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Abstract: We consider the system Sun—Jupiter—Ceres as an example of a planar, circu-
lar, restricted three-body problem and, after substituting the mass ratio of Jupiter/Sun
(which is approximately 10°) with a parametes, we prove the existence of stable quasi-
periodic motions with frequencies close to the observed (average) frequencies reported
in “The Astronomical Almanac” fote| < 10-6. The proof is “computer-assisted”.
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1. Introduction and Theorem 1.1

1) Since human kind developed a definite mathematical taste (whatever this means) the
“stability” of planetary motions might be considered as one of the central questions in
mathematics. Nowadays consciousness about new phenomena (pollution, just to name
one) has drawn the attention of scientists and non-scientists to other types of stabilities (in
other words, extinction of living species will depend more and more upon the chaotic
effects of pollution rather than on “the sky falling on our heads”). Nevertheless the
stability problem for many-body systems interacting only through gravitation still stems
out as one of the more intriguing and rich problems in mathematics. In modern times
outstanding contributions came, above all, from H. Poia¢48], V. I. Arnold [2] and

J. Moser [12]. In particular the so-called KAM (Kolmogorov, Arnold, Moser) theory
(see [1] and references therein) gave a “positive” answer to the above stability problem
in the sense that it proved ([2]) the possibility of the existence of many-body systems
(“planetary systems”) whose time evolution may be described by a linear flow on a torus
(“quasi-periodic motion,” here, synonymous of “stable motion”). The drawback of this
beautiful result is that, taking the estimates contained in it seriously, it turns out that the
mass ratio of the planets of such a hypothetical planetary system with their star should
be more or less comparable to the mass ratio of a proton with thé Sun.

One then may pose the question of stabilityexlistic many-body systems

Of course, to give a mathematical content to the word “realistic” is clearly impossi-
ble and the best we could do was to get inspiration from our own planetary system. The
“simplest non-trivial” three-body problem is the so-callgidnar, circular, restricted
three-body problen(see Sect. 2 for definitions): we considered one of the most popular
three-body problems of the Solar system, namely Sun, Jupiter and Ceres (one of the
major bodies of the so-called asteroid belt). Following Delaunay [6], we then derived a
Hamiltonian model. Clearly, in deriving a model one simplifies Natapate a bit. We
then took our model seriously (from the mathematical point of view) and replacing the
Jupiter/Sun mass ratio, which is approximately 4,0with a “perturbative parameter”

e, we asked for how large values ©bne could find quasi-periodic motions with “fre-
guencies” close to the observed frequencies of the Sun—Jupiter—Ceres system (which
may be found in the ephemeris [16]).

For such a model we proved stability fai < 1078, being therefore away from
“reality” by three orders of magnitude. We leave it to the reader to judge if this is realistic
or not. We believe, however, that with some more efforts one should indeed be able to
prove stability up ta = 10~2 and we regard our result as a first step towards a proof of
the mathematical stability of realistic many-body problems.

Our result relies basically on two techniques: (i) a (new) KAM scheme presented in
Sect. 4 (for the experts: a KAM result in Hamiltonian setting in the style of Moser, Sala-
mon and Zehnder [15] with emphasis on analytical dependence upon parameters); (ii)
computer-assisted (rigorous) estimates, which are needed in order to apply “effectively”
the KAM scheme to our three-body problem.

Itis well known that computers may be used to prove theorems (see, e.g., [7, 11, 10]
or think of the famous “four-colour theorem”). We were not really enthusiastic to rely

1 Mass of proton/mass of Sun=624- 10~21/8.4078- 10°° ~ 1.9891- 10~52; compare [8]. For some
recent applications of Arnold’s result to three-body problems see [14].

2 For example, to consider Sun—Jupiter—Ceres as a pleirarlar, restricted three-body problem means,
in particular, that one is assuming the Jupiter orbit circular: this is a rather crude approximation and more
“realistic” models would include the Jupiter eccentricity, the Saturn “secular” effects on Jupiter, etc. See Sect.
3 for a (partial) justification of our model.
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on machines to prove our result but couldn’t get away without it. In fact we are pretty
sure that with more refined techniques and/or with new ideas one might get better results
without the (essentially trivial but) lengthy computations which are the only reason to
call in machines.

2) We give now a preciséormulation of the main result. Let (¢,g) € T? =
R?/(27Z?); let®

Lo=0.729305, Go=0.727162, ro= 0.001, (1.1)
and let
B={(L,G)cC?: |L—Lo| <o, |G—Go|<ro}, Bo=BnNR?>. (1.2)

OnT? x By, endowed with the standard symplectic fadthA dL + dg A dG, consider
the one-parameter family of Hamiltonian functions given by

H({(,g,L,G;¢e) = (2—; —G)? + 2 (2—; —G)R{,qg,L,G)
= h(L,G)+¢ f(l,g,L,G), (1.3)
with the “perturbing function’R defined as
R(l,¢9,L,G) = > Ru(L,G)cosqul +nag), (1.4)

nez?
0<|ny|+|np| <10

whereR,, = R,,,,, vanishes unless it belongs to the following list:

4 9 3 L% 9
= (1+—=L%+=¢ =-—_@a+=-r* 1.
Roo 4( 16 26)7 Rio 2( 8 ) (1.5)
4
Ry = SI81+21% Rip= - C9+50% (1.6)
8 8 4
L4 5 4 3 4
= —(3+- = -
Ry, 7 3 4L ) R3> 4L e,
5 7, 35 .
= +— = 2
Ra33 8L (1 16L ) Ry 64L ;
_ 63 1
Rss = 7128L ; €7

and the “eccentricity’®, which is a function of the “action variablesL(G), is defined

as
2
eEe(L,G)E\/l—%.

Let o be the golden meanv(= @) and let

5 1 5
—+ =2573432.. Q.=+
2 13+a 573432.., T2 12+a

3 All the following numbers, quantities and functions will be physically motivated in Sects. 2 and 3.
4 Inthis paper the letterwill always refer to “eccentricities” and never to the Neper number; the exponential
function will be denoted expy).

Q_= =2579251...
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The “observed average frequency” of Ceres is approximat€ly = —2.577107 (see
Sect. 3 below) sotha?_ < Q. < Q4. Let

LiEQ;:L/S, Gi = Li 1—6%,

whereeg = 0.0766 is the “observed” eccentricity of Ceres as found in [16]. Finally, we
define theh-frequencies

1
w® = (BLQ., By), Ey=-2(575 —G1). (1.8)
217

For later use we point out thaf*) is a “Diophantine vector” satisfying
W 0| > (reln) ™, Ve ZA\({0}, (1.9)

with v given by
v = 2|E+|(V5 + 24+ 1). (1.10)

The result discussed in 1) above can now be formulated as follows.

Theorem 1.1. Let H be as in(1.3)(1.5); let By be as in(1.1), (1.2); let w*) be as in
(1.8). Then, for all0 < |¢| < 107° there exist (unique) two-dimensional analytic tori
S (W) C By x T?, depending analytically also on the paramete(for || < 10°°),
on which thef-flow is (analytically) conjugated to the linear flave T? — 6 — W+,

Remark 1.1.In Sect. 3 we give a physical motivation for having chosen as a perturbating
function a trigonometric polynomial. We believe, however, that considering perturba-
tions with an infinite number of non-vanishing Fourier coefficients would lead to essen-
tially the same results making only technically more involved (and more expensive) the
proof.

3) (On the proof) The proof of Theorem 1.1 is given in Sect. 5 and, as already
mentioned, is a “computer assisted” application of the KAM scHemh&ect. 4.

As itis well known KAM schemes are “Newton algorithms”: they are procedures to
iteratively construct solutions for certain nonlinear equations (with “loss of regularity”),
starting from some initial “approximate solution,” with a quadratic rate of convergence.
Our initial approximate solution is a suitable truncati¢actually a “fifth order trun-
cation”) of the so-called “Lindstedt seriegsee [1] for generalities), i.e., of the formal
e-power series solution for the invariant torus equation associated to the looked for quasi-
periodic solution. To this initial datum we apply the “KAM algorithm” presented in Sect.

4. The “KAM algorithm” is based on an algebraic scheme which, starting from a given
“approximate solution,” produces a new function solving the invariant torus equation
up to an error which is “quadratically smaller” than the one produced by the starting
approximate solution (Sect. 4.1). This algebraic scheme (which, as already mentioned,
is new) is equipped with a set of “accurate” estimates (Sect. 4.3). The algebraic scheme
plus the set of estimates is what we call “the KAM algorithm.” We then work out a cri-
terion (the KAM Theorem of Sect. 4.4) which guarantees the applicability of the KAM

5 In general, numbers of the form = s + ﬁ with p, ¢, kK non negative integerg, > 0 andk > 2,

satisfy|an +m| > (y|n|)~1 for anyn, m € Z, n 7 0 withy = ¢%(k + «) (see, e.g., [3]).
6 See [4] and [5] for general information, references and a different “KAM computer-assisted algorithm”.
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algorithm an infinite number of times yielding a solution of the invariant torus equa-
tion. Such criterion is obtained simplifying the estimates and getting a unique stronger
condition (the “KAM condition”) ensuring the indefinite applicability of the scheme.

As we already pointed out in previous papers (see [5] and references therein), in
concrete applications, it is convenient to iterate a few times the KAM algotibiore
trying to apply the KAM theorem.

Both the computation of the initial approximate solution and the application of the
KAM algorithm are computer-assisted.

We remark that it is quite different to explicitly compute timitial approximate
solution from the “computation” of the new approximate solutions based on the KAM
algorithm: the calculation of the truncated Lindstedt series is completely explicit (we
compute numbers!) while the construction of the sequence of quadratically better and
better approximate solutions is orilyplicitly describedby the KAM algorithm and
what we actually compute are bounds on norms relative to such approximate solutions.

