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ABSTRACT

One-dimensional quasi-periodic Schrddinger operators are studied
from two different points of view. The first one deals with the con-
struction of quasi-periodic eigensolutions and with an associated
Hamiltonian interpretation. The second one concerns more general ques-
tions about absolutely continuous spectra.

In the first chapter, the eigenvalue problem for a periodic

Schrodinger operator,

dZ
Lf = (--——? +v ) f=Ef,
Nodx

js viewed as a two-dimensional Hamiltonian system which is integrable
in the sense of Arnold and Liouville. With the aid of the Floquet-
Bloch theory, it is shown that such a system is conjugate to two har-
monic oscillators with frequencies o and w, o being the rotation number
for L and -2;]1 the period of the potential v.

This picture is generalized,in the second chapter, to quasi-
periodic Schrodinger operators, LE, with highly irrational frequencies
(mT, cees md), which are a small perturbation of periodic operators.
When the parameter E belongs to a certain (explicitly constructed) large
Cantor set E, the eigenvalue problem for LE is embedded, via a KAM
method, in a system of d+1 harmonic oscillators with frequencies
{a, Wys eees wd), a being the (Johnson-Moser) rotation number for LE.
The function E € R + a(E), in general only continuous, is shown to be

¢” on E in the sense of Whitney and a new proof of Moser-Deift-Simon

ii



inequality,

do

T

i

is given for E in E (é%— Whitney derivative).
A by-product of the above is that, on E, all the eigensolutions

of LE are quasi-periodic with frequencies (o, Wys oces wd) and depend

- smoothly on E (in the Whitney sense). Moreover, adapting the KAM algo-

. rithm to a matrix formalism, independent eigensolutions of the form
f= eiOLX x(m1x, ceas mdx) and f, with y periodic in each argument, are
constructed. Such functions are called Bloch waves.

In the last chapter, the absolutely continuous spectrum Tac of
a general quasi-periodic Schrfdinger operator is considered. The Radon-
Nikodym derivatives {with respect to Lebesgue measure) of the spectral
measures are computed in terms of special independent eigensolutions

existing for almost every E in ¢ Such eigensolutions can be re-

ac’
placed, in the above Radon-Nikodym derivatives, by Bloch waves whenever
these exist (as in the case treated in Chapter 2).

Finally, it is shown that weak Bloch waves always exist for al-

most every E in o_. and the question of the existence of genuine Bloch

ac
waves is turned into a regularity problem for a certain nonlinear partial

differential equation on a d-dimensional torus.




CHAPTER 1

ONE-DIMENSIONAL PERIODIC SCHRODINGER OPERATORS AND
INTEGRABLE HAMILTONIAN SYSTEMS

1.1 Introduction

The trivial eigenvalue problem

d2
"’_2q=Eq9 Xxe R,
dx

can be thought of as an harmonic oscillator with Hamiltonian H(p,q) =

2 2
E‘i%Eg*'sl(P=Q) € RZ-{O,O}, the parameter x playing the role of time.

It is elementary that such mechanical systems are integrable in the
sense of Arnold and Liouville*: The canonical change of variables
(psq) > (A,q) = ﬁlfi,q), where (r,¢)} are polar coordinates in the
(p,vEq)-plane, coﬁgEgates H to the trivial Hamiltonian h(A,¢) = VEA,
(A,o) e Rx T, T = R/2rz.

In this chapter, we show that periodic Schrbdinger operators,

d° 2w
L{v) = - —— *+ v{x), v{x +=) = v(x) ,
dx ©
carry a structure completely analogous to the one described above: For

E inside the spectrum of L, the eigenvalue problem

L g =Eg

*le recall the mechanical Tanguage in §1.2.
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can be embedded in a two-dimensional integrable system. Moreover, the

integrated Hamiltonian has the form

h(A‘I 9A23 CP'!9 C?Z) = G.(E)A-I + w AZ,

(A, Ay) € Ry X R, (9, 9,) € T°

w

the parameter o being the rptation number for L.

1.2 Spectrum

2
Let L = L{v) = - 53? + v(x), where v(x)
dx
real function on the circle, and w=0 a given frequency. The abstract

V(wx) with V a smooth "

1l

spectral theory for these operators is included in Weyl's "1imit-point,
Timit-circle" theory*: Since v is real and bounded, the operator L is
in the limit-point case. That is, L, considered on CE(R) (= the class
~of indefinitely differentiable functions on R with compact support) is
essentially self-adjoint and admits a unique extention to a dense

domain in LZ(R). The resolvent set
o(L)Y = {Ee C: (L-E)"I exists and is bounded}

is characterized by the existence of two independent solutions f, (x;E)

of

Lf = Ef (1.1

*Jeyl [1910], Stone [1932], Titchmarsh [1946], Kodaira [1949],
Coddington-Levinson [1955}. See also §2, Chapter 3 for mere informa-
tion.



belonging to LZ(R+), R, = (0,@), R_ = (-», 0). The Green"s function

(= kernel of (L-E)'1) is given by*

( ) f(x3E) f_(y3E) .
g{x,ys if x>y
[f+!f_] -

and symmetrically if x < y.
The concrete analysis of (1.1) is the content of Floquet
theory**, Let A(x3E) be the fundamental matrix

f1(x;E) fz(x:E)

fi(x;E) fé(x;E)

where fI(O) = fé(O) =1, fi(O) = f2(0) = 0, and let M(E} denote the
" monodromy matrix A(%}; E). Then there is a non-trivial solution of

(1.1) satisfying

flx + 21 = 5 £(x) (1.2)

o
if and only if the Floquet multiplier p is an eigenvalue of M, i.e.,

A+V/AZ-T with A = %—trace M. The discriminant a is an entire

P =0,

11

function of E of order %3 type 1, real on R and asymptotic to cos/-E

near -« (Magnus-Winkler [1966]). A is depicted in Figure 1.

‘ dg _ df ,
*fgl = f G- ge 9= fo' - o

**Floquet [1883], Bloch [1928]; see Magnus-Winkler [1966] for
a review.
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Figure 1.

We will refer to solutions having property (1.2) as Floquet

solutions. If f,g are two Floguet solutions with the same eigenvalue

and the same multiplier p # %1, then

[f.9] = [f.q] = o°[f.q] .

= p%[f.g]
x=—2l x=0
1))

Thus, [f,g] = 0, that is, when o # *1 the corresponding Floquet solu-
tion is determined up to a multiplicative constant. Notice also that
if AZ < 1 (for E in R) and f is a Floquet solution with multiplier o_,

then [f,f]# 0. In fact,
X 16,71 = [Ref,Inf]

and [f,f] = 0 would imp1y f=cq for c e C and g a real function, and

taking the imaginary part of g(x + %? = p, 9(x), we would get



Imop, = +/1-4Z = 0, a contradiction. From these trivial observations
we are able to identify the spectrum of L. When A2 > 1, the Floquet
solutions corresponding to p, are seen to be the functions fi of Weyl's
theory*®, so that {E:[A2| > 1} ¢(L). Since for E in {EeR: A2 < 1}

we have two independent eigenfunctions of the form**

iBX ig.

e1BX X(wx)s e- ;{d(mx); e " = p, X € CW(T) 3

we conclude that o(L) = U [Egk, Egk+I]’ where o(L) denotes the spec-
k=0
trum of L and Eg < E? f_Eg < Eg E_EZ .... are the {infinitely many

simple or double) roots of A2 = 1.

Kodaira [1949] and Gelfand [1950] gave the spectral decompo-
sition of L(v) showing, as a byproduct, that the spectrum of L is
purely absolutely continuous with double mu1tip1icity+. This fact is
also a consequence of the following representation of the spectral
measures that will be a simple application of Theorem 2, 54 of Chap-
ter 3: Let ¢ be any C* function with compact support, Pr = PE(L) the

standard spectral family of L, fE any Floquet solution, then®

)2+ [le,fp) ]2
dPp) = 5 et 72 [Tl 17
|, T

Eeo*{l) = {Ee ofl): {a] < 11. (1.3)

*In this case, f, decay exponentiglly fast at e,

**Y € C"(T) means that ¢eR > x(¢) is a C* function with per-
iod 2w.

TSee Reed-Simon [1978] for a review.

F(.,-) denotes the usual inner product in LZ(R), and dE is the
lLebesgue measure.



