.2) does not hold and compensations (of the type
described in this paper) do not occur as it is shown by the following
example.

Take N = 2, M = I, fix a scalar integer n + 0 and let

2,q) = 2{cosxi + cosx2 + cos(xi -f x2 — q) + cos(wxi -f x2 + q)} .

Hence, the range of ά is the set {±(l,0,0),±(0, l,O),db(l, l , - l ) , ± ( π , 1,1)}; for

defmiteness we also fix ω = (\/2, — 1).

We fix a tree T G T*, with k = 3A H-1, and a function ay : V(T) -> Z 3 so that T
contains a chain C = (R\,..., Rh) made of A identical resonances Ri = {v\,υ2,V3},
with άyi = (—1,-1,1), &V2 = (0,1,0), dV3 — (1,0,0), and the last vertex z, following
the chain, with άz = («, 1,1) (see Fig. 3).



Compensations in Small Divisor Problems 155

( H K
#2

Fig. 3. Divergent contribution: the chain C = (i?i,i?2>^3>^4) is made of 4 adjacent resonances
with \Rj\ = 3 (in this symbolic picture only two vertex are drawn).

Let Tc be the family of all trees T eTk which contains the chain C. A lengthy
but straightforward computation shows that the /th component of the vector valued
function ήc(x) (see (2.13)) for h = 1 is:

u,weR\
Π ά w άz

where ί y is the Kronecker's symbol, et is the vector of/h component δjj and

-2(6-/)

B(x) =

\

(2-x 2) 2(l-x 2) 2

6-x2

(2-x2)2

(2-x 2) 2(l-x 2) 2 (2-x2) :

-2(3-x2) 3-x2

.2^2 \

3-x2

(l-x2)2 o /

Hence π#j(O)φO. For h > 1, one simply has:

π c (x) = 2h(A + x25)Aά z , (7.3)

Thus, if x = ω az — \/ln — 1, taking the third component of (7.3) (the component
for which condition (7.2) is violated) and assuming that n ^ h, one easily checks
that

which implies that C is a non compensable chain.

A. Proof of (4.17)

Using the notations of Sect. 4.2, the possible cases are the following: (i) sR = 0;
(ii) SR = 1 and σu + ρu = 2, pw> = \\ (iii) sR = 1 and σw + pw = 3, ρw> = 2; (iv)
sR = 2 i.e. σw + pu = 3 and pw/ = 1.

/J. Since t —> πR(t;T,Gc,β) is analytic at ί = 0 [recall Definitions (2.11) and
(2.12)], (4.17) follows at once.

Case (ii). Let Γ ( 2 ) c Γ be the unrooted tree with vertices V(T) = {v e T : v ^
w'}, TW C T be the rooted tree with vertices F ( Γ ( 0 ) ) = F ( Γ ) \ ( r ( i ? ) ^ )
For any ϋ,w E R, define

Γ(κ, w) = Γ ( o ) U 7? U Γ ( 2 ) + ύΰ + wW .
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Thus, TR = T'R = {T(u9w) :weR}. When t = 0, πR(t; T(u9w)9aι9β) does not de-
pend upon w and we can write (introducing a new symbol)

where Γ ( 1 ) = Γ ( o ) UR + ύu. Furthermore, we can assume that χ^ = 1: in fact, χ^ =
0 implies [recall (4.13)] Λy>(T(u,w)9βJ)Ho = 0 as the operator Λ^(T(u9w)9βJ)
contains dj ] (being pw/ = 1) and //o is x-independent. Whence

Λ(T(u,w),u,β) = Λ(T«\aP\βί») ia* Λ(Ί%\<*»,?»)

where α(/) and β ( ί ) are the restrictions of α and jβ to F(Γ ( | ) ) . But, since Σ Λ e ^ α^ — 0,
we get:

E Λ(T',a,β')πR(0;T',a,β')

= iπR(T^\a,β)Λ(Ί<ι\α*1* β^) E «vP Λ(7<2\α(2),i?(2)) = 0 ,
wER

which proves (4.17) in case (ii).