4) (On the use of computers)Our proof is “computer-assisted” in the sense that
certain formulae (derived below) have beenimplemented on a computer (a VAX) keeping
rigorous control, by means of the so-called “interval arithmetic” (see below), of the
numerical errors introduced by the machine. We report in Sects. 5.2 and 5.3 all the
computer-aided calculations needed to prove Theorem 1.1. Instead we do not include
the computer program which anybody can write by her/hinmfs§lfe are obviously
aware of the (phylosofical?) problem of proceeding in such a way: It is clear that writing
a program in a slightly different way or using different machines might (better: will)
produce slightly different outputs, which in our case itervals of rational numbers
(see below). However we regard the computer-implementatiwee it is clearly settled
the type of rigorous method used to control the propagation of numerical gfners
“interval arithmetic”) as a detail at the same level, say, of the details needed to work out
explicitly the estimates of the KAM algorithm of Sects. 4.3 and 4.4. Of course, we shall
be happy to send to interested readers the computer programs contained in this paper.

Let us now briefly discusiterval arithmeticwhich is the technical tool we used to
control the numerical errors introduced by the machines. Real numbers are represented
by computers as sign-exponent-fraction quantities, with the length of the exponent and of
the fraction depending on the machine. Any result among elementary operations (sum,
subtraction, multiplication and division) is rounded by the computer up to a certain
decimal digit. To rigorously implement on a computer a certain sequence of formulae,
one first reduces such formulae to a sequence of elementary opefalibasdea of
the “interval arithmetic” is then to construct an interval (exactly representable on the
computer) containing thexactresult of an elementary operation and to replace (in
the obvious way) algebra on numbers with algebra on intervals. In our FORTRAN 77
programs we define quadruple precision (H-floating) variables, which are allowed to
vary in a range between® - 10~43%2 and 059 - 10*°2 The binary structure of a
quadruple precision datum is composed by 128 bits, with 1 sign bit, 15 bits for the
exponent and the remaining bits for the fraction. Two extra hidgleard bits are used
to guarantee the result of an elementary operation “up to 1/2 of the last significant bit”
([17]). The interval containing the result of an elementary operation is therefore obtained
increasing or decreasing by one bit the last bit of the mantissa, eventually taking care of

7 The (11189-line) computer program is “just” a translation in computer language (FORTRAN 77) of
the formulae of Sects. 5.1 and 4.3 after the standard arithmetic (basic operations) is replaced by “interval
arithmetic” (the “arithmetic routines” may be found, e.g., at pages 153-158 of [4]).

8 Elementary functions (such as roots, exponentials, trigonometric functions, etc.), will be approximated
by a finite sequence of elementary operations using Taylor polynomials keeping track of errors§8e [5]
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the propagation of the carry. For further information and for the necessary routines we
refer to [4 and 5].

We finally mention that in the Appendix we report a few computer-assisted data with
the following doublefold aim. From one side the reader reproducing our estimates might
check her/his results with ours; from the other side the reader who is not going to waste
time performing the computations will have an idea of the type of outputs one needs in
this paper.

2. Restricted, Circular, Planar Three-Body Problem

Here we recall the Hamiltonian formulation of the “restricted, circular, planar three-body
problem” (for general information see [6 or 1]).

Consider first a Keplerian two-body problem made up of two material points (“bod-
ies”) P, and P, with massesn; andm, and letP, revolve on a circular orbit around
P,. Consider now a third bodyt moving on the orbital plane af; and P, and subject
to the gravitational attraction aP; and P,. Let the massn 4 of A be much smaller
thanm;y, my and assume that the motion Bf and P is not affected byA. The study
of the dynamics associated to such a model is known in the literatutreeasrcular,
planar, restricted three-body problerm particular, we shall be interested in phase space
regions for which the resulting motion df is a nearly circular orbit “aroundP;.

A convenient Hamiltonian formulation of such a three-body problem is based upon
the cl%assical “planar Delaunay variables” [6]. [let= R /(27 Z) and consider the phase
spac

P={(\7¥) € T°} x {(A,T,E) e R*: A 70,|I < |A]}

endowed with the standard symplectic foth A dA + dy A dT" + dy A dE. Then, the
dynamics associated with the circular, planar restricted three-body problem is given by
the Hamiltonian flow generated by the Hamiltorii&n

1
HO()\>’77’¢7A’F)E) = w + B+ ERO()‘77_1/11A7F)7 (21)

wheres = mjy/m; and the “perturbation functionR, is given as follows. Letr € T
(the “eccentric anomaly”) be implicitly defined fg¢| < 1 (¢ € R) by the relation
(“Kepler’'s equation”™)

A =v — esinv;

let o € T (the “true anomaly”) be implicitly defined (again fpr] < 1) by the relation

=" l+eNY2 | v
tg—— = tg =
973 (1 - e) 93>
and define the “orbital radius® as
a(l—€?) 2
= 7 here a = A~°.
" l+ecosfp—7)’ W “

The functionRy in (2.1) is then given by

9 The Delaunay coordinates ~, «» are often called, respectively, the “mean anomaly,” the “argument of
the perihelion” and the “longitude” (of the “planef).
10 We have chosen the units of measure in such a waythat m 4 = 1 and that the period d®, is 2r.
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Ro(Ay =4, A, T) = _(TCOS(’O —¥)- V1+r2 = ercoséo—w)) 7

wheree is defined as

We recall that a convenient representationff is obtained by means of Legendre
polynomials®: if » < 1 (which will be the case for our specific model) one finds

Ro=1 +§:rij(cos(o —1)).

J=2

A trivial reduction shows that the dynamics generated by (2.1) may be described by a
two—degree—of—freedom Hamiltonian: under the canonical (or “symplectic”) transfor-
mation

(€7977—)E()‘77_¢7¢)7 (L7G7T)E(A7F7F+E)7

Hj takes the form

1
Hl(‘€7gaL7G) = ﬁ - G+ 8R0(€791L7G)1 (22)

L
having omitted the dummy variablg; the phase space is ndiif x {(L,G) € R? :
L#0,|G| <|L|}.

3. A Model from the Solar System

Letus now focus on the case in whighis the Sun/> is Jupiter andi is Ceres (one of the
largest bodies in the asteroid belt). Notice (again) that regarding Sun—Jupiter—Ceres as a
planar, circular, restricted three-body problem contains a lot of physical approximations,
which we shall not discuss here. But even accepting these basic approximations, the
reader will have certainly noticed that the Hamiltonian in (1.3) is different from the
Hamiltonian in (2.2): besides the factog%é — G) (and 2 in place of¢), the main
difference is thaR is a trigonometric polynomial of degree 10 whifg contains infinite
non vanishing Fourier harmonics. The “selection rule” which led us to the choice of the
“physically relevant” Fourier modes is based on the following trivial observation. Among
other things, the gravitational effects on Ceres of asteroids and planets and most notably
the attraction exerted by Saturn (which, after Jupiter, is the largest planet in the Solar
systen?) have been neglectetiherefore, after having defined a (rough) measgesg,
of the Ceres—Saturn attraction, we disregard in the Fourier expansidRydhe terms
exceedind/s, in absolute value
In order to defin&js, we first look up a few astronomical data in the ephemeris (see

The Astronomical Almanac [16]). In particular we want to define the “reference values”
of Lo and Gy for the Sun—Jupiter—Ceres system. Observations of the true motion of
Ceres, as found in [16], indicate that Ceres moves on a nearly elliptical orbit of “average
eccentricity”

L Py() = 1; Py() = @; Pyaa(z) = SEDB@I 001l gor > 1),

12 Even though the orbit of Ceres is closer to the orbit of Mars than to the orbit of Saturn, the difference in
mass makes the gravitational attraction of Saturn the largest one after that of Jupiter.
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eo = 0.0766 (3.1)

and whose average semimajor axis is approximat&@2 Hence, the corresponding
“average frequency” of Ceres, computed by Kepler’s third law, yields a value of

—Q. = -2577107.

Since—Q. ~ dr Hy|.=0 = — L~ we take as “referenck-value” the quantity
1
Lo =0.729305~ Q¢
and, sinces = Loy /1 — €3, we take, as “referena@-value” the quantity

Go =0.727162.

Such reference values have been taken as centerarfi#iigticity domain for the “action
variables”, see (1.1) and (1.2). Notice that with our choice of the analyticity racjus
one finds that the functios(L, i) satisfies

0.019799< |e(L, G)| < 0.106364, V¥ (L,G)€ B..

Let us turn now to the definition @fs.. In general, for planets whose orbits have a larger
semimajor axis than that of Ceres, the “secular termFgfis given by ¢ (= mass of
the planet/mass of the Sun) times the tdgy = Roo(L; €) in (1.5). Keeping in mind
that, in the integrable limit[ is the ratio of the semimajor axis of Ceres with that of
the planet we define (for planets whose orbits have a larger semimajor axis than that of
Ceres)

Ggp = €(P) X Roo(L(P); 60), (32)

whereeg is the observed “average eccentricity” of Ceres (%) is the mass ratio of
the planetP and of the Sun and(P) is the ratio of the semimajor axis of Ceres with
that of the planeP. Looking up the “true” values in [16] one finds

Gsa= Gsaum= 6.3778- 10°6.
For comparison purposes we report also the value for Jupiter, which is
gJupiter: 7.8850- 1075 .