6

Remark. We saw already that in o* the Floguet solutions corresponding

to o, are one the complex conjugate of the other and that they are

determined up to a constant. This makes formula (1.3) unambiguous.
Another important object associated to L{v)-E is the

rotation number o = o(E)*. This is a positive unbounded continuous

function of the real parameter £, constant on o(L) n R and strictly
increasing on ¢{L). Before defining o, we introduce the winding num-
ber w: Let g:R - C be a continuous curve never passing through zero.

Define

w = w(g} = Tim Eﬁﬂzﬂiil
Koo

where such a limit exists**. For example, a periodic curve g with
period %%-w111 have w(g) = n for some n in Z.
Now, let f be a solution of {1.1) with [f,f] # 0, then f

never vanishes and

_Im £ T
2 2
|f] 21 f]

[f.f]

shows that f winds around the origin {counter-)clockwise according to
i[f,F] (>) < 0; furthermore w(f) exists, |w| is independent of f and
is the rotation number cited above. The behavior of ¢ as a function of

E can be described very precisely thanks to the analytic properties of

*See, for example, Herman [1979], Moser [1981].

**Obyiously this definition doesn't depend on the choice of the
branch of arg z since constants wash out in the Timit.




the discriminant: Define ¢(E)} by cosa(E)} = a(E). Then

E o
o(E) = +i J E_gE' (mod 2¢)
Eo /a2
0
- and
a(E) = 0 Ee¢(-=, E)
(1.4)
e @
k+1 dE 0 o]
o(E) = a(E% } +-2 (1) Re[ EelE% . EC .. ]
2k 2 0 J8Z 2k 2k+1
2k

From (1.4) one sees that o{E)~/E for large E and that a—u(EE) "
\/[E-EE] for E near EE e3o (L); compare Figure 2.

a(E)

4 @
% o
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9 Fio E13 Eyg

Q-0 ¢ 0

0 Q 0 Q_-0 0 Q 0
£ E3fg EfEg By &2 Eys

Figure 2.



Before closing this section, we point out a parametrization

of the Flogquet solutions for E ¢ o* that will be useful in the fol-

lowing paragraphs: Let fo be the unique Floquet solution with multi-

plier
. 2%

To—
w

p, T €

and fO(O) = 1. Such a function has the representation
Tox
fo(x) = e x (ux)

where Xo is a smooth function on the circle T with

©) =1 and Timarg @ g
¥ = an im arg =
0 Wheo X
It is also easy to see that*
. 2n
14— 2'1T
e 9 - fl(w)
fo(x) = fT(X) + - (gﬂ) fz(x)
2\ w
ThUSs
; _ sin{a %%)
K = 7 [fo,foj = Im f0(0)=—"-T .
ol

Finally, the asymptotics of f,,f, and (1.4) imply

«~VE and Xo v 1 for E4te

2w

*fz(z:?E) = (Q implies E e [Egk-l’Egk] for some k > 2.

(1.5)




1.3 Action-Angle Variables

Consider the Hamiltonian

2 2
H(p,B,q,93E) = &+ uB+ 3 (E-V(v)), (p.a) e R*-10},

(Bow)eR x T (1.6)

where (q,p) are regarded as generalized coordinates and {p,B) as the

conjugate varjables. The canonical equations for H are

q' =p p' = q(V(w)—g)

Vo= B = V' (») &
which imply

4

q = a{V(y_ + wx)-E), v =y
dx2 0 ° x=0

Thus, for Vg = 0, we get back (1.1) for g{x).
We recall* that a Hamiltonian system on a Zn-dimensional

symplectic manifold MZ" with Hamiitonian H is said to be integrable

if there exist n smooth functions on M, F1 = H, F2,... Fn, such that

(1) the Fi's are in involution**,

(i1) the Fi's are functionally independent on NE{Fi=const, i=1,...,n},

*See, e.49., Arnold [1978] or Gallavotti [1983].

**That is, in standard local symplectic coordinates (p,q),
n aF, aFj aF,; aF;

{1F:,F:} = ¢ - 1 = 0, for every choice of i and j.
T k=1 P G 99y OBy |
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(iii) the submanifold ¥ is compact and connected.

Under these conditions, the evolution equations for H are solvable
by quadratures. More precisely, there exists a cononical* change of

coordinates

2n

C:me M s ¢(m) = (Ay¢) e 2 x T, o CR",

for which H(C‘1(A,¢)) = h{A). In this case, the Hamilton equations

on 2 X T become trivial:
‘l___ ._Sh,
Al=0, ¢ =35

in fact, A(x) = A(0) and @(x) = ¢(0) + 2 (A(0))x (mod 2v). The
coordinates (A,) are called action-angle variables. This is the

content of the Arnold-Liouville theorem (Arnold [1978]).

Going back to (1.6), we have the following**

Theorem 1. If E ¢ o*(L), the Hamiltonian system (1.6} is

integrable.

The proof employs new coordinates for the phase space R3 X T —
{(0,R,0,T): For E e o*(L), let fo be the Floquet solution defined at

the end of the preceding section, and set

*That is, preserving the symplectic structure and hence the
form of the Hamilton equations.

**)le learned this theorem from Gallavotti [198-], see also
Gallavotti [1985].
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¢-= )
Foleot) =2 ¢ f(B), (el .

0
. 2r
Toa— 2
Since f_ has Floquet multiplier e “ F, is a smooth function on T.
Moreover
N@-%w) "
X - FO(Q + aX, ¢ + wx) = e fo(a"Fx)

is easily recognized as a Floquet solution of the shifted Schridinger

equation

- (x) + V(v + wx) f(x) = E f(x),
2m

iag—
with multipliere “.

Define
Qe.w) = Re F_(g,0)
i(g-2y)
_ = w Vi
P{¢,0) = Re D F (¢sv) = Re [e (5]
where D 1is the vector field o 2y w 2 and observe that
o ot N

_d .
(DGFO)(?-+ aX, ¥ + wx) = Ix F0(¢-+ aXs; ¥ + wx). Now consider the map

(r,B:¢s¢) € R+ x R x T2 - (paBsq!w) € R3

X T - (O,R,O,T)
(1.7)

p=r P(?sm) » 49 =r Q(?sW) .
Lerma. The map (1.7) is a diffeomorphism.

Proof. Let's start with the Jacobian. With the temporary notation

f(xse,0) = F (@+ ax, v + wX), we have



3{p,B.a,p) _ _,;2Q 3P
det 3(1;’—833-’—%;— rige P - 0 ) | (1.8)

r[-(Im Fo)(Re DuFO)-F(Re FO)(Im DuFo)]

Il

1]

r[Re f, Im f] = r %-[f;?] (at x = 0)

=r 5 [f,f] (atx=-%)

[\)| —

——
=rs [fo,fo]

il

re>0.
Next notice that, for each ¢y ¢ T, the map

(r,e) - (psq) = (r Plesv), r Qlesy))

can be written as

p r sing
(o)™ TCoame) *T
q r CoSg

-2 -
- X w gl
L_Im(e P Ofy(E) Re(e fo(2) |
New,
-2y Sy,
det T = [Re(e © f (L+x)), Im(e © f (2+x))] (at x = 0)
w 0y
_&lp _gw
= [Ref{e fo(%+><)), Im(e © fo(i’—+x))] (atx=-%)
"ZEQJ
=e © #0.

The proof is finished.

12
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The quantities {r,B,p,») will be called Floquet-variables.

Now, the integrability of (1.6) is a simple matter.

Proof of Theorem 1. We have to check (i), (ii), (iii) above. Since

r is, by construction, an integral* for H, r and H are in involution,
and this is (i). The level surfaces H = C], r = C2 are 2-dimensional
tori so (iii) is fulfilled. To check the independence of H and r,

we use the Floquet-variables:

so we have also {ii). The proof is finished.

Now, we turn to the explicit construction of the action-angle
variables.

Consider the map

2 2
(r.B,e.y) € R_XRXT" » (A},A2,¢1,q2) e R xRxT
(1.9)
2 2
- =g+l (3 p_ g 3” - -
A=, Ay =Brm (G P-050, ¢ =4, ¢ = v .