Case (Hi). In this case it is TR = JF^; = {T(ΰ,w) : ΰ e R}. It will be convenient to
keep track of the signs (and the power of / = \f-ί) in the definition of A. To do
this, let us rewrite the operator D^σ'p^ as follows:

where

Analogously, we shall denote A and Aυ the corresponding objects A and Av with

D(σ,p) replaced by D ( σ ' p ) . If T' - Γ(w,w), j?; = (σ',pf) ΞΞ β'(β;u,ύ) (see point (ii)

of Remark 4.1), and the value of the index j relative to the root r is kept fixed and

equal to jo, we have

ΛJo(T'9*9β') = iλ0 da ( Π eσΛ λ{ύyΛ{T^?9oP\βf^) , (A.I)
κveRu-

 J

where the vectors λo, λ(ΰ) are given by the following formulas24:

Λv(T,β,j), if v e Γ<°)\{M}

Σ Π
jr=jθ

2 4 Remarks: (a) If T is a rooted tree and v € V(T), λίv(T) = {v' € V(T) : v' < v and t 'ϋ G

(b) Note that the operators Λj and /l^ are scalar operators if, respectively, v=\=ύ and vφw, while they

are vector-valued operators if, respectively, v = ύ and u = w (that is why λ$ and λ are vectors), (c)

β'l/ -̂ and y|/?M- denote the restrictions of, respectively, β' and y to the rooted tree Ra. (d) Note that, since

A°u~x is a symmetric (real) matrix, if we rewrite λo as XQ = ̂ " " ^ o it is λo * αM = ΪQ * ^ σ " ~ 1 α I / .



Λ':(Ra,β'j) =

Compensations in Small Divisor Problems 157

ow) -p-r a(p',/) r

Π djj •> i f « = w

Π tiff*, ifv = a '

, Λυ(Ra,β'\Rύ9j\Ru-) , if

Σ Π {Λ"(R«,ί

We now claim that
λ(ΰ) = λ(v) , Vΰ,ϋeR. (A.2)

Obviously, it is enough to check (A.2) for ΰ,v adjacent. Let β = β'(β\ύ,v), with

β = βf(β;u,ΰ), and notice that, by (4.21) it is /?' = β'(β;u,v). Thus, letting for ease

of notation (σv,pv) = jβy and (σj,p(,) = ^ϋ 5 we have (by definition of β')

(σί-,Pί) = (σ*4 - σ,- - p0-), {σ'ϋ,p'ϋ) - (σM-,pw-) . (A.3)

Fix { G {1,...,7V}. Then the /ίΛ component of the vector λ{u) has the form:

λeiμ) = {^^M-}αM. - ^ ' - 1 {^4-fff-pB")flfϋ-}αB. , (A.4)

where, if z = M, tJ, the functions gz are given by the following formulas. Let R(u)
be the subtree of R rooted at ΰ with vertices given by V(R(ΰ)) = V(R)\{v G Ra :
i; ^ i;} (the order " ^ " being that of/?^) and let 7?(i;) be defined analogously (i.e.
exchanging the role of ύ and v); let G(z)^i?(z)\{z} (in general G(z) is a union
of unrooted subtrees), and let

dΌ = < <
l l , if v^w

then (for z = M or ϋ)

gz = Σ ( Π d2df;f)Hχz) Π UΛ(^)JU(2),7U(z ))//χ 1 . (A.5)

The definition of >l(tJ) is completely analogous: ΰ and ϋ are exchanged and β is

replaced by β notice, however, that the definition of gz above depends only on

the values of β on G(z) and βv = ̂  for v G G(w) U G(iJ), thus in the definitions

of λ(v) one may take exactly the definition of gz given in (A.5). By (A.3) and the

symmetry of A one obtains:
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and (A.2) is proven. Next we prove that also the function

μ(ΰ)= ( Π ^ ,
\ER

is independent on ΰ £ R. Again, it is clearly enough to check that μ(ύ) = μ(v) with
ΰ and v adjacent in R. Since σw- -f σϋ = σ'a -f σ'ϋ9 one has

U.r<" = nr< . (A.6)
vER v£R

Then, observe that

Π (-i)(>->:> = ( π (-if-°>»°A(-\r (A.?)
veP(v,ΰ) xvEP(ΰ,v) 7

and, since R is a resonance, δa{Rv) = —δϋ(Ra)\ thus

σ ^ ) ~ σ e (A.8)

From (A.6), (A.7), (A.8) it follows immediately that μ is constant on R. We are
ready to prove (4.17) in case (iii):_denoting by λ and μ the common values of,
respectively, λ{u) and μ(u) for w E i?, we obtain, by (A.I),

Σ 4»(r',a,

HER

= iμλ Λ{T%},a(2),jβ(2))Σ> au- = 0 ,
HER

which, by the analyticity at 0 of πR(t; Tf,a,βf) implies (4.17) in case (iii).