Neglecting in the expansion efR, those terms whose size is smaller tHags,, one is
led to consider a “three-body problem” governed by the Hamiltonian

Hy(l,g,L,G;e) = 2—;:2 — G+ceR{,g,L,G) (3.3)
with R given in (1.4) and (1.5) of Sect. 1.
The final modification ofH, which gives the Hamiltonian in (1.3), (1.4) is due to
merely technical reasons.
As mentioned above, our results are based on computer-assisted KAM theory, and
one of the standard hypotheses of KAM theorems is that the unperturbed Hamiltonian

13 The “secular term” offf; is the average over the angular variableand-~y of the “perturbation’s Ro;
the computation is immediately checked using, e.g., the above mentioned expansion in terms of Legendre
Polynomials.

14 More precisely we omit all the terms such théR,, (Lo, Go)| < Gsa
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(e = 0) is non-degeneratee. has an invertible Hessian matrix on its domain of analyt-
icity. In the case of (3.3), the unperturbed Hamiltonian is given by

hO(L7G) = - G7

212

whose Hessian matrix iotinvertible. There are a few well known methods to overcome
this minor problen® and it turns out that for our purposes the most convenient one is
to follow Poincaé’s trick [13], which consists in replacing the Hamiltoniah by its
squaret® Therefore we lefl; = (H,)?:

1
H3(€ag7L7G;6) = (2L2 G)z + 2 (ﬁ - G) R(€7g7LaG)
+e? [R(¢,9, L, G)I? . (3.4)

The Hessian of the unperturbed Hamiltonidf[.-o) is equal to

S5 _ 66 2
A= AL,G) = (LGZL“ L2> (3.5)
L3

and, if (L, G) € B, one has

| detA| = ’L“ (2L2 Q)
12 1
= (Lo+m0)* (Z(Lo +r0)2 (Go* TO)) = 8.830153

To be consistent with the criterion that led us to the Hamiltonian (3.3), we have to omit
the term of ordee? in (3.4) and this leads us to the Hamiltonian (1.3) introduced in
Sects.(1, 2).

4. A KAM Theorem

Here we prove a KAM result, in the style of [5], which will be the basis of the proof of
Theorem 1.1.

First we provide a “KAM algorithm” (in the Hamiltonian context), which yields a
sequence of quadratically better and better approximations to the conjugacy function
of a maximal invariant (Diophantine) torus, and then we formulate a criterion ensuring
the applicability of the algorithm an infinite number of times and hence the existence
of an invariant torus. Technically, the algorithm, which does not use symplectic trans-
formations (used, instead, in the original works of the masters), may be viewed as a
Hamiltonian version of the Lagrangian approach developed in the eighties by Moser,
Salamon and Zehnder (see [5] and references therein).

4.1. Algebraic Scheme.Let us consider a smooth (later real-analytic) Hamiltonian
h(z,y), wherez varies on the standar¥-torusTY = RY /(27Z") andy varies in

15 For example, one can replace the non-degeneracy hypothesis with a “iso-energetic non-degeneracy” (see,
e.g., [1]), which is satisfied bkg.

16 Note that the dynamics generated by a Hamiltonian fundiienk(q, p) and byh? coincide up to a time
scale: ifz(t) = (¢(t), p(t)) is anh-motion thenz(2Et), with E = h(z(0)) is the correspondin?-motion.
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some open balB™ c RY; (z,y) are standard symplectic coordinatég.he problem
is to construct an invarian¥V-torus S on which the flow is conjugated to the linear
flow 8 € TV — 6 + wt for some “rationally independent” vectdro € RY. The S-
embedding functio? € TV — (0 + u(0),v(0)) € TN x BY is immediately seen to
satisfy the following quasi-linear, degenerate PDETN

w+ Du— hy(0 +u,v)=0,
Dv+h (0 +u,v)=0, (4.1)

whereD denotes the derivatives in thedirection:

Y9
Dzwo%EZwi%, (4.2)
i=1 i

andh,, h, denote the gradient df with respect ta, y.
As usual, we assume thatis a Diophantine vectari.e. there existy > 0 and a
positive integer- such that

N
lw-n| = ‘ szm
i=1

The starting point of a KAM algorithm is a@mpproximatesolution (, v), which solves
(4.1) up to some “error.” In order to formulate a precise result we need some notations
and some assumptions.
Given a functionu : TV — RY we denote by or by dyu its Jacobian matrix
ou;
(ug)ij = 6791 ;

J

>(ylnl)7t, YneZV\{0}. (4.3)

hzy denotes the matrix with entries

0%h
(hwz;) = ;
dx;0y;
thush, is the transpose df,,, i.e. hy, =
A# the antisymmetric part ofl times two:

A=A AT,

finally, if # € TN — f(0) € R® (s > 1) is a smooth function with vanishing mean
value,i.e.

zy, if A is a square matrix, we denote by

(1) = g [ 1) 8 =0,

(and if D is as in (4.2), (4.3)), we denote By —! f the unique solution with vanishing
mean value of the equatidig = f; such a solution in Fourier expansion has the form

D= > Zj"nexp(m 0),

neZN\{0}

wheref,, denote Fourier coefficients and: /1.

17 That is, the symplectic structure is given by the standard 2- @: dz; A dy;.
18.e.if w - n = 0 for somen € Z, thenn must be 0.
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Assumption 4.1. Letd € TV — (u,v) € RY x RY be a smooth function and l¢¢1
andh9, be the matrice’§

M=T+ug,  hO,(0) = hy, (9 +u(f), v(@)) . (4.4)

Denoting®
— —-1;0 =T
T =M "hyyM ", (4.5)
we assume that, for artyc TY, the matrices\, h(y’y and(7) are invertible.

Proposition 4.1. Let h, u, v andw satisfy, respectively, Assumption 4.1 g4dB) and
definef andg by

w+Du— hy(@+u,v)=f,
Dv+h,(0+u,v)=g. (4.6)

Then, if we define the vector/matrix-valued functibf#§ and 5(6) by
#
b=vif-MTg.  B=(MTg—v]fs) .

we have
(b) =0, (B)=0. 4.7)
Furthermore, the following equation hofds

w+Du' —h,@+u' )= f",
DV +h,(0+u,v)=¢g", (4.8)

whereu/, ', f', ¢’ are defined at the end of the following list of definitiths
bo=T (D*lb + cl) MY, = <T>_1(<M*lf> - <TD*1b>> :
2= M(D—lbo + 62) . co=—(MD ),
w=(13,) 71(Dz — K0,z f),

qlEhm(9+u+z7v+w)—hgg—fzg,mz—fLEZyU)7

— 0 0 0
@ =hy(@+u+z,v+w)—h, —h,2—h,w,

Ga=fiw—gsz— M'q,

fl = —q2,
g=MT (D [(D*lB)Mflz + MT(hf,y)*lfeM*%} - lI3> :
W=u+tz, v=vtw.

19 I is the identity matrix. To be precise we should replace, in (4.4yith p o u, p being the projection of
RN ontoT¥; however we shall omit, here and in other circumstances, such projection.

20 The superscript 7 denotes the transpose of the inverde:” = (4~ 1T

21 Here and in what follows, the prime attached to a function will never denote derivates but just new
functions.

22 As above ifh = h(z, y), h°(6) denotes the functioh(d + u(6), v(6)).
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Remark 4.1.(i) It is immediate to check that if we replageandg by ¢ f andeg then
z,w = O(e) andf’, g’ = O(£?), i.e. the errors associated td andv’ are quadratically
smaller than the errors associated #oand v. We shall call a coupleu( v) as in (4.6)
anapproximate solutioffior (4.1) and the relative coupld (g) theerror function

(ii) Note that the constants, andc, are defined so that the functiobg and z have
vanishing mean value.

Proof. To check the first of (4.7), observe that
0gh® = MThY + vy b ;

now, multiply the first of (4.6) by, the second by- M7, add them together and use
integration by parts to get rid of the terms containflderivatives.
To check the second of (4.7), take thgradient of (4.6) to obtain
DM = hd M+hS, v+ fo ,

Dug = —h3, M — h3,v9 +go . (4.9)

Let )
A= (MTup) (4.10)

and notice (integration by parts) that

(A)=0. (4.11)
From (4.9), it follows that the matrix satisfies the equation

DA=B, (4.12)

from which the second of (4.7) follows at once.
The first of (4.8) follows immediately from the definitions:

w+Du' —hy(@+u,v") = w+Du+Dz— hy(§+u+z,v+w)
hy(@+u,v) —hy@+u+z,v+w)+Dz+ f
= —qg—hgxz—hgyw+Dz+f

=f. (4.13)

The check of the second of (4.8) is more tricky. First observe that last identity in
(4.13) can be rewritten as
Dz=h),z+h)w— f. (4.14)

Next, from the definition of, it follows that
D(MT(hgy)’l [MD(M’IZ) + fD =b. (4.15)

Solving forhgy in the first of (4.9) and inserting the obtained expression in the definition
of w, we get

w

(19, (D — [(DAMM ™ = 18wy Mt = [y M+ )

0o ML+ (15,)7H(fo M2z + MDMTE) + 1) (4.16)
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From the definition of/’, (4.15), (4.16), (4.16)(4.12), it follows that
Mg +ga+b=DM w—v}z), ie ¢g=mMT (D(MTw —vpz)—b— Q3) .

From this identity, recalling the definitions éfandg; and using (4.9) to eliminatg,
andgg, one obtains

g =MT} hgl.z + hgyw — f} + [g +h0 2+ hgyw + ql} +Dw — MTvf Dz,

which, in view of (4.14), the definition af; and the second of (4.6), yields the second
of (4.8). O

4.2. Analytic Tools. From now on we shall work in theeal-analytic categoryin this
section we review some basic technical facts.