Such a map is clearly one-to-one and onto, and the evaluation of the

Jacobian

*That is, a function constant on the trajectories governed by H.
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re 0 0 0

B(A-I ,Az,q?.l,q;z) i * 1 * *
3(\",8,?,\0) 0 0 1 0

det

= re > 0

shows that it is a diffeomorphism. The upshot is that (Ai,AZ,W1,¢2)

are the required action-angle variables:

Theorem 2. The diffeomorphism

2
(p.B.a,y) eR3xT-(OJMOJ)+(A1A2#]ﬂ2)eR+xRxT

defined via (1.7), (1.9) is a canonical transformation, and

2 2
B+ uB + - (E - V(y)) = b + wh,. (1.10)

Proof. In (1.8), we saw that* ¢ = QP - QP]. Now using Floquet-

variables as an intermediate step,
dp A dg + dB A dy
=g rdr A dy+ r(PQZ- QPZ) dr A dy

" rZ(P]QZ S QuPy) d A dy + dB A dy

3

*Subscripts 1,2 mean, respective]y,-f% and 37



H

k rdr A de + r(PQZ— QPZ) dr A dy

2
r
+ 7?-(P1Q2- Q1P2-+02]P-QP2]) de A dy + dB A dy

dAy 1 dey +dA, & dy,

This proves the first claim. To check (1.10), put qo(x) = Q¢ + ax,

¥ + wx). Then using Floquet-variables once more,

Y‘z rz
@ 5 (0P - ) + B + 0 5 (0P - QPy)

2 _

= wB + T [(aQy + 0Q,)P - (aPy + wP,)Q]
rz 2

= wB + [qc')(O) + qg(O) qO(O)]
r2 2 2

=wB + 5 [q,(0)" - q,(0)" (V(y)-E)]

2
wB + T [P7 + 0% (E-V)]

2 2
B 9_ (-
The proof is completed.

Remark 1. The canonical transformation in Theorem 2 is produced by

the generating function

2 Qe ,9,)
(IJ(B,D !‘{J‘| "?2) ” B(\OZ + 2 P lP‘] :?2 )

15
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The Hamilton-Jacobi equation for ¢

2 2
P 9 re_ = 3 3¢
5 + B + 5 [E-V(v)] = @ 53? + 34,

is easily seen to correspond, along é%—z Du, to a Riccati equation

iy

for

;%(-109 U@+ ax, ¢ + wx) .

Remark 2. The set of E's for which we carried out the integration of

H excludes the double roots of AZ = 1 (= collapsed gaps). This was

done for reasons of simplicity rather than for real difficulties. In
fact, Floquet theory tells us that when a spectral gap collapses to a
point, Egk—1 = Egk, there are still two independent eigenfunctions of

the form

f=e® (ux) and F

with x {(2nx-) periodic*. Furthermore, in such a case,

2 0y _
f2(_—" E2k) =1

W

and k is still different from zero. Therefore, H is actually inte-

grable for E in

o*(L) U{collapsed gaps } = interior of o(L).

*See Magnus-Winkler [1966]. This phenomenon is called coexis-
tence of periodic solutions since, on gaps, a = %%-(compare Figure 2).
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Remark 3. It is well known that the Koriweg-de Vries equation can be

viewed as an isospectral flow for some Schrodinger operator L *, If

L is periodic, such a flow is Hamiltonian and integrable and action-
angle variables have been displayed by Flaschka-MclLaughlin [1976]. It
might be interesting td see if there is any relation between such

variables and the ones in Theorem 2.

*Lax [19687; see McKean [1978] for a review.



CHAPTER 2

QUASI-PERIODIC SCHRUDINGER OPERATORS, INTEGRABLE HAMILTONIAN
SYSTEMS AND KAM ITERATION SCHEMES

2.1 Introduction

Here we consider the eigenvalue probiem for Schrodinger

operators L(v) with (real) analytic quasi-periodic potential v{x).

We recall that a function x € R - f(x) is said to be (w-) quasi-

periodic with frequencies w = (m1, cens wd) if one has f(x) = Flwx),

d

for some function Fon T Rd/ZnZd. The class to which the function

il

F belongs will define the class of f *. Now, the basic question is:

Do there exist quasi-periodic eigenfunctions?

The first to attack this problem were Dinaburg-Sinai [1975].
They assume that the frequencies of the potential satisfy the

Diophantine condition**

lwev| 3_—I~%H;T-, for some ¢ > 0 and any v € 29 - (03 (2.1)
civ

*Warning: There exist real analytic functions which are, ac-
cording to this definition, merely continuous quasi-periodic (see
Johnson-Moser [1982]).

**[F X,y € Cd, Xey = I xiy} and |x| = 1 %51

i=1 i

Q.
H o

18



Then, for a fixed o > 0 and EO large enough, they construct a big
nowhere dense set E{g) in [EO,+m) so that, for E in E(s), all the
eigenfunctions of L are (analytic) quasi-periodic with rationally
independent frequencies (a, Wys «evs wd). The frequency a is a uni-

formly continuous function of E and verifies

la - 4| =01 .

vE VE

The set E(c) is described through its complement

R(g) = k“Jd {E 3_E0:|/" - ayj < K exp(- ___J;d____) }

o,
veZ log' 7|v|

lvi>2
where K0 is a positive constant and the numbers a (not explicitly

determined) are such that

Kl

1
oy =7 lavll < ore oy -

Their proof is based on a KAM fast iteration scheme* for

trace-less, two-by-two, complex matrices with certain symmetries.

*Kolmogorov [1954], Arnold [1963], Moser [1962] and [1967].




20

Rissmann [1980] replaces (2.1) by the more general condition

uev] iﬁTl}u—IT Lovet oo (2.2)

where the so-called approximation function g satisfies*

%%?—isﬂr)++w ,lgi%¥£l+ O,J -hﬁi%gj-dr< +oo, (2.3)
Then, using a set of estimates from Russmann [1975] and [1976], he
improves the Dinaburg-Sinai iteration scheme obtaining reasonable
numerical bounds on its threshold of applicability.

He also gives an interpretation of the points o of the Dinaburg-
Sinai set that we discuss in detail later**,

The set-up in Moser-Pdschel [1984] is as in Riissmann [1980]

but two new features appear:

(1) The recently discovered properties of the rotation number o

for quasi-periodic potentials allow them to work directly in

the a-line instead of the /E-line.

*The first item of (2.3) is justified by Dirichlet's theorem
in the theory of Diophantine approximation:
d-1
i e o
0<I\J‘im w*v 5]

for irrational «» and any m e Z,.

**Compare Remark 2 of 52.4 and Remark 3 of §2.9.
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(i1) They construct quasi-periodic eigenfunctions with rationally

dependent frequencies (g, Wys vees wd). In fact, 8 has the

form g = 952-, for suitable v's in 79
The rotation number is defined, as in the periodic case, by

o(E) = +1im ﬂ'{{—f ,

Koo
'

for any complex solution of

L(v) f=EFf

with i[f,f] z 0*%. Johnson-Moser [1982]** show that such a limit exists
for any complex E and does not depend on the choice of f. Moreover,

F e R~ alE) is a continuous monotone = function, strictly increasing

on o(L) and constant on the intervals of p{L) M R. On such intervals,
a = %‘w-v, for some integer vector v. This is the "gap Tabelling
theorem" of Johnson-Moser [1982].

Going back to Moser-Péschel [1984], they define

R = R(Q)

1]
—~
w

1]
NI

|B - wéu i 19(‘]1_‘]) s Zda u_?‘ vl,

*Actually, there are several equivalent ways to define a{see
Johnson-Moser [1982] and Avron-Simon [1983]).

**They develop their theory more in general for almost periodic
potentials; see also Avron-Simon [1983] and, for a review, Simon [1982].
For the related class of random potentials, see Pastur [1973], [1980]
and Spencer [198-].




22

0 being any approximation function, and prove that, if g is big
enough and belongs to i, then for E € a-](B) one has two independent

eigenfunctions

e1Bx(X] + X Xz)s e1BX X9 or e1BX X3 e-1BX ;é . (2-4)
Here, the functions y are quasi-periodic with frequencies « and the
form {2.4) depends on whether the closed interval u_1(8) has positive
length or not.

Also, by a limiting procedure, they prove the Dinaburg-Sinai

result, replacing the set R(c) with the inverse image by a_] of

. -3 d
{g e R: |B - mzu ] < Q(l”l) » nel,u#0}.

In this chapter, we shall study the eigenvalue problem

Léf s b(v+ew) f=EF,

v(x) = V(w]X), wi{x) = N(wzx,..., mdx)

for small €*; V and W are {real)} analytic on, respectively, T and
7d-1 and w = (w}, vens wd) subject to {2.2). We will construct a
subset E = EE(Q) of o(Lo)fj U(LE) and a function Ee E - a(E) > 0,

so that, for Ee £, (2.5} can be viewed as a subsystem of the Hamil-

tonian equations for (d+1) harmonic oscillators with frequencies {a,uw).

*For E big, the smallness parameter will be (e/VE).