Case (iv). In this case J-R—J-'R^ T'R' — {T(ΰ, w) : ύ,w E R} and s = 2. From case
(ii) or (iii), it follows immediately that (4.17) holds with s = 1 (i.e. the l.h.s.
of (4.17) vanishes at t = 0). To check (4.17) with s = 2 we have to show that
the derivative at 0 of the l.h.s. of (4.17) vanishes. By (ii) and (iii) above we
see that, if T(ΰ,w) G TR, β = /?'(/?;w,i7) and βv = (σv,pv), the jo component of
Λ(T(ΰ,w),a,β) may be written as

Λ j o ( T ( ΰ 9 w ) 9 a 9 β ) - - K λo-oia o i * . A ( 1 % \ < P \ f l 2 ) ) ( Π ε σ Λ , (A.9)
KvERu J

where K is defined by the r.h.s. of (A.4) with gz defined as in (A.5) but with dz

and dv replaced by 1. Notice that replacing d by 1 does not affect the independence
on ΰ of this definition. Notice also that, since pw/ = 1, the ί/'s produce the factor
ioLw m (A.9). Computing the derivative at 0 of UR(J\ Γ(W,W), α, β), one finds:

— πR{t;T(ΰ,Λ
πR(O;T(ΰ,w),a,β) Σ (-<O<<U^)Γ\

1=0 U , ifΰ = w.
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Thus, using the notations of case (iii) and denoting βf

v(β;u,u)=(σv(u,ύ), pυ(u,ΰ)),

d

Tt

ί Enjoin*, w), α, β) πR(t; T(ΰ, w\ α, β)
a ι t=θΰweR

\a>z\βκl)y^ v(w) , (A.IO)

where

We now claim that v(w) Ξ v is independent of w. To check the claim one may
again look at adjacent w and w''. The removal of the edge wwf disconnects R in
two subtrees: one, which we denote S, containing w and another, S', containing wf.
Observe that by the definition of the map β -* β' one has:

moreover (by definition of resonance) δ^f(Rw) = —δ^(R^). Thus,

At this point, the proof of (4.17) in this last case (iv) follows at once from (A.IO).

References

1. Arnold, V.I. : Geometrical Methods in the Theory of Ordinary Differential Equations, A series
of comprehensive studies in Mathematics. 250, Berlin, Heidelberg, New York: Springer 1988
(Second Edition)

2. Arnold, V.I. (ed.): Encyclopaedia of Mathematical Sciences, Dynamical Systems. Vol. 3,
Berlin, Heidelberg, New York: Springer 1988

3. Arnold, V.I.: Instability of dynamical systems with several degrees of freedom. Sov. Math.
Dokl. 5, 581-585 (1964)

4. Bollobas, B.: Graph Theory. Graduate text in Math. 63, Berlin, Heidelberg, New York:
Springer, 1979

5. Bruno, A.D.: Convergence of transformations of differential equations to normal form. Dokl.
Akad. Nauk SSSR 165, 987-989 (1965); Analytic form of differential equations. Trans.
Moscow Math. Soc. 25, 131-288 (1971) and 26, 199-239 (1972)



160 L. Chierchia, C. Falcolini

6. Celletti, A., Chierchia, L.: Construction of analytic KAM surfaces and effective stability
bounds. Commun. Math. Phys. 118, 119-161 (1988)

7. Celletti, A., Chierchia, L.: A constructive theory of Lagrangian invariant tori and computer
assisted applications. Dynamics Reported 4, 60-129 (1995)