We shall consider the Banach space of periodic functfareal-analytic on the torus
TV, admitting (for some prefixegd > 0) analytic extension on the closed strip

Ae={0eCN: [Img[<¢,Vi=1,. N},
equipped with the “Fourier norm”

1£lle = D |fal exp(nlé) ; (4.17)

nezZN

in CV (and its subset®” andZ”) we shall use the 1-norm,

N
lyl = [yl1 = Z |yil -
i=1

If f: TN — C*is a vector valued, real-analytic function, analytic &p, its norm is
defined ag|f||c = >_, || fille, which coincides with (4.17) iff,, denotes the-vector
whose components are given by the Fourier coefficients of the componehitStoése
definitions are immediately extended to matrix/tensor-valued functions by making use
of the standard “operator normeg:g. if A(f) is a matrix-valued periodic functions with
analytic extension on\¢, we set

[Alle= sup  [lAclle;
cECN:|c|=1

or, if 92 f is the tensor of order three of the derivatives of a periodic, real-analytic function
f: A¢ — C, its Fourier norm is given by
N

N
3f
103 flle = sup ZH Z mbkcgﬂs :
k=1 ’

[bl=lel=1 =1

Finally, we shall also consider functions (possibly vector/matrix/tensor-valued)
h(z,y) periodic inz and real-analytic on the closed domaip x B,.(yo), whereB;.(yo)
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= /B\f}’(yo) denotes the closed complex ball of radiuaroundyy € C. For any such
function, which admits the expansfdr(convergent om¢ x B,.(yo))

Wz, y) = Y hoxexpln-z) (Y — yo)* (4.18)

nezlN
kenlv

we set
hller =D [hnklexp(n|é) ri*. (4.19)

nezlN
kenlV

The elementary properties of interest in the present context are collected in the following
Lemma 4.1. (i) Let f : TV — R have an analytic extension ai (for some¢ > 0)

and letw € R¥ be a rationally independent vector. Then, for@lk § < &, for any
p € Z and for anyk € N or anyk € NV one ha$*

ID=P% flle—s < [I£lle opx(9),

where, ifk = O, f is assumed to have vanishing mean value, and

o@ = sup  (mulwnl 7 expE-alnl))
{nezZN\{0}:f»70}

R Inl*, ifkeN,
"R = nkl, if ke NV
(i) Let f,g : TN — R have an analytic extension o, then

1fglle < I Fllellglle -

(i) Let0 < ¢ < 5_ leth : TV x {y € R® : |y — yo| < r} — R have an analytic
extension om\ s x B (yo), f : TN — RN andg : TV — R* have analytic extension on

Ag. Assume thaf flle < € =&, [lg — volle < r. Then, denoting(6) = (6 + f(6), 9(0)),
one has

1o dlle <llhllg -

Proof. (i) The claim follows immediately by expandingjin Fourier series.
(ii) In the following sums the indices, m run overZ”,

I£glle = 3" 1)l @xp(1O) = 3 | fingn-m| explnle)

< Zexp‘m‘ eXp|n - m”fml |gn—m|

= 1 llellglle -
(iii) In the following sums the indices, m run overZ", the indexk runs overN* and
j overN. Using (i), one gets

23 \We use the standard notation: € yo)* = Hle(yi — yoi)k.
241f k € N, 9k f denotes thé&-tensor of the derivatives of; if £ € NV, 9k f = 88&

k1 kN *
ml BIN
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hosle = Y| Zk"’;” 7 (m- 1Y~ u*) | explule
<y exp(mle) "L | (o 70— 90)") | expln — mle)
-3 Pkl - 15— o) e expmie)
<> ""‘ m- £ g — woll exp@mlé)
< ml7 (€ — &) rI* exp(ml¢)
_ 1|q|1h7|);,.. 0

Remark 4.2.(i) Note that the result might be empty.ifis “too well approximable by
rationals vectors.” Ifv satisfies (4.3) then one checks easily that

AP5=kIEn) (k| +pr)! ,  if p > 0,

< .
opk(0) < { QIPl 5= (1Bl (|| + [p])t , if p < O, Q=maxw|. +20

(ii) It is easy to check that (i) and (iii) of Lemma 4.1 holds als¢ jfrespectively) are
vector valued.

4.3. KAM Algorithm. Here we describe the “KAM algorithm” associated to the scheme
of Sect. 4.1j.e. we equip the algebraic scheme described in Proposition 4.1 with “ac
curate” and detailed estimates so as to end up with a/ayghich to given bounds on
norms of the relevant objects relative to a certain approximate solutjef), @ssociates
corresponding bounds on the new approximatidm('). More precisely, let us start by
making quantitative the hypotheses formulated in Sect. 4.1.

Assumption 4.2. Let0 < £ < g_ r, B, E, , (p,q € N) be such thatz, y) — h(z,y) is
. —=N
real analytic onAg x B, (yo) and

||(h'yy)7l||§_,r <FE, Haﬁa"hllg r < Epgs (4.21)

assume that the approximate soluti@nv) is real analytic onA¢ and letU, V, M, M,
V, F, G, T be positive numbers bounding the following norms:

lule <U, ole<V, [Mlle<M, M <M,
loalle <V, lIfle < F, lgle <G, KT)TI<T, (4.22)

whereM, T, f andg are, respectively, as i(4.4), (4.5)and(4.6). Finally assume that

U<é—¢, p=v—2yolle<r. (4.23)
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Now let 0< § < £ and define
&=¢-6. (4.24)
In the rest of this section we shall define &M map i.e., an explicit map
K:UV,M,M,V,F,GT)— U,V MMV, F.G'T), (4.25)

where (/’,...,G',T") are bounds on the normy ||¢/,..., ||¢’lle- and on the number

|<T’>’1|, withw/, o', f/, ¢’ defined in Proposition 4.1, whil&1’ and7” are (obviously)
defined as

M =T+uy=M+zy, T = M’_lhyy(ﬁ +u )M T
We start now to work out the necessary estimates. By Lemma 4.1 and (4.22), we get

—2
HT”& S T=M E072 .

Remark 4.3.In principle, the bound o7 || could be improved replacing» by
||(h2y)*1||§ (without invoking point (iii) of Lemma 4.1); in practice, however, such
a norm is difficult to evaluate accurately and one would not get significantly better
estimates.

All other estimates are immediately obtained from Lemma 4.1 (and from the definitions
given in Proposition 4.1). Here is the complete list:

174 <
e
18]l

INIA

M
Il
&
e

IN

s1F, , s1= 2001(*) ;

T(MF +Tow@F.) ;

IN

|ca

(note that in the last estimate we have used the fact that the supremum nge spip
is dominated by the 0-Fourier noriin ||o);

- 0
llle = 1D Blle < s2F. . s2= o035 )sa

B, = Talo(g) F +TT (MF +TF, alo(g)) +MF:

IN

HbOH&g

IN

_ )
|co| < M||D 1bo||o§M010(§—§)B*;

IN

1]l
[’ ller

Bysz, S3EM010(2) +M2010(§—g) ;
lu+zlle <U+|lz]le

U =U+B,s3;

[(DM)(D b + ) + Mo

B,s4, 84 = 830 _10(0) + M ;

| Ma(D™ g + c2) + MD ™ 0pbg|| ¢

oA

I1Dz]le

IIVAN

(A3
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1Dz]le:

[[wl]le:

[[v' |l

[[welle

llgalle

I1f[le

llgslle

IN

IN

A IA

[TRVAN

IN

IN

IN

IN

IN

IN N

1)
B,ss, 855001(5)83"']\/1011(5) ;
[(DMg)(D™ g + c2) + DM D™ 9gbo + Mgbo + Mybo||¢-
B*SG 5

1) 0

sg = 0_11(0)s3 + M [0—10(5)011(5) +001(6) + 0’01<§)} ;
E(IDzler + Eaallzlle + F)
E(S7B* + F) R S7=84+1 E1,183 X
[v+wlle <V +|wle
V/ = V+E(S7B* +F) i
109(h3,) Dz — b,z + f) +
(hS,) " H(Dzo — Dph)yz — hyzo + fo)le

o01(0)E(|| Dz|le + Evallzller + F)
"'E[HDZ@H&' +001(0) B 1l z|ler + Eval|26ler + 002(0)F

EB*Sg + EFSQ s
sg = 001(0)s7 + se + 001(0) E1,153 + E1,155 ,
sg = 2001(9) ;
1 _ 2 _ 1 _ 2
EthmHg,r”Z”e + thxy”g,r”'z”&’||w||£’ + Ethyyng,r”ng'
51082 + s11B. F, + 512F?
1 2 = 1 =,
510 = §E3,083 + EFE5 18357+ éEl,ZE 87,
s11=s3Fo 1 E + 87E1,2E2 ,
1
512 = EE Ei5;

1
laalle < Sl1hyaell| 2lE + hyayllg Nzl lwlle

1 2
2yl ol
F' = §1oB2 + 51, B.F + s1,F2
1 _ 1
83_0 = EEMS% + EE1,25357 + 5E073E S% ,

— 2
! —
811 = s3E1 o +s7Eg3E
12

83_2 = EE Eo,g X

oo1(0) F'[|wller + 001(0)G||zl[er + M|qalle
$13B.F + 514B.G + 515F2 + 51633 ’

513 = 001(0)Es7 + M s11, 514 = 001(6)s3
s15 = 001(0) E + M 512, 516 = Ms10;

429
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lg'lle: = M7 [BM 2+ ADM ™)z + AM D2
HDMT)(R),) " foM ]

+D(h9,) " foM e+ (S,) D fg M

+(h9,) fo(DM™Y) 2+ (1,) HfoM Dz — M~ Tl

M[le*MB* s3+ soF,0_10(20)M B, sz + s F. M B, s4

IN

+a_1o(25)E001(25)FMB*33}

+0_10(0)E0c01(20) FM B, s3 + Eo_11(20)F M B, s3
+E001(25)FU,10MB* s3+ E001(25)FMB* S4

+M(SlgB*F + 514B.G + 815F2 + Sler)

IN

G' = s17F, B, + s18EF B, + s14M B,G + s1sM F? + 516 M B? |

s17= M2(5153 +0_10(20)s253 + 5254) ,

s18 = Mss [ﬁo_lo(Zé)am(Zé) +0_10(0)001(9) + 0-11(20)
+001(20)010(20) | + Mooa(20)sa + M B 's13

Mg = IM+zler < M +||z]ler

< M' =M+B,ss.