23

In particular, the eigenfunctions of (2.5), for E € E, will be

analytic (a,u)-quasi-periodic. The frequencies will be seen to

satisfy
|ve(a,u)| 3_§(€JTT s VE de] - {0},
and*

|a(E) - o (E}] = O(e) .

Qur proof will make use of results from Chapter 1 and an
amplification of Rissmann’s KAM scheme (see, in particular, §2.4).
The set E will be completely specified using the smoothness (in the
sense of Whitney**) of the KAM limits, especially of E »~ a(E).

In £2.8, the function a will be identified with Johnson-Moser
rotation number o and it will be shown that the (Whitney) derivative
of a2 satisfies Moser-Deift-Simon inequa]ity*

2

do

aE =1

for every E in E.

*a, denotes the rotation number for L = L(v). For E big
la(E) - o (E)| = 0(=).
0 vE
**hitney [1934]; see, also, §2.7. The idea of using Whitney's
notion of smoothness in Hamiltonian perturbation theory appears in

P6schel [1982] and Chierchia-Gallavotti [1982].
“Moser [1981], Deift-Simon 1983].
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Finally, adapting the Hamiltonian KAM scheme to a matrix version of

(2.5), we will construct on E independent Bloch waves, i.e., solutions of the
T (wx) and ¥, and relate our situation to that one of Moser-

Poschel [1984].

form f=e

2.2 Hamiltonian Framework

We start by making more precise the assumptions on the guasi-

periodic potential v + ew:

Assumption 1. The functions v and w, thought as functions of *,
Rd—2

respectively, @2 € R and (q%, cees @d) 3 have holomorphic

- extensions -to

d-2(

S{z) = {ze C:|Imz| < £} and S g)z{zaCd"zzﬂImzi|§§},

for some £ > 0.

d-1

Assumption 2. The vector @ = {wy» --..» wy) € Ry

is of unit length

and satisfies the Diophantine condition

lGev] E_EEI%;TT- , any v e 791 . {01 ,
where** ¢ is a positive constant and

rd'z < {r) +4= , for 1 < r 44w .

*For aesthetic reasons, we make the change of notaticn:
(d+.|) s d} (w‘lp ng CEE I ) md) g (ng [.03, LR | wd)- Ne W'”] COﬂS'ider

only d > 3.
**The role of ¢ will be clear later (see §2.6).




The initial value problem

for
L q = L{v + ew)q = Eq
v(x) = V(mzx), w{x) = N(u)3x, eees wdx)

is immediately seen to be

part of the evolution equations
associated with the Hamiltonian

2 2
B q rg. -
2 + sz + m3A3 + ...+ (ﬂdAd + 2 [E V(!J}) €W((P3,

(p.q) & R® - {01, (B,A
with initial data

p(0) = q'(0), q(0}, w(0) =¢5(0) = ... =¢,(0) =0 .

Now, consider the {surjective) canonical transformation

+ - d- d-1
(p,B,AB,-o.,Ad,(P,w,KPB',-o-g(Pd) [ Rd 1de .1"' (O,R ]

0,77 )
+(Ag) e MzR xR&T <7 (2.9
where (p,B,q,y) + (A1,A2,?1,¢2) is the map of Theorem 1.2%*.
Since
2 2.2
L-rl-lad®

*For facts concerning LO we maintain, usually, the notations
of Chapter 1, (with the obvious substitutions).

{(2.7)

--slPd)]

(2.8)

d-1 d-1
. 3,...,Ad,q“ ?3""’?d)6 R x T

25



the transformation (2.9) conjugates the Hamiltonian (2.8) to

2
A Q ((P'l s‘-Pz)
ahy Fughy F s Fughy - e

K

w((P3: - Q‘Pd) 5
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(2.10)

o, being the unperturbed rotation number for Lo’ ¢ and Q as in
Chapter 1%*.

Notice that the assumption on the periodic potential V

implies that the periodic, complex-valued function (Q1, ¢2) € R2

> FO(@1,tp2) defined in §1.3 admits a holomorphic extension to 52(5).

Therefore, the real analytic periodic function (¢1, @2) +—Q2(¢1,(p2)

= (Re FO)2 in {2.10) has also a holomorphic extension to Sz(g).

Remark 1. (On the role of the analyticity assumptions.) A function
@ € R" > G(¢g), (27) - periodic in each variable, which admits a

holomorphic extension to the closed strip
sMs) = {z e cC": |Im z.] < s},

has a Fourijer expansion

Flo) = [ F e'V'®,
Zn

ve

with coefficients

13]

F 1 J Fle) eV do
v n
{(2%) ™

2
*Q and « depend on E and %?-m , for £ ++= (see §1.2).

1
VE
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satisfying the bound
]?v] < (max [|F]) eI . (2.11)
s"(s)
This will be used over and over.

Another advantage of holomorphic functions is that one can

estimate derivatives in terms of the function itself and some loss

in the extent of the analyticity domain. More precisely, if f is
holomorphic in a (smooth) domain DC C and D' is a subdomain of D

with*
dist(aD, aD') =p >0 ,
then
sup Gl <o (sulfh) (2.12)

With obvious changes, formula (2.12) and its proof extend to the

higher dimensional case.

Remark 2. For the Dinaburg-Sinai case {V = 0), the Hamiltonian set-

up is much simpler (Gallavotti [198-]): The eigenvalue problem
L[EN(USX: ey de)] q = Eq

is embedded in the system with Hamiltonian

*Here "3" denotes "the boundary of".
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2 2
%—‘!' m3A3 + ... +mdAd +92_[E - Ew(q’f‘ss “emy ?d)] .

The latter is conjugate, via a polar-coordinate transformation in

the (p, vEq)-plane, to

' £ . 2
vE Ay +ughy kot Ay - ;E A, sin® @, w(¢3, NE

Notice that this system is (d-1) dimensional and that, here,
uO(E) = /E .

2.3 Inductive Lemma

We will base the (Hamilton-Jacobi) integration of {2.10) on

the perturbation algorithm presented in this section*.

Consider the Hamiltonian

H(j)(A,q;a,s) = w%j)(a;E)AI4'm2A24'...4'mdAd
¥ el AIF(J)(fP;a,e), (i e N),
d-1

X Td, 0 <e < 1. Assume that m(j)

on the phase space M = R_ x R 1

and F(J), as functions of a, are holomorphic in

Dj = D(nj;A(j)) = k*J lae C:]a-ao] < “j}
a, € AN

*Perturbations of harmonic oscillators were exploited by
Riissmann [1967] and Gallavotti [1982]. Their proof makes use of Moser's
idea of modified systems {Moser [1967]). Our proof differs from these.
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for some subset A(j) of the real line. As functions of ¢e Rd, F(j)
is {2n-) periodic in each variable and admits a holomorphic extension
to Sd(gj) with* HF(j)I{g-,n_ E.PE independently of ¢. Finally,
-assume 0 < Ej < 1, the upper bound being imposed only for simplicity.

£
~Now, let** Sj < -% and define

2
ds) =1+ 7 [elavD el s 5o,
veZd¥{0}
_ oJt1 -1 -1
F‘(rJ)((P) = ]E\()J) ei\"({’ , F}g‘])((‘?) = % E(J) e-'\’ ¢ R
jv <N ' |v >NJ
| e,
Ny = Ming 2CNj9(Nj) élﬂ?. T s 3 1o
J
S3e1 7 5 T %0y
A(:‘H—T)E {aéA(j):|f.U(j)'\)I im‘};ﬁ ,ue_Zd _ {O}, |\)l_<_Nj} ,
(J) - (m(J) &),
_ . 4 (3+7)
Dj+-I:D(T'[j+-I,A ) .
*For functions F on Sd(s) x D(r;T}, we setHFHS . sup |F].

(z,a)eSxD

**This condition on the "analyticity loss" parameter, 6 , is
forced by the proof of the lemma.
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“Inductive Lemma. There exist two universal constants* K] > K2 such

that if a A(j+1) and
K, z(s:) 85 My e <1
then the function

J
(A's‘F)EM-*A"‘P"' 62 A'] ¢-i((P;a,€) )

© ()

- iveg
4. = 7 ————%77——-e
J 0<]v{gﬂj -1 w7y

{(2.13)

is the generating function of a surjective canonical transformation,

(A.g) e it > (A',¢) = (A'(A,9), ¢' (¢)), that conjugates HI(A,e) to

H(j+1 )(Al ,q’l ',a,E)

a0, ele)

. J+1 .
= w(J'ﬂ) DAY+ Ez A]' F(J+])((PI; a,e)

where

*That is, constants depending only on the dimension d.
indicate and will use the following bounds: Ky > 2 Ky, K, > 4.