8. Chierchia, L.: Arnold Instability for Nearly-Integrable Analytic Hamiltonian Systems. To
appear in the Proceedings of the Conference "Local and Variational Methods in the Study
of Hamiltonian Systems," (October 1994, Trieste), Edt. A. Ambrosetti, G.F. Dell'Antonio

9. Chierchia, L., Falcolini, C: A direct proof of a theorem by Kolmogorov in Hamiltonian
systems. Annali Sc. Norm. Super. Pisa, Cl. Sci. Serie IV, Vol. XXI Fasc. 4 (1994)

10. Chierchia, L., Falcolini, C: A note on quasi-periodic solutions of some elliptic systems. To
appear in ZAMP

11. Chierchia, L., Gallavotti, G.: Drift and Diffusion in phase space. Ann. Inst. Henri Poincare
(Physique Theorique) 60, n° 1, 1-144 (1994)

12. Craig, W, Wayne, C. E.: Periodic solutions of nonlinear waves equations. Commun. Pure
and Applied Math., Vol. XLVI (1993)

13. Eliasson, L.H.: Absolutely convergent series expansions for quasi periodic motions. Reports
Department of Math., Univ. of Stockholm, Sweden, No. 2, 1-31 (1988)

14. Eliasson, L.H.: Hamiltonian systems with linear normal form near an invariant torus. In
"Nonlinear Dynamics", G. Turchetti (ed.) Singapore: World Scientific, 1989

15. Eliasson, L.H.: Generalization of an estimate of small divisors by Siegel. In: "Analysis, et
cetera", P.H. Rabinowitz, E. Zehnder (eds.), New York: Academic Press, 1990

16. Eliasson, L.H.: Perturbations of Stable Invariant Tori for Hamiltonian Systems. Annali Sc.
Norm. Super. Pisa, Cl. Sci., IV Ser. 15, 115-147 (1988)

17. Gallavotti, G.: Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations
in the perturbation series of certain completely integrable hamiltonian systems. A review.
Reviews on Math. Phys. 6, 343^11 (1994)

18. Gallavotti, G.: Twistless KAM tori. Commun. Math. Phys. 164, 145-156 (1994)
19. Gallavotti, G.: Invariant tori: A field theoretic point of view on Eliasson's work. Preprint

(1993)
20. Gallavotti, G., Gentile, G.: Majorant series for the KAM theorem. To appear in Ergodic

Theory and Dynamical Systems
21. Gentile, G.: A proof of existence of whiskered tori with quasi flat homoclinic intersections

in a class of almost integrable hamiltonian systems. To appear in Forum Mathematicum.
22. Gentile, G.: Whiskered tori with prefixed frequencies and Lyapunov spectrum. Preprint (1994)
23. Gentile, G., Mastropietro, V.: Convergence of the Lindstedt series for KAM tori. Preprint

(1995)
24. Graff, S.M.: On the conservation of hyperbolic invariant tori for Hamiltonian systems. J. Diff.

Equations 15, 1-69 (1974)
25. Kuksin, S.: Nearly integrable infinite-dimensional Hamiltonian systems. Lectures Notes in

Mathematics 1556, Berlin, Heidelberg, New York: Springer, 1993
26. Moser, J.: A stability theorem for minimal foliations on a torus. Ergod. Th. Dynam. Sys. 8,

251-281 (1988)
27. Poschel, J.: On Elliptic Lower Dimensional Tori in Hamiltonian Systems. Math. Z. 202,

559-608 (1989)
28. Poincare, H.: Les methodes nouvelles de la mecanique celeste. Vols. 1-3. Paris: Gauthier-

Villars. (1892/1893/1899)
29. Siegel, C.L.: Iterations of analytic functions. Ann. of Math. 43, No. 4, 607-612 (1942)
30. Salamon, D., Zehnder, E.: KAM theory in configuration space. Comm. Math. Helv. 64, 84

(1988)
31. Treshev, D.V.: The fracture mechanism of resonant tori of Hamiltonian systems. Mat. Sb.

180 n.10, 1325-1346 (1989); english translation in Math. USSR-Sb.
32. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM

theory. Commun. Math. Phys. 127, 479-528 (1990)

Communicated by J.-P. Eckmann