To defined we have to distinguish two cases according to whellig?, ss is greater
or smaller than 1. In the first case we deff to be infinite:

MB*3521 =:>M,EOO,

while if
MB,ss < 1, (4.26)

we proceed as follows:

-1 — — — =7 = —
M e = [T+ M 20) Mg < M(L— M||z]l)

< M =M1 - MB,ss)*.
Next,

[vgller = llve +woller <V + [Jwoller
< V'=V+FEB,sg+EFsg.

Of course, as it is clear from the definition ®f , the KAM algorithm will be of some

use only if (4.26) is satisfied. To complete the computatiofCpit remains to bound

(T")7Y,i.e.to computel”. If M’ = 0o, we define als@” = o, otherwise we proceed
as follows. A bit of algebra shows that if we define
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C =(I+M )t 1= (M 1z)",

k=1
¢ =cmt,
C" = hyy(0 +u/,0") = b9,
then we can writ/’ as
T =T+C,,

where
—_ -1;0 T -1 -1 -1 T 0 -1
C. = M, + M M+ Mt e + 0T, M
+C/h2yclT +CICIIM71 +C/c//c/T )

Thus, since supy |z9] < ||20]lo (and a bound oriz||o is obtained exactly as above
replacingo with &), we obtain

Sl}JVIOICI < M||zglo(1 — M| z0]0) "
T

C = MB%(1 - MB%Y~1;

<
<C'=CM:

sup|C’|
TN

sup|C”| < Eual|z]lo + Eosllwllo
TN

IN

C" = E1,B%3+ Eg3E(s3B% + F) ;
Sup|C.| < C, = 2M Eo,C' + M°C" + 2MC"C"
N

+C"?Eop + C2C" (4.27)
whereB?, s, 53, s9 are defined as above but withreplaced by¢. Now, if
TC, > 1 = T' =0,
otherwise, if _
TC, <1, (4.28)
we have
(T~ = 1T+ (D) 7He) )T
<T' =TQA-TC,)™'. (4.29)
The computation of the mag is completed.

Remark 4.4.(*KAM algorithm™). If (4.23) is satisfied whei/, v, ¢ are replaced by

U’ v, ¢ then the magK can be re-applied and, iterating when possible, one obtains a
sequencey), v)) of approximate solutions [with relative error functiong?{, ¢)]

and corresponding norm-bounds, V;,....T;. More precisely, fix number; \, 0 such
that) " d, < & (wheredy = 0 as above); let, fofj > 1,¢; = &1 — d;_1; call the
above “first approximate solution{?), v©), (f©, ¢©) the relative error function and
attach toM, 7 and to their norm bound an index 0. Then, given,for 0, (", v())
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and the relative norm bound®/(, V;, ..., T;) we let U*D, vU*D) be the approximate
solution constructed 3 Proposition 4.1 and, if conditions (4.23), (4.26) and (4.28) are
satisfied (see, again, footnote 25), théf.g, ...,fjﬂ) = K(U;, ...,fj) are the norm
bounds controlling the new approximate solutiaf Y, vU*b),

4.4. KAM Theorem. Here we prove a KAM theorem based on the KAM algorithm
described abové®

Theorem 4.1. Letw satisfy(4.3), let Assumption

N

.2 hold, let

xS
7225

0<é<E, 5

1
2

= ‘

let n be the following norm off, g)
n= max{E EO,27 Eo,zf} max{yF, 72E072‘7F, ’yon,zG} s

define the following parameters relatedd@nd to the quantities introduced in Assump-
tion 4.2:

Q = 1@2)}(\{ lwi|, Qi=max{Q, E11},

Q. = max{Egl s EE_LZQ]_ s EoygEzQ%} R
]{,,< = maX{Eg’o s EEZJ_Q]_ s Elﬁzﬁzﬂi} s
! =max{H, , EQQ}, H' =max{H. , VQ,},
Uy = max{E E072 R EO,ZT} . max{yonngfk’ R ’}/Q*} s
6 =max{(¢ -7, (-7,
EQ, EQ1 -~ ~ ~
e =0max{l, —2 22 TEy, TE,, TEEQ)},
r=p Vv
a =maxa., .
There exists a polynomialin (¢, 3) satisfying’

. <1
%gu(§,6)§21+88ma>{§, €}, VE>0,V0<io< =,

N

such that, if

25 Of course, the unprimed quantities in Proposition 4.1 (besklesid £, , which remain unchanged)
correspond here to the indgxwhile the primed ones correspond here to the inflexl. Analogously, one
has to attach in the obvious way an indgxr j + 1 in the formulae defined in this section; for example
T; = M?E, Fy; = V;Fj + M;Gj, s1 = 2001(6;/2), etc.

26 \We recall that in order to apply such a theorem in an “effective way,” one should apply it only after a few
iterations of the majC: see [5] for more information.

27 The polynomial- (of degree 12 and with positive coefficients) is explicitly given in the proof below. For
later use we report also the following values:

(1, %) =17.4281.., 1(0.0025 %) = 6.5190.. (4.30)
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na MTBL (6 — §) 2@ 0813 114 (e §) < 1, (4.31)
then there exists a solutidfi, v) of (4.1), which is real-analytic oM and isn-close

to (u, v). Furthermore(@) = (u) and the solutior(, v) is the unique solution in an
neighbourhood ofu, v) such that(@) = (u).

For us it will be particularly important to investigatiependence upon parameters
assume that the Hamiltonian = h(x,y; 1) depends analytically also upon a set of
parameters varying in some complex domain

peDcCr.

Then the coefficients,, ; in (4.18) will be analytic functions ofi € D and we shall
redefine the norm i4.19)by

hller= 3 (sup|hn,k|)equn|5)rlkl. (4.32)
nezN neD

Analogously, for a functiory(z; 1) analytic inA¢ x D we shallredefine the Fourier
norm(4.17)by

Ile= 32 (suplal) explnle).

Note that we are not changing the symbols of the norms shecdomairD will remain
unchanged in the proofs
Finally, Assumptions 4.1 and 4.2 will be modified as follows:

Assumption 4.3. Let (4, ) € TN x D — (u,v) € CV x CV be a regular function of
6 and let M and h_?/y be the matrices

M=1T+uy, hgy = hyy (9 +u(0; ), v(6; w); u) . (4.33)
We assume that, if we denote
— —-1;0 -T
T=M,MT, (4.34)
then for any(@, 1) € TV x D, the matricesM, hS, and(T) are invertible.

Assumption 4.4.Let0 < ¢ < &, 1, E, E,q (p,q € N) be such thai(z,y, ) —
h(z,y; p) is real analytic onA g x Eiv(yo) x D and such thaf4.21)holds; assume that
(u,v) is real analytic onA¢ x D and letU, V, M, M, 17, F, G,f be positive numbers

for which (4.22) holds’® (with M, 7, f and g as in(4.33) (4.34)and (4.6)). Finally,
assume tha4.23)holds.

With these modifications one obtains

Theorem 4.2. Letw, &, €, §, v be as in Theorem 4.1; assume that(f, g) satisfy
Assumption 4.4. Let andn be defined as in Theorem 4.1 and (ét31) hold. Then
there exists a solutiofii, ©) of (4.1), which is real-analytic oM x D and isn-close
to (u, v). Furthermore(@) = (u) and the solutior(, v) is the unique solution in an
neighbourhood ofu, v) such that(i) = (u).

28 Last inequality must be rewritten as supy, [(7) | < 7.
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Remark 4.5.(i) We shall not prove here the local uniqueness (under the constfaint

(u)) of the solution ¢ ) and we refer the reader to [5] (where a similar statement is
proven in full detail).

(i) Precise estimates concerning theloseness (which is of course in the sense of the
|| - [l norm) can be easily deduced from the detailed estimates given in the proof.

Proof. (of Theorem 4.1.) The argument is by induction. We define; fer0,

=&+ 2_j£7 5jE§j_§j+1=§2j;+1€-

Iy

We assume (by induction) to have constructed (by iteratinrgO times the scheme of
Proposition 4.1 starting withu(?, v®) = (u,v)) the approximate solutionu?), v17);
denote by U}, ..., ;) the relative norm-bound$and assume that, for@ i < j,
”u(i) &i < 5__ i s ”U(i) - yOHii <r,
Vi<2lp, My<2Mp,  M;<2M,, T, <2Ty. (4.35)

We want to show that (4.35) is satisfied alsofer j + 1 and that the norms af?,
w®, @ andg® decay exponentially fast agends to infinity so that the claim of the
theorem follows.

We now list estimates on various quantities entering the definition of their{ap.
on the definitions of the parameters, introduced in the previous section, which bound
the norms of the relevant objects associatéflaf, v()); the estimates are completely
elementary and we shall give details only for some of the first estimates (all the other
estimates being obtained in a complete analogous way).

In the following estimates we shall make systematic use of (4.35), (4.20), of the fact
that > 1 and of the following simple observatiohs

’YQ>17 M0217 M0217 EE07221; &:l_gg.*—lgga (436)
J J
where R
A S0 16—
f=—=Z2>_> 4.37
o2 ¢ (*:37)

Here is the list:
0; _ .
001(7) <ts;t, (Vt>0); ow&) <AET T

010(%) <2796, 7T, 010(&‘ — %) < o(&) <& T

29 See the previous section. Note that, with these definitigns, ¢, Ug = U,...,My = M, etc. The “norm-
parameters” are defined in the previous section where the primed quantities correspéti,to(*1) while
the unprimed ones correspondu, v(9.