We also
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Furthermore, a e FASRLDEN m%j)(a) and (¢,a) € rd o 4{3+1)

> F(J+1)(¢;a) have holomorphic extensions to, respectively, D

59y

341 and

1T

<K c(8.) 6fd c M5 = M
34170341

NN j M e (278)

Remark 1. It is useful to keep in mind that most of the quantities

we are dealing with have physical dimensions*:

og] = [ny] = 04,1 = [F;] = [timel™', [c] = [timel.

The angle related quantities sj, Ej are, instead, dimensionless.

Notational Warning: During this and later proofs, we indicate (some-

times different) universal constants with the same symbol "K.".

Proof. The cutoff** Nj is made so that

(3) _g 23
IIFq l‘Ej'stnii'Mjﬁj e . | (2.15)

In fact, for a € Dj’ using (2.11) to estimate ﬁSJ) ’

*Here, square brackets indicate physical dimensions.

**The key idea of the cutoff goes back to Arnold [1963].
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wf . —6.|vI

Sup % FSJ) e' 2V < M, % e J

ZeSd(g.—Sj) v >N, < v >NJ
-(8:N,)/2 -(8;]v1)/2 j
chpe 37 Ioe =0 Jd ’
lv!>Nj
Analogously,

[ P 53d (2.16)

SRS TR R

Next, we show that ¢j has an holomorphic extension to Sd(gi—aj) X Dj+]

with

| 4 Mm .
max {H¢jH, Ha¢]h < K. ;(Gj) c M s (2.17)

the norms being relative to such a set.

To prove this, we have to take care of the small denominators

appearing in ¢j' let a€ D Then there is a point a, € A(J+1)

J+1°
with Ja-a | < Ny, SO that, for 0 < [v] < Ny, the definitions of

j+1 .
A(J ) and ni4] imply

Im(j)(a)°“| = {w(j)(ao)-v + (m%j)(a) - ng)(ao)) V]l

g (- A )
- 0 (J)(ao)'v
(3
1 1 1
>0 5 (1 - CQ(Nj) N\_.| sDu.;JI—da——lnjH) 3m.

J

|



Now, for (z,a) e Sd(gj-sj) x D

S

6515 153 z
max {|e.l, [} <
J 3¢ O<|U|5Nj o .,

2eM, T vl allv]) e'ﬁil“*
< . AV] N o '
- J v#0 J

03
The function A'-¢+ ¢

33

D1 (e

A] ¢j(¢) will generate a canonical

transformation if and only if* we can invert the map (A',¢) ~ (A,¢")

given by
Co 3 2] ) 2]
¢ = gpm (Aeete™ Apgy) = (0 + €7 050, .
_ 3 23 o
A-,[}(?(A ¢+ ¢ Al ¢j) TjA
where
— . —
1+ ¢ 5—(-’:{- Qrees0
2 295
= = — 10 0
TJ TJ((p) £ . T,
J o¢. .
52 .ggl Qsee 0]
L K )

*This is a standard fact in Hamiltonian mechanics.
Arnold [1978] or Gallavotti [1983].

- ¢d)

(2.18)

See, e.qg.,
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To confirm this, we use the following elementary version of a

global implicit function theorem. We defer the proof to Appendix A.

Proposition. Let z e Sd(r) + g(z30) e cd be a holomorphic map
parametrized by ¢ ¢ ¢ CZCn, and let 0 < s < 1, There exists a uni-

versal constant K3 > 1 such that if, for any o ¢ £,

gl
‘g_g_” , S“} <1, (2.19)
r

K3 max{

then the map z Sd(r) + z + g{z;0) is one-to-one from Sd(r) onto

Sd(r-s). The inverse map can be written in the form
] d — 1 I d
z' € S (r-s) »z=2"+h{z";0) € S (r)

with z + h(z;0) holomorphic and [[h[l, _. <{[dl[..
Regularity properties of h with respect to ¢ e £ are the same

as for g.

Finally, if g is real on Rd

and periodic in each variable, so is h.
The last statement of the proposition means that the smoocth
map p e Td + @+ g{e;c) is globally inverted by ¢' « Td + ¢ + h{g'sa).
Thus, the proposition and estimate (2.17) show that we can fix
Ky so that if condition (2.13} hols then the map ¢ -~ ¢' in (2.18) is

globally inverted by

J

1 2 I . 1 ] -
¢ =(¢1+e Aﬂ@aaﬁ),QT ”.,qﬁ ; ae %+1
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. , .o
with (z,a) » Aj(Z,a,e) holomorphic in S (gj+1) X Dj+1 and

a4 < |4, (2.20)
J| Ej_*_'['snj.‘_l _H JHEJ'SJQWJ_'_']

03 3¢ .
‘ < 1 because of (2.13), we have

Also, since =~ sup J
. T 3‘?1

- -1 %

a=1da, 771 e 10 ennes 0 . {2.21)

LR R ]

1 d-1

Notice that T3 maps R x R onto itself.
At this point, Hj(A(A', @' ), @l¢')) is readily computed and
(2.15), (2.16), (2.17) and (2.20) easily imply {2.14).

The Inductive Lemma is proven.
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2.4 Compatibility of Approximation Functions
and Analyticity-Losses*

Our next step will be to apply the Inductive Lemma infinitely

many times so to end up with an integrable system for values of a

belonging to
A=) 2 AR,
3=0

To do this, we have to look closer at the relation between o and Sj’
the up-to-now arbitrary quantities appearing in condition (2.13).

First, notice that, by definition of ¢

3+
g, = Time, =2 -2 % &,
jao 90 =0 Y
so that it is natural to require
@ £
I 6y <5 (2.22)
=0 7

Also, to meet condition (2.13) for any j, we need ;(61) <«

and since 6j + 0, this means that

Tim l’iﬁiﬂ= 0. (2.23)
re

These observations motivate

*This paragraph is inspired by Rissmann [1980].
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Definition 1. A sequence {sj} satisfying (2.22) will be called an

analyticity-loss sequence,

A function o satisfying

rd-2 < Q.(Y‘) $ o and _]_Og_ﬂr‘(_r)_+ 0 (] <rot oo) (2.23)l

will be called an approximation function*.

Not all the approximation functions and analyticity-loss
sequences will be suitable for our purpose: We will see that a neces-
sary and sufficient condition for the application of our iterative

scheme is that
1

(=]

2J
I (6.} <o . (2.24)I
0!

Furthermore, in order to control the set A(m), the condition

(2.24); is not in general enough. We will use a stronger version of
I
(2.23)':
Toga(2? 631)

}12 2j =0 . (2.24)II

For these reasons we make the following

Definition 2. An approximation function and an analyticity-loss

sequence are said to be compatible if conditions (2.24)I and (2.24)II
hold.

*The nomenclature is-adapted from Riissmann [1980]. The
monotonicity in (2.23)' is assumed for simplicity.
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Examples . 1) o{r) = r" (m > d-2) and {5;} are compatible if and
only if

1 -1
— logs . ® .
b g j <

2J

Moreover, one has

1 -1 - 1 -1
(2.24)I<:>I EE—]ogaj <o ;(2.24)II<z>Ej logs. - 0.

J
IR . . . .
2) a(r) = """ and {6;}are compatible if and only if
67!
F—‘l:—'<oo,
- 23

Moreover, one has

5-1 6—1
J : 3
(2.24) <7 nIRE (2.24) = o 0.
3) let ¢ > 1 and
exp(——) , r> e’
Togr
a(r) =
a(e”) ; T<r<e?.

Then, @ and {6j} are compatible if and only if

-1
85

—— 0.

jO'
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Moreover, one has

-1 -1
8. 8.
(2.28) <>—— bounded ; (2.28) <> 50 .
I .0 II .q
J J
Remark 1. In the first two examples, condition (2.24)I is stronger

than (2.24)11, while in the third one, the opposite is true.

Remark 2. Russmann's aptitude is slightly different: ‘He defines
1

f==]

"l
¥ = inf T ;(5.)2 . (2-24)i
_ j=0

where the infimum is taken over all the analyticity-loss sequences,

and then shows that

imply ¥ < o,
The resembience of (2.24)I with (2.24)i is clear, but our

condition (2.24)11, needed to control A(m), doesn't appear in

Rissmann's work.