30 Recall that the primed quantities of Sect. 4.3 correspond here to theirdewhile the unprimed ones
to the index, that the index = O corresponds to the “initial” approximate solution, namely to the quantities
defined in Assumption 4.2 and, finally, th}, , and E are independent af

31 The first relation in (4.36) follows from (4.3) letting = e, where{e(®} is the standard orthonormal
basis ofR™; the second and third relations follow by observing #i&is an eigenvector with eigenvalue 1
of MT(6) and of M—T'(6y), if 69 is a critical point ofu1(6); the last two relations are obvious.
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a,m(%) <tQot, (Vi > 0); an(%) < 425 D 1)1

a,ll(%) <22Q572, (Vt>0);

T, < 4MoEoy; Ti<4MZE, F. < 2VoF, +2MG;

s1< 467 s < 220 T

53 < Mo2 ™87 rl + AMEyE Tl = ME2T 6 T [Mio " 2(2‘%)7}
< MgZT)'l'yé;TT! (1 +(§) = M0227+1’7(5;TT! n,rn=1 +6 ;

sa < (VM2 D 1y |y = 1y + izg ;
56 < AMEZ2 T v, 1 =142
sg < (782)M§2¢+25;(T+2)(7- +D) vy, =1+ % + %55 :
1= (791)M527+15;(r+1)7_! Us, Vs = v +0ol1
vs | 1100

sg < (791)M§27+2(5;(T+2)(T + WD) ve, vg =4+ 2 + e + 1300 ;
59 <2071,
s10 < ’yZH*MgZZTﬂ(S;Z(Tﬂ)T!Z vr, v = (Us+1100)? ;
511 < WzH*MgZTﬂ(%_(Tﬂ)T! vg, Vg =5+ 1100,
VH.

2 H
s10 < VZQ*MS‘ZZTH(S;Z(TH)T!Z V7
iy < VPQME2T 6 1y

2
Q

3/12 < 7 2 u )
513 < 72H1M82T+15;(T+2)T! vy, Vg = vs+ 20013 |
14 < YMZ27H8 T 1y
515 < V2H.Mod; * vig, vio=1+6;

S16 S ’YZH*M05227—+2(5;2(T+1)T!2 vy

s12 <

— _ v 1108
517 < O QMM o226, X2 vy i = v+ 5+ 8
__ _ 9
518 < ’YZE 1HLM(?M§M02T+35Z'_(T+2)T! V12, V12 = éVl + % + % .

Let nown; be asy (defined in the text of Theorem 4.1) but with, G; in place of F,
G. Then,

_ .9
YBy: <1 MoMa2™ 48 " 11g, iz =1+45 + 600

i 3 fAo2r+55—2r |2 — .
HZ(Z) Eir1 < nlMOMOZ T (51 7l 4, V14 = V1113,
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: 4 _
HZ(Z) €in < MiMEM 2775, CTN2(r + 1) 15, 115 = 13113

3

) 53
[w|e, < n(EQa) MM 22755, G2 g, vig = UL+ 29 27 ;

w0 le.r < mi(BEQ2) MEM§22785; Z‘T”)r'% +1) w17

53
V17 = Vg1t o 28
| Q. 2 MEM 205, D r1 g

3 6
— 5 0 .
V18 = 1/71/13 26 1/81/13 + —214 ;

Hg(7+l)|| < H/ ZMOM 24T+126 (4T+2) V]_g
2 3 5
26 O viov13+ o5 57 2+

(in the last inequality we used also the fact that frBifip , > 1 andy2; > 1 it follows
thatyQ max{V F, G} < H’n;). We let now

© (4.38)

2 20, 4 0 %
V19 = Vit 5 V1tis 51410

v = 1(,0) = vig+ % (4.39)

and observe that all the's are greater than or equal to 1. Putting together the above
definitions of the various;’s and recalling thaty = £9, one finds

v = §+103+3332+4Of53+1654+— 5§+£152g+ 11615 3¢
329 . w5, 52575 5 395275 5 50415 chn
+6455¢ + 2221
- 0 0% 5125§ 5125§ 25655
77319~ 455303 6105
+ 5 + <6 + 3 3+ 4 3 $5+3
19465 645§ 819265 8192 677+ 5§
A 1131+ 8415 - 921 15447
+50 6 3 64 4 5 6 4 545
e+ 256 o 512 0 § 5 & 16384(S ¢
925555, 1369 5
512 e 163846 &
We note, for later use, tht
v > max{ @ , 14, V15, Vig+ 0ov14 | - (4.40)

Thus, (using the inequalities > o, andv > max{ %2, vie}), we find

Nt < KA'Z
where?
k= aMgﬁgZSﬁB(f — &G4, =242
lterating, for all 0< ¢ < j + 1, we get*
mwlate to check after having written down explicitly the definitiorr ¢fvhich, recalling that
bo = 506 turns out to be a polynomial of degree 1Z¢mnd6 with positive (rational) coefficients) and of the
otheryy’s.

33 The reason for having in this formutain place ofc.. will be plain when we shall check the inductive
assumptions (4.35) fqr+ 1.

% Recall that) -, Lok =i, Z ( — k)2k—1=2i _j — 1, (and thatyy = 7).
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ST RATL Y

whence, in view of the “KAM condition” (4.31) (which is now recognized as equivalent
to requirenkA < 1),

i < (4.41)

K])\Z"'l .
This bound allows to get simple estimates on the norms‘bandw® for 0 < i < j.
Using (4.41) and the facts that

v >max{ris, vis} and a > max{({ — é)ZﬁZ , (€ — 5)27} )

from (4.38) we get

ma0c . 5k < MGG s ). @42)
Analogously, using
v>ug, a>EQ (€ - &7 max ! ; i} ;
r=p V
from (4.38) there follows
[w®|¢,,, < min{r —p, V} % é : (4.43)

To check the inductive hypotheses (4.35) we shall also need simple bounds on the
constants”;, C/, C/, C.; [recall (4.27) and (4.29)]. Using

v > max{vis , vie+ dovia}
and the fact that
o > (f — 5)27"'—1 max{l, fEQZ , TELZ , TEQ:;EQ]_} s

and that 1 1 1

M;B,;s5 < — — —min{l, = < =,

i 5 Mé ol4 gi { T Eo,z} o14

we obtain

. 1 1 1 1

TEo2 M,
. 1 1 11
C! <min{1, ,

T, Mo22 8
C!' <max{E1,, Eo3EQ} n; MSMQ 8; 27 227811216 + Gouna)
~,11
-1
We are ready to check (4.35) fot 1: From (4.35) and (4.42) we find

) e SE—E+0, =6 — &

(4.44)

g + |2
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From (4.23) and (4.43), we get

i
10D~ golle, < 0~ golle + 3 0?le.,
4=0
r—pe= 1
<pt 218 Z § ST

4=0

Finally, using (4.43), (4.42), (4.44) one easily obtains the remaining inductive hypothe-
ses.

Observe that from (4.41), (4.42) and (4.43) it follows that the error functjéits
andg® go to zero exponentially fast, whilg” andv® converge (exponentially fast)
to real-analytic functions andw.

This concludes the proof of Theorem 4.1.

Proof. (of Theorem 4.2) The reader will have no difficulty in checking that the previous
proof goes through word by word so that the claim follows from uniformity ia D.
O

5. Proof of Theorem 1.1

The proof of Theorem 1.1 will be divided in three steps: (1) construction of the starting
approximate solution (Remark 4.1) usingxpansions; (2) bounds (4.22) on the norms
relative to starting approximate solution with = {¢ € C : |¢| < g0 = 1076}, see
Assumption 4.4; (3) iteration of the map (4.25) and application of Theorem 4.2.

5.1. Step 1: Format-expansion and initial approximate solutiorthe Hamiltoniand
in (1.3) containg as a parametet:corresponds to the parameteof Theorem 4.2 and
D corresponds to the complex b@ll € C : || < g} for somesg > 0 to be determined
below3® As was well known to Poincés Lindstedt & Co., one magompute formally
the e-expansion of quasi-periodiormal solutions (“Lindstedt series”; see [1]Qur
starting approximate solution will be a suitable truncation of such a formal expansion
Here we deduce a few elementary formulae which allow us to explicitly compute
recursively the formal solution.
Let N = 2,2 = (¢,9), y = (L,G) and let us rewrite explicitly Eqg. (4.1) for the
HamiltonianH:

1 1 1 1
wy+ Dug(0) = —2(ﬁ - Uz)ﬁ + 25(@ —v2)Rp (0 +u,v) — ZEER(Q +u,v),
1 1 1 1

1 1
w2+ Dup(0) = —2(5— —v2) + 22(55 — v2)Ra (0 + u,v) — 2 R(0 + u, v),
205 2v5
1
Duy(0) = —2e(5— — v2)Re(0 + u, v),
2v5
1
Duy(0) = —25(; — v2)Ry(0 +u,v); (5.1)
U1

35 Clearly H is an entire function of and the restriction o is needed in order to meet the basic condition
(4.31); the choice of the “best value fag” (i.e., the largest one) has been done simply by “trial and error”.
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herew and D are short foro™) and forw™ - 9y, § € T? and recall (1.8), (1.9) and
(1.10).
Itis well known that (5.1) admits Bormal solution

a(6) ~ i @), () ~ i A (5.2)
i=0 i=0

with @0) ands) being vector-valuedeal-analytic onT? functions:
70 = (ﬁ(lj)’ a(zj)) 7 ) = (;)gj)’ ;éj)) )

Furthermore, such a formal solutionuisiquely determinelly requiring that the averages
of the 7")’s vanish: _
@’ =0, (vj=0).