2.5 KAM Iteration Scheme

At this point, we have to check that the Hamiltonian (2.10)}
associated to the Schrédinger equation (2.7) satisfies the assump-

tions of the Inductive lLemma.
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For this purpose, it is more convenient to regard (2.10) as

parametrized by aq = a rather than by E. Let*
k k+1 *
ae kk_-.JO (2 UJ29 5 wz) - eO(a) € d (LO)
denote the inverse function of E e o* + aO(E) (compare Figure 3),
and set

 QPleyaepie,(2))
w = (a’mZ""’md)’ Fle;a)= - K(eo(a)) W(Q3,..,¢d).

‘e, lal

]
By

i+]
E749

*Recall the notation from the first chapter. In particular,

N R R S
or = 190 (E2ic> Eaue)-




Inductive Lemma if we put £, T E-

By §2.2, F as function of ¢ meets the requirements of the

As for the a-dependence, notice

that E » uO(E) has a natural holomorphic extension as soon as one

stays away from 3c*: Fix a point Ek in (Egk, Egk+])' Then for E 1in

any simply connected region containing Ek, the extension will be*

2 10 [
0g(®) = B+ (DN 2 [ T
Ek VT1-072

Thus, it is easy to see that for any

and for

L_J'{ae R: (%

syt 2n)sac (5w, - 2n))

the function a + F(g;a) has a holomorphic extension to the region

D(nsA ).

aﬁd

Finally, we set

m(o) = G, F(O)

M
0

=F, £, ng=ns

sup iFl .

d
$7(g,)xD,

*Compare formuia (1.4) of §1.2.
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Now, imagine having applied the Inductive Lemma for

j =0, ..., n. Repeating estimate (2.14) (n+1) times, one gets

Oy, < Moo

n+1°Mn+1

( 2n+1

< (6,08 e el p)Peecls )2

0

-1 -2 LU
x [s 8n-1""" S 1 M, .

To apply the Temma one more time {j = n+1), it will suffice

by {2.13) to have

K n+1

1
1 2 -d -d\2 -4, 2™
L O (O In A CCR e LERCIERDS Sl EAS
(2.25)
. d-2
But, since a(r) > r~ °, one has
1
-d P
5j < §(5j) s
whence, by (2.24)1,
3
1 1 .2
@ _ J oo J
¥ o= o1 (;(5.)5.d)2 <t m c(a-)z < e
i=0 J°] 0 J

Thus, (2.25) is implied by
1 2n+1

n+l
El ‘ Y(K,cM e) <1
K2 270 -7
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We see that in order to apply the Inductive Lemma, an arbitrary

number of times, we must have
Kyec Me <1

which may be expressed as

Analogously, one checks the estimate

( )2n
ET

Now, the following theorem is a simple matter.

Theorem. If ¢ satisfies condition (2.26) and

a2 e Ale) 2 ﬁ A4
j=0

(2.26)

then the Hamiltonian H(O) is conjugate to the (non-resonant) system

of harmonic oscillators

H(°°) (m) <A,

]

where m(m) = (m%m)(a,a), wos ees wy) verifies
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= J
c1w§°’) - aj gK]—Z 'Xo (en)? (2.27)
j= ‘

1 d
> alls s vwe L - {0}.

AR

The (surjective) canonical transformation conjugating H(O)

to H(m) has the form

(A',e') e M (S(e') A", @ + eal@), @), -..spy)ed  (2.28)

with* S a (dxd)-matrix of the form

—-1+65‘1 0 cae 0_
€Sy 10 .- 0
L-E;d 0 -::01_
Moreover, the vector s = (s], cees sd) and A have holomorphic

extensions to Sd(gm) and**

: 1
max {|s]] x ”A”Ew} < Kyt ifg T . (2.29)
*S and A depend on a e A=) and .

**K4 is a universal constant.
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Proof. Condition (2.26) enables us to apply the Inductive Lemma an

arbitrary number of times. Now, let

J

1 _ 1 2 1 1
gJ(Z ) = (Z'I te Ajs 229 ces oy Zd)s
GJ = gO o g.l ° o gJ .
Sj = To(goa A gj) T1(g1o P gj) . Tj-1(9j_1°9j)Tj(g

We claim that for a e A™), Tim 6, = 6 and Tim S, = S exist
T jteo d 'j+3

and that such limits are uniform on compact sets of S (gm). To prove
this claim at this point is completely straightforward but not so
short, for this reason we give the details in Appendix B.

But then, since (A',¢') e M~ (Sj(¢‘) A, Gj(¢')) is a

3S.
j _ 3S

canonical map and since 1lim —= = —=— , also the map

(A',¢') = (S(¢') A", G(¢')) is canonical and

HES(¢') AT, G(g")) = Tim K(S;(q') A", &5(¢'))
Jteo

= Tim (m(j)-A' + SZJ A't| F(J)((F:)) = m(m)'A' = H(m)(A').

For the last assertion of the theorem, see also Appendix B.

(

Remark 1. Since a -+ w1n)(a) is continuous on A(n) (actually is holo-
morphic on D(nn_];A("']))jj A(n']):) A(n)) the set A(n+1) is closed,

therefore also A(m) is closed.

i)‘

L&
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Remark 2. A system of harmonic oscillators with Hamiltonian

o=

i

(I,0) e RM x " denoting action-angle variables, is said to be

- resonant if the frequencies g = (31, cens Bn) are rationally dependent:.

_ n
B°“o =0 , for some Vo e Z - {0} .

The word "resonant" comes from the fact that for such sys-
tems an arbitrarily small perturbation may produce non quasi-periodic
motions*.

For such reasons, we will call, sometimes, A(m) a non-resonant

set.

2.6 Structure of the Non-Resonant Set A(w)

We cannot apply the KAM scheme for a in the set

_ 4(0) (=) _ {7 (J)

R=A - A = R
‘.’;E(JJ vkeJZd v

0<|vIENj

where for 0 < |vl < Ny

RU) < e aW8): 300y ¢

Cﬂi.v[j }

*See Gallavotti [1983], pg. 498.




Notice that because of Assumption 2, 2.2, on &, Rij) is
empty when vy T 0, therefore the above union is actually taken on
ve % v, # 0.

Our next task is to control the sets jo). Suppose, for the

moment, that we could extend the functions* a ¢ A(j-1) + (j)(a) to

iV
1
R in such a way that (calling the extensions again m%J))
dm-(l'])
sup -1~
R da

is less than, say,3%. Then calling b € R » a(J)(b) the inverse func-

tion of the extended w%J) and setting**

_ (3, @9
aj,v = av (- 5

_ 3
)s r\):c:v-lﬂv

for vy # 0, v 5_Nj, we would have

Réj) Clae A(O):|a~aj’v] <r}= Iij)

in fact, for a in Rij),

(3 @ 1
{m1‘]) -(- vy ) < ?Mlﬂllvl) s

which implies

*Since for j=0 ng)(a) -a, we define AC-1) = .

113

**Recall that for x= (x1,...,xd), X = (xa,...,xd). Obviously
a(o)(b) = b.

a7



48

(3)
and, since %—< Q%ET— < 3, a. -r, < a < a. + r,

In this way, we would succeed in controlling the resonant set

R with exactly determined intervals.

We proceed, now, to construct extensions of the m%J)'s satis-

fying

e

sup ——'—*"da

R

2
3 L]

To do this, we have to assume that o and {ﬁj} are compatibie

{see 52.4). We also assume, for simplicity

¢ (§ =t | (2.30)
n*(250 Toge )

where € satisfies the KAM-applicability condition (2.26) and

o*(r) = ralr).

Propesition 1. If ¢ < g, satisfies

2 <g MO n;'l + (8'[)2 )

et 8

€ SZ "IL- < l E,:;I
J D

then, for j > 1,
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-1
nyo< 49*(Nj_1) c | (2.32)
and
(1)
dm] 2
sup 1 - 1| < 3 (2.33)
(3-1) 3

Proof. We first show that since @ and {6j} are compatible, condition
(2.31) can be met for ¢ small enough. From 199%13l4»0 as r4+e it

* -
follows lgg%:££l4-0. Therefore, for any j, setting r = logs 1,
I+l -1

o = 2j, g = Zjlogr and v = 2 i one has

(e)? a*(N,) = exp l:'r‘(cx—%-y W)} 50 (e40).  (2.34)

Now, because et < 1, we can find 0 < » < 1 for which EAT < 1 and

since*

T
J ~ 0

Toga*(27s
j (j+°°)
2

there exists a Is (independent of ) such that

1-2
<

1099*(2j671)
J - 3
3 _— 2 ?

| v
[

2J

*Compatibility for o and {61} implies compatibility for o*
and {aj}. v



*
Then, for j > jo, using the monotonicity of l9-9%:££l-to infer that

Toga*(rs) < r loga*(s) (r,s > 1), one has

J i Toga*(N.)
(31)2 Q*(Nj) = (ET)Z e J
. J
J.-1 2 .
1099*{2 Gj ) 1-2 5J ;
ey < et @) =P
£ 7 £

The use of (2.34) for j < 3, shows that

23
(e1) Q (Nj) +0 (e +0) .