In particular this implies that
1@ =o0.

Instead (as one checks immediately by inserting (5.2) into (5.1) and looking at the order
zero ine) 7© has to be chosen so that

or.c)H 0(17(0)) =w, ie 70 = (Ly,Gy).
-

Remark 5.1.The formal solvability of (5.1) implies that the right-hand sides of the last
two equations of (5.1have vanishing mean valtfeoverT2. The averages of the€’’s

have then to be chosen so that the first two equations in (5.1) are solvable. This leaves
free the averages of thé’”’s, which, as already said, will be taken to be zero.

As initial approximate solution we take

5 5
u®;e)=>"a00) 7, vOO;e)=> 59(0) £/ (5.3)

J=0 J=0

(recall that, with the above conventiori$? = (L., G.), 7© = 0and (a0)) = 0).

We proceed by writing down the explicit formulae which, implemented on a machine,
allow to computé’ the functions.t, 50) or, more preciselyallow to compute intervals
of real numbers containing the Fourier coefficients of (e, 50))'s.

Recalling the explicit form of the functio® [see (1.4), (1.5)], one sees that the
right-hand sides of (5.1) have the form

M
S r et (0O @) e (00, o) e, 0+ 1) (5.4)
=1

where:M < oo;r; arerational numbers;, p;, ¢;, o; are integers obeying the constraints
36 For any periodic functiorf(9), € T¥, the integral ovefl ™V of D f vanishes.

37 Notice that since the Hamiltoniafi is a trigonometric polynomial im, the functions ¢, () are also
trigonometric polynomials.



440 A. Celletti, L. Chierchia

n; € Z? with |n;| < 10; finally ¢,,(z) is either cos: - x or sinn - x. We shall denote by
[-]; the operator that acts on a (formalpower seriesy eka®), by associating to it the
5 coefficienta):
{Zsk (k)} =ad" .
k>0

Letp,q,0 € Z with ¢ > 0 and|o| < 1 and let us compute thg" e-coefficient of,
respectivelya?b?e’ (a, b) and ofc, (6 + ) wherea, b andy are formale-power series
(with periodic real-analytic coefficients) given by

a~ Z ap@)eF, b~ Z by (0)e"

k>0 k>0
e~ 3P0 = (PO Y 0)F) .
k>0 k>0 k>0

As above, we denotg, = 7 and write the expansions efy) and of
e Hy) = 1/e(y) as®

eW)=> eny—w)", W=D Enly— o).
heN? heN?

Then, forp > 0, one finds
[a~Pb%e? (a, b)];
- p 94\ ki—p, gk [hi] ~[k1 b[hz+k2 55
Z Yoi | Yoz - €o a,h Gy ) (5.5)
ki) \ k2
(k,R)ET_p 4
where

Ipq={(k,h)eN°>xN?: 0<ki<p,0<ky<gq, ks> hy, ka> ki,
ks > ko+hy, ka+ka+tks=j};

éh if o =-1
eon=4en Ifo=1
6O\h\ ifo=0

() denotes theé™" power of a formal power serigs~ Y-, ¢;e’ andcg.’“] its 5
e-coefficient; finallya'is the power series defined by B
. 1 1

a~———.

a ag
Analogously, forp > 0, one gets

[aPb%e? (a, b)];

= Z PO ybr "yl eq n ali bg«,}:ﬁkﬂ ; (5.6)
ko 3

k
(koh)EDy . N1
) o . In|
38 e use standard multiindex notationzife NV, n| = 3277 n;; if = € RN, o7 = %;
- By
n = n1 ny

n!=nq!---nyl 2 z ez
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where:

Ly ={(k,h) eN*xN?: 0<k;<p,0<ky<gq,
/4}3Zk‘1+h1,k42/€2+h2,k3+k‘4:j}. (5.7)

Computing £, (6 + ¢)]; is clearly equivalent to evaluate [exp(- ¢)]; and letting

EO=1, vnez?,

1k
E®@) =N 0 E*90) n- o0
0 k; R OERIOF

one gets
[ exptn- )| = EQ@). (5.8)
J
Inserting (5.2) in (5.1) one obtains recursive relations of the type

where A is the (constant) matrix given in (3.5) evaluated Bf@) = (L+,G+) and
the vectorsd® andw® depend oni?,... %1, 5@ . 5*-1 (and ond) and can be
explicitly written down by using the remark leading to (5.4) and the expansions (5.5),
(5.6) and (5.8).

Assume now thaty®, %), for j = 0,...,k — 1 are known and let us determine
(@®, 5%), Inverting the operatopP in the second of (5.9) (recalling Remark 5.1) we

let
® = 5 + p=1g®) |

wherev™ denotes the average of” and it has to be determined so that the equations
for D%i®) have a right-hand side with vanishing mean value, i.e.,

= aHeW), = DA+ o)

The formulae for the recursive computation of the functiart8 () (and hence of our
choice of the initial approximate solution) are complete. In Appendix A we report the
number of Fourier coefficients of the functiond’;7%)) for j < 5 and, as an example,
the list of intervals trapping the Fourier coefficients of the first componeattof ~

5.2. Step 2: Norm bounds relative to the initial approximate solutidtaving defined

the initial approximate solution as the fifth order truncation (5.3) of:texpansion of

the formal solution of (5.1), we want now to estimate the relative norm parameters as
defined in (4.22).

We attach anindex 0 to the quantities related to our starting approximate solution (i.e.
the fifth order truncation (5.3) of theexpansion of the formal solution of (5.1)); thus the
symbolsé, U, V,....T of Sect. 4.3 correspond heredg Uy, V%,.... 1o (See Remark 4.4).

Let
fo =02 y £ = 1076 s

and recall that the norm in (4.32) contains also a supremum taken over the complex
parameter regio®,
D={ecC: |g| <eo}.
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]

The evaluation ot/o, Vo, Mo andVp are easily obtained having computed the “explicit
(in the sense of interval arithmetic) form of the approximate solutign), Having
(u,v) given as

5 5
u® = Zej Z aDexpn-0), 9= Z el Z oY) expin - 0)

7L 0<In|<y; =0 Inl<v!

(where they;, v are the trigonometric degrees listed in Appendix A), welgaind Vo
be upper bounds on

5

5
Sieb ST j@@exp(nl), Y e > 139 exp(nléo) -

Jj=1  0<|n|<y; j7=0 In|<v}
The computer-assisted evaluations of such sums yields the ¥alues

U = 1.3191129131218200558424179887264405 |
U$™) = 1.3098175930298179879143983045402167° ,
V) = 1.45622035987166272215426104777053
V) = 1.45731724381047957877869538647097

It is easy to check that these bounds imply

( sup [0+u9], sup |v(0)|> €B.

0eAg, ocAg,
e€D e€D

Analogously, sinc®

5
M=1+Ye 3 i(ag>®n) expn - 0) ,

J=1  0<|n|<y;

5
v((,o) = Zaj Z i(ﬁg) ® n) expgn - 6) ,

J=l |n|<v)
one gets the computer-assisted evaluations

39 Recall that the plus sign corresponds to the ad8e=" (L., G+) while the minus sign corresponds to
%0 = (L_, G_). Note also that interval arithmetic yields (as the name says) intervals with rational endpoints
trapping the actual quantity one is computing; but since we need (usuphgr boundsve shall report only
the right endpoints of the computed intervals which staflneour norm-bounds.

401f q,b € CN, we denote by @ bthe N x N matrix with entries ¢ ® b)ij = a;b;. We also recall that

by default we use the 1-norm on vectors so that the (“operator”) norm or & thatrix A = (Z Z) may

be bounded as follows

IAll = sup |Az| < min { max{|al, [b]} + max{|c|, [d]} , max{|al, |c|} + max{[b], |d]} } -

|z[1=1
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M§" = 1.000021266465664701238677170875501

M§™) = 1.000021439075256126271432431716151

VY = 7.453571858517957815592730443874432 7

V{?) = 7.531270519848394217447212176311198 " . (5.10)

The evaluation of\/ is immediately obtained using (5.10):

<+ 1
T 1 uglle, T 11—V

M ey = I1C +ug) e,

< M5,

which leads to

1Y) = 1.00002126691793688133738303697581
M5 = 1.000021439534899928447344044122831

To estimatefo write the matrixZ7” as
T_ELAO+'B,
whereAq = A(L+,G+) [A(L, G) being the invertible matrix defined in (3.5)]. Hence

14l

7Y =+ A B 1A < —— 902 .
(7)1 =1l o (BN Aol 1 — [l Aoll=*(|Bllo

To estimate| B||o we write explicitly the definition oB8 and use the following computer-
assisted bounds

|Rllo < 1.43780490153865715166812155290155
|RL]lo < 688071599209183467048665730038651
|Rallo < 64.3060545612114280147776693441263
|RLLllo < 566141072116429904165317710256315

|RLallo < 567550234606639063731168541598635
|Raallo < 282057872421132384032285133772315

In this way one obtains

Téﬂ = 8.567100579602744072852019085722171

T{™) = 8.559621778472845438209667021368791
A bit more delicate is the evaluation 8§ andGo, i.e. of the norms of the error functions
f andg. We shall follow the classic&auchy’s majorant methog@ee [9], chapter 5 for

generalities).
We recall that if

aly) = Z ar(y — yo)* and  afy) = Z ary — yo)”*

keNP keNP
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are smooth functions af in a neighbourhood ofp € R?, « is said tomajorizea and
is denoted
a<ao,
lok] < ay VEk.
For example, for any. € Z?,
cosn-x < cosh(ni|zi+---+|nylx,), sinn-z < sinh(ni|zi+---+nylz,) . (5.11)
We need a little technical lemma.