I
o

J

Now, let's proceed with the proof of (2.32)} and (2.33}. For j =

50

(2.33) is trivially true. Assume, inductively, that (2.33) holds for

0 <Jj<k. Then for 1 < j < k, because of 2 ﬂ*(Nj_]) f_n*(Nj) and

(2.30), one has

1 1 daf?") }
ny = max 2”j-1’2 Q*(Nj_1) ¢ |l—@
nj J
<max {2n7)., 2 2 %N, L) ¢
= Nj-1* © 3 3=
J -1 5,35 3-1 10
< max {2 g 0 2 §-Q*(NO) , 2 3 Q*(N])c, s
10
= max {27 n;1, 2 %-Q*(Nj;])c}
10
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Therefore*

-1

J
% [eM ng ¥ (sr)z 3 (E’L’)2 Q*(Nj_.l)] < %
In the second inequality, we used the estimate (2.12) and in the last
inequality the assumption (2.31). This concludes the proof of Propo-
sition 1.
23 () . .
The function ¢ F0 , that we shall call momentarily f, is

holomorphic on D(nj; A(j)), so it is controlled, together with its

derivative on, say, D(%—nj; A(j)):
el
f <||f , ||f' 5_—————————— l]fH
| ”-g-nj I llnj | Il%nj a g)n
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Set 0 = D(Z nss A)) AR and o' = D(z nj;A(j)) A R. We want

to extend f, considered as a function on ¢', to the whole Tine with

1 8 =
sup |£} <1l sup 1R < S a3t (2.35)
R N3 R ; J
To do this, we have to extend f to the {closed) gaps I in R - ¢'.
There are two different types of gaps: either IC Q0 or In 0 % 1.

Notice that in the second case the length of I is at least %-nj; see

Figure 4.

points in A(j)

[ ]
¢
[ ]

5/8 ns
(L ot )\ o ./ - Y - Y l 3
\ TN / \ A - FAN - /
3/4 nj 1/4 ns
[ o ¥ V oY Y o X oY Y é
\ /'L%L A \J\ /L/J \//L/ N7
gap of the first type gaps of the second type

Figure 4
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In the first case, we set, obviously, f [ = f 0 For the

second case, we use the following

Calculus Temma. Let I be a finite closed interval contained in an

open set J. let g e Cl(J-I) with

sup |g| <M, sup |g'] < N.
J-1I J-1I

Then g can be extended to J so that

ZM
sup |a] <M, sup |g'| < max {N, } .
J J (Tength 1)

The proof is synthetized in Figure 5.

et T S —

slope > -N

Figure .5
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Thus, on a gap I of the second type, we extend f as described

in the lemma so:

2 [l
sup 1£] < |IF]] sup |F'] < maxd SU¢] 7] U
I Ny I - 37 Ty d Tenath(T)
8 1 2 1el,, 8 1
8 - 91 .8 -
< maxy 3 ”fILH”j » 73 3||f“n.nj
| T'ij J

This proves the desired estimates (2.35).

J

Now faor any k > 1 call fj the above extension of e2 ﬁéj).
Proposition 1 implies
dul®) k-1 T DI )
sup -1 < £ sup {2 <5 (eM n. +I e M.n,
R da j=0 R da 3 00 1 i3

® J
R N COME N COM (R

And if we require the condition, slightly stronger than (2.31),

-1 2 2, |

4{eM n_ " + (et} (ex)}™ o*(N.)J <1, (2.36)
00 3520 J

we obtain, for the extension of any one of the function w(k)

'] ]
‘dw%k)
sup | T - 1

<

wro

(2.37)
R

This concludes the proof of the inclusion RSJ) C:IEJ).
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Remark 1. The set of centers {aj } comprises all the values of

»v Jjel
IVIS_Nj

a for which the j-th approximation to the integrable Hamiltonian m(m)-A

>

that is w(J)°A, becomes resonant.

Remark 2. It is easy to see that {aj v} is dense in A(O) and to con-

clude that A(m) is a nowhere dense set.

Now we control the measure of R. The bound (2.37) implies

. , j
¢ sup !a(3+1)- a(J){ <327, 2=zt
4
and from this there follows, for any j z_jo > 0,
- J
=2 2@
c ]aj+1,v- 3 ’vl <3 ;: A (4.5) a
0

where to estimate the series we have used*

J n
t2<t2 <1+—-——‘|—""_—T—>, n>1,t<1,
Tog t .

01 8

j=n

and > <-% (condition (2.26)).




56

230_] 2JO
Thus, letting Jg = jo(u) > 0 be such that A" - » cr, > A .
one has
” ('j o (3)
_ i J i
R e A

-1 log(cr )-T
Now, since j0-1 < (log2) ' log __—'—_¥T—"' <Tog1og(3|v1lﬁ(|v|))
Togx

when jo > 1, we get

14+ 2 Toglog(3]vylallv|))

1ength(1v) <2 Vv(j0+6) < c|v1\Q(|v|)

Finally, if @ satisfies*

d-1+o

*For example, (r) > r satisfies (2.38) for any ¢ > O:

Let 0 < o < E%a-and set o' = g-a(d-1+¢) > 0. Then, for m = m_ big

o Toglog3|vy [a(]v]) 5 1
enough, < z
Cpln MBS L (e T

3% 3 Ivllu K. ¢
< T f_ .
T Pl fvyl u &M v, 147

0

< K. J e ! CaE=
- [x[>1 [x]"7° d-1 - lto
XeR R (1+ X )

> d-2
<K _daa__>( ___r__> <o
— (Jlxli-l ]X|]+O -a JO (-|+r).d-1+O'
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10glog3]vy |a{1v)

PR T A R (2.38)

veZd
u1#0

the measure of R is bounded by (Ks/c).

Remark 3. In the smallness conditions (2.26) and (2.36), the param-
eter c appears in the combination etr, T = Kzu:c MO, so we might set
c =cfe) = (NQVE)_], say, and still be able to meet such conditions.

Moreover,

meas{R) < meas( (_J Iv) < Kg M e .

vel
v1#0

2.7 Whitney Smoothness of KAM Limits

In the preceding section, we constructed a differentiable exten-
sion throughout R of the function w(m)(a) originally defined on the
closed nowhere dense set AL,

Indeed, much more can be said about the smoothness of m%m):

We will prove that it is indefinitely differentiable on A i the

sense of the following

Definition (Whitney [1934]). A function f:ACRY - R is said to be

m

™ in the sense of Whitney if there exist, on A, functions

(f ) d , T_ = f, with the following property: For each x_e A,
v 0 0
veZ+,lv‘§m
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for any ¢ > 0, there is a § > 0 such that if x,x' ¢ {y ¢ A:]y-xol < §}

then*
f o (x")
00 - 1 A e e e VD (2139)
ueZ+
lu|<m- 3]

Proposition. For j e N, let gj be a complex function holomorphic on

D(rj;T) where T CR, 1 3_rj~+0. [ f**

-n
gl " <
J

z
j=

then g = & g, is c" in the sense of Whitney.

j=0
dmg
Proof. Notice that for any j,m in N, x in T, ——i%-(x) is well
dx

defined. Recalling the estimate (2.12) one has, for any m < n,

ul oz (uD gty (ugh). x¥ =z (x?T)(xzz)---(xd

g Il = sup |as].
J r, D(r. ;T J
j 3
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sup | T 2l < I =
T 13=0 dx j=0 dx rj
2
m o -m _.m -n
<2 j-EO HQJH rj Y‘j <2 jEO ”qJHY‘J Y'j <@

Thus, we can define, on T, the m-th Whitney der‘iva’tive of. g (that we

4
will denote —-%) as
dx

w dmg.