Lemmab5.1. Lety,p € Z, and let

a@y= S c@anl),

nezZr:|n|<v

wherec, (x), for eachn, is eithercosn - x or sinn - = (x € TP) and thea,,’s are
analytic functions on a complex ball aroupg € R?. Fix M € N. Letbg = 4o and, for
1< j < M, leta® () andb)(9) be giverRP-valued functions of € T? analytic on
A¢ for some$ > 0. Leta, (y) be analytic functions such that

an'<07n7 (V|n|§1/)

Letag = (¢, ...,8), bo = (o], .- yopl) and, for1 < j < M let a® and b be
p-vectors with nonnegative components such that

laPe <al?, Pl <tY . (i<j<M, Vi<i<p).
Finally, denote

cn(z) = cosh(n|zy + - +|ny|z,) if ¢, =cosn -z
€l = sinh(na|zy + - - - + |nplz,) if ¢, = sinn -2

and let

M M
a(e,0) = a(9 + Zeja(j)(e), Zajb(j)(Q)) ,

j=1 5=0
B0 = > a0
J>M+1 !
M M
pe) = Z c_n(Zch_LU)) 5n(25jb(j)) ,
In|<v 7=0 3=0
where, of course, the operatpi; refers toe-expansions. Then, for afl > 0O,
I[aC, 0l;lle <l¢l;j,  Viz0;
M )
sup (|8l < (&) =) l¢l; - (5.12)

‘ElSE j:O
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Proof. Observe that, by (5.11), for any fixéde A¢, one has
Cn ( Z Eja(J)(G)) < ¢y ( Z SJE(J)) ,
Jj=0 j=0
and also thdt
M o M .
Qn ( Z Ejb(J)(Q)) < Qn ( Z €jb(j)) .
Jj=0 j=0
These relations imply that for al € Ag, a(-,0) < ¢, which implies immediately
(5.12). O

In order to apply the lemma to our situations we need the following obvious majoriza-
tions. Letz € C with |z| < 1; let* y10, y20 be positive numbers and Igfy — y10| < 1,
ly2 — y20] < 1; finally lets be a positive integer. Then

V9i—2<2—-+v1-—2z, (l—z)_%<(l—z)_%;

2 2
bon (e (o
Y1 2y10— Y1 Y1 2y10 — Y1

Y 2
e(y1,y2) < e(y1,y2) =2 — \/1— <2yT2—y1) ;

Y2 2\ 2
eil(yl’yz) < <1— (m) ) ;
1 s 1 1 2
‘5<(7>, -2(=— — <2 +(7>
h 2y10 — Y1 (ny yz) v 2y10 — Y1

Using the above observations, one gets the following evaluations of the norm bounds
Fo andGo:

F{Y = 1.8755301827538371921261973556721707 2%,
F{7) = 1.881443228644026073096600123652628 2,
G§) = 1.524340973886308626744645639896066 2 ,
GS?) = 1.5732413674526825465916391602736382° .

5.3. Step 3: Application of the KAM algorithm and of the KAM Theoréie proceed

to apply the KAM algorithm and the KAM Theorem worked out in Sect. 4.3: recall 3) of
Sect. 1 and Remark 4.4. Also this step is computer-assisted; however double precision
(rather than quadruple precision) will usually be good enough. We discuss in detalil
the case with initial datal(;, G+); the case with initial datal{_, G_) is completely
analogou®® and we spare the reader more data which would not shed much more light.

41 Recall the basic facts of majorization theory (see, e.g., [9]): sum, multiplication and composition are
preserved by majorizations.

42 To avoid confusion with the norm parametgg we denote here the action-variables by, ).

43 Actually, the L+, G+)-case “converges” after three iterations’@fvhile the (L_, G_) case after four.
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Remark 5.2.The quantities with an index O refer (as in Step 2 above ) to our choice of
theinitial approximate solution. To such initial approximate solution we apply a few
times [respectively three times for the case with initial ddita (z+) and four times for

the case with initial data/{_, G_)] the KAM algorithm obtaining new approximate
solutions ¢®, vW),...,w®, v®) [for the case with initial datal(,, G-), while for the
case with initial dataX_,G_) we consider alsou(®, v®)]. The input of the KAM
Theorem will be respectivelyu(v) = (1@, v®) (with the relative norm bounds given

by the KAM algorithm) for the case with initial datd.{, G+) and @, v) = (u®,v@¥)

for the case with initial data/{_, G_). Quantities referring to the input of the KAM
Theorem will carry no indegand beware of the difference betwe€f andu)).

Since we shall consider only the case with initial data, (G+) we shall drop from
the notation the suffi%".
To apply the KAM algorithm we have to fix the values of the “angle” analyticity
widths, namely the values @fand&, [see (4.23)] and of; = &' [see (4.24)] antf
& = &), & = &. We choos®
£€=0201, &=02, &=01,
& =005, & =0.0025.

We also fix the value appearing in (4.23) as= 0.001.
After three steps of the KAM algorithm we shall apply the KAM Theorem, we
therefore let

€ = & = 0.0025, ¢ = g = 0.00125.

Next, we need estimates on the derivatives of the Hamiltohf{any) appearing in the
definitions of2,...nin Theorem 1.1 [recall (4.21)]. These estimates (which do not change
in the iteration) are straightforward and one obtains:

E < 0.834569178062801416845925922143676

Ep» < 56.5486438633162084677890669788006

Ey1 < 1.186694583405233167666977446730260 3,

Ep3 < 246061421916127359268759358546612

E1 2 < 3.96265819827614919370110457943010

E,, <258105325817214297337992701624725

Fs < 1.7479497240057940449872322169573%5Q * .

Now we iterate the maf three times: conditions (4.23), (4.26) and (4.28) are satisfied
forj =0,1,2,3 (as it is easy to check using the valugs (..., fj) reported here). The
(double precision) iterated values of the nfagare the following. After the first iteration:

U < 1.30981759332268910°°, Vi < 1.45622036006177

M; < 1.00002126646582 M < 1.00002126691809

V1 < 7.4535834217897681077 , Fy < 4.00635464783325510 %,

G1 < 1.36865671694937910°2°, T} < 0.834604675233853

44 Recall that¢j+1 = £; — 5, where theS;'s are such thafp > 61 > §z...and) | 6; < £
45 These values have been chosen by “optimizing” (trial and error) the KAM algorithm.
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After the second iteration:

U, < 1.30981759332271810°°, 15, < 1.45622036006177

M, < 1.00002126646582 M, < 1.00002126691809

V, < 7.45358342605144310° 7, F, < 1.20922439728249110 3! |
G, < 2.30123377577423910 %, T, < 0.834604675233862

After the third iteration:

Us < 1.30981759332271810°, V3 < 1.45622036006177

M3 < 1.00002126646582 M3 < 1.00002126691809

V3 < 7.45358342605144810° 7, F3 < 8.85552360816204210 %,
G < 3.17473273271671310 %%, T3 < 0.834604675233862

The quantitie€2;,..., defined in Theorem 4.2 (recalling Theorem 4.1) are immediately
computed using the above values and one obtains

o < 88530999258.887, 1 < 1.18566843620726910 38

With such values condition (4.31) is satisfied, in fact we obtdihed

noe M7 ¢ ~2@r+1)p16r+23 114« 3 58497387529510210 8 < 1,

so that Theorem 1.1 holds. O

A. Some Computer-Assisted Data

We first report thérigonometric degrees; z/;. appearing inthe Fourier-Taylor expansion

of the approximate solutionu?, v@) (obtained as the fiftl-order truncation of the
formal solution)

5 5

W@=3"c N @Wexpin-0,  v@=3"e S i expin-6.

J=1  0<|n|<y; j=0 O<|n\§u}

We give the result by components: fo¥)we found:

Orderj Fourier deg. ofuij) Fourier deg. ohgﬁ)
5

1 5

2 15 15
3 25 25
4 35 35
5 45 45
Foro\W:

46 According to the above conventidW andM are, in fact, the valued/s and M.
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Order;j Fourier deg. oi;f) Fourier deg. obgj)
0

0 0

1 5 5
2 14 11
3 24 21
4 34 31
5 44 41

The number of Fourier componentsf «@ and ofv© is given for each order of the
Taylor series expansion in powers of the perturbing parametée report only those
components with Fourier index.(m) with n. > 0 orn = 0 andm > 0.

For u© we found:

Orderj  Fourier coeff. ofu!”’ Fourier coeff. o’
0 0 0

1 5 5

2 35 35

3 93 93

4 179 179

5 293 293

For v we found:

Orderj Fourier coeff. of¥”)  Fourier coeff. ofo$”
0 6 5

1 34 26

2 92 76

3 178 156

4 292 264

5 436 400

Finally, we report now the intervals containing the five components of the function
@Y. For the initial data £+, G+) we obtained’:

0.6730562643923955199965449172780 + 5 - 10732
0.2979062447302117191526526718571 + B&] - 10732,
1.482946598095398011285563691781 + A% - 10732
—0.4589344174885537366679779722512 + B3 - 10733 |
—0.2010745230469404094053836635164 + [24 - 10733,

For the initial data [._, G_) we obtained:

47 The notationz + §[a, b], with § > 0 anda < b, means{ + da, = + 5b): for example,

0.6730562643923955199965449172780 + [bg - 1033 =
[0.67305626439239551999654491727805673056264392395519996544917278087]
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0.6766043577880158539656402750183 + fg] - 10732,
0.3061845611995878973674729226746 + prg - 10~ |
1.488798647829940896171271103877 + By - 10732
—0.4659443843426364961646113772143 + [P - 10733 |
—0.2018899370701671721933153371788 + FZ] - 10~ .
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