T J
j=0 dx"™

Now we prove that, for 0 <m <nand x # x' in T

m+k

m n-m
99 (x) - 1 ey (kx| = o ]xex' ™M),
dxm k=0 K gk

S
g[S] = ¢ g,. The function g[s] is C on the open set RmD(rS;T).
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m n-m m+k
48 - p 48 o) ek | —1
dx k=0 dx [x-x"]
4n [s] n-mo o gk [s]
e CO I (x*) (x-x")¥| —
- m k! m+k n-m
dx = . [ x-x"|
u 4" [s] 1
+ = (x) - (%) —
dx dx [x-x"|"
n-m m+k m+k [s]
4+ T _I_I_ d +q (xl) d - (Xl) ix_xlik (n'm)
k=0 K! m+k m+k
<o(l) +2 n;m s ; sup ¢ g ok~ (n-m)
- k=0 K' jese1 T [|axk T3y st
n-m Lk ® {
< o1} + AL ET_ T ]Ingr 3(m+k) rt;%n—m)
k=0 K'\ jes+l 3
n-m oK =
<o+ 2™ p L on gyl vy T
k=0 X' j=s+ ]
< o(1) + 2" el r;"
J=s+l J

The proof is finished since s = s{|x-x'|}+= as |x-x'|+0.

Remark 1. Using this proposition, one can construct non-trivial ex-

amples of functions* Cﬁ on any set T CR.

*CE(T) = class of functions C in the sense of Whitney on the

set T.
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The proposition and its proof extend easily to the higher

dimensional case.

Now, since

with fj holomorphic on D(nj;A(w)), to apply the proposition we have

to check that*
1 -n

= =, Il g
Cn i j=1 J nj 3

< @

for any positive integer n. By the estimate {2.32)

102 -n - 23 n
— ¢ [|f.l . ni o< Koz ()™ (@*(N)))
g Iy 1 !

and, as in the proof of Proposition 1 §2.6, letting x and jo be such
that

D<A <1,

has been introduced to fix the physical dimen-

*The factor —=
¢

sions of the sum (see Remark 1 52.3).
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we obtain
J i nloga*(N.)
(zr)z (Q*(Nj))n = (ET)2 e J
jo-1y « 2
nloge*(27s. ") i
' — -3\ 2 .
J -3 J
= (ET)(J“) 2 < ST(;LJ 2 = (EKT 2 .
el g2

This concludes the proof of our claim concerning m(m) .

Remark 2. It is routine, at this point, to check that also the KAM

transformation (2.28), as a function of a, belongs to C;(A(m)).

Remark 3. Whitney's notion of smoothness is completely intrinsic.

For example, the Whitney derivatives

(f))
v veZ$,|v|5m

of the above definition are uniquely determined on A by the property
(2.39). Nonetheless, if A is closed, a function of class Cﬁ(A) can
always be thought of as the restriction on A of a Cm(Rd) function,

real analytic on Rd - A, This is the content of the main theorem in

Whitney [1934].

2.8 Back to the Schrodinger Egquation

The flow generated on M by the integrated Hamiltonian H(m) is

given simply by

xe R+ (A(x),@ (X)) = (A(0),¢ (0) + ™) (2.40)
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Wi th Lu(°°) . (wgm)(a;e),m) = (m1m sps-s a0 y) satisfying
PR ve 28, v # 0 (2.41)
__C_Qm]_)—: € 9 1 N N
Now define

E = E‘5 = a;](A(m))

and use transformations (1.7), (1.9) and (2.27) to read equation

(2.40) in terms of the eigenvalue problem

Leq = L[v(wzx)-Few(w3x,...,mdx)]q =_Eq, EeckE. (2.42)
The result is*:

2A1 0

K

3

(2.43)

a(x) = rv/T+es (o) +eale ) ") Qoy+eale)apy), re

where ¢ = ¢'(x) is as above with ¢§(0) = e,cPé(O) = ,,. = @3(0) = 0,
and the parameter a takes back its original meaning of the unperturbed
rotation number uo(E).

As (r.e) vary in R, x T, (p(0),9(0)) = (3 (0),q(0))
cover R2 - {0}. Thus, formula (2.43) gives a parameterization of all

the real solutions of (2.42).

.*:PI E ((Pizs --'scpa)°



Next, we identify m(m)(uo(E);s) with the Johnson-Moser

rotation number* o{(E) (E € E).

Recalling the definition of Q in Chapter 1, we can rewrite

(2.43) as**

q(x) = r Re[ei(9+bX)x(e+bx,mx)] ,
with

xlg) = /TFe s le T eblgg) e 2@y (4,).
Notice that®

’ suT VT + esq(zy +edlz),Z) - 1] < Ky et < 1,
MmZ. <&
1 t—="co

where, as in §2.5,

*See §2.1,

**h denotes, momentarily, m(m)(ao(E);e).

Tobviously, we choose the branch of vZ where /T = 1. The
inequality comes from (2.29).

Tsee §51.2.
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there follows

arg y(e+bx,ax) _ 0
. .

1im
Koo

So, we can form a compliex solution of (2.42)

fzu+iv,

such that %—[f,?]r [u,v] # 0, with

u= oy cos {bx + 81) s V=, sin{bx + 82).

Here, Py > 0 and B, are gquasi-periodic real functions satisfying

B:(x)

P i

1
sup j— - 1
x¢R P2

<1, lim = Q.

Kteo

Then, after a look at Figure 6, one concludes

olE) = Tim

X 4w X

arg u+iv‘

B B
arg{p1cos[bx(1-FE%)]+i Py sin[bx(]-FB%)]}
X

Tim
X oo

ar‘g(o1 cosbx + 1 p, sinbx)
1im
X Ao

X

= wgm)(ao(E);e) -

1]
o
HI




iR

Figure 6
In short:

Theorem 1. If
et = K, ¥ = c|[W]]
27 % %o
satisfies the smallness conditions (2.26) and (2.36), then the eigen-
solutions g of (2.42) are analytic gquasi-periodic with frequencies
o) = (m%m),mz,..f,wd) where m%w)(ao(E);e) coincides with a(E), the

Johnson-Moser rotation number for Le.

66
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The vector m(m) satisfies the Diophantine inequalities (2.41)

and*

sup |a(E) = a (E)I<i££
EEE| 0O C

As functions of E ¢ E, o and any eigensolution q are C* in
the sense of Whitney.

Finally, the Schrddinger equation (2.42) can be viewed as a
piece of the Hamiltonian equations for a system of d harmonic oscil-

lators with frequencies (a,wz,...,md).

Remark 1. The parameter Ky constructed upon the unperturbed operator
Lye is a (smooth) function on the interior of o(LO) and, recalling

the asymptotics of §1.2, one has

KJE)WV@ for E 4+ +e.

Remark 2. From the structure of R = A(O) - A(m) and the invertibility
of @, on the interior of the spectrum of Lo’ there follows that the
set E(c:c(LO)) contains the Cantor set

@ _.! «
G(LO) - [ \J kde ay (I(J))],

j=0 veZ v
v1#0
see 52.7. Analogously to what was done in that paragraph, one can

bound the measure of

*This is (2.27),
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R = U(LO) - F

by c'1 X a constant depending only on d and Lo‘ But in the present

case, because a /E as E+ +e, one has to require*

. Toglog3|v,ia{|v])
bl Ogiz(uT)IvI < (2.44)
véZd 1“11
v1#0

instead of (2.38).

Remark 3. Putting together the Johnson-Moser gap labelling theorem**,

the strictly increase of o on c(LE), and the Diophantine inequalities
(2.41) {(which hold on E), one concludes that in any of the open inter-
vals of c(Le) - E there are infinitely many points belonging to G(Le)'
On the other hand, Moser-Pgschel [1984] show that, for "generic"

(mz,...,wd)—quasi-periodic potentials, the Dinaburg-Sinai sets can be

obtained as cluster points of open spectral gaps.

Remark 4. Dinaburg-Sinai [1975] construct on (their analogue of) E

the densities of the absolutely continuous part of the spectral meas-
ures, showing as a by-product, that £ is a subset of Gac(Le)' Their

proof employs a KAM procedure.

*For example, a(r) 3_rd+0 satisfies (2.44) for any o > O.
Compare last footnote in §2.6.

**On spetral gaps, o(E)} = l—~-%, for some v ¢ Zd'1,

W = (st--- ’wd).

™~
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In Chapter 3, we generalize their formulas without reference to KAM.

We conclude this section discussing the remarkable inequality

oo, (2.45)

Moser [1981] showed that (2.45) holds, on spectrum, for any periodic
potential and, by a Timiting procedure, for certain limit-periodic
potentials* with nowhere dense spectrum. In this second case, o is
no more differentiable in the usual sense and one has to interpret

2
%%T-as the symmetrized derivative

az(E+€) - az(E—s) .
2¢ :

Tim
40

such a limit is known to exist almost everywhere {with respect to
[ebesgue measure) for any monotone function**. Deift-Simon [1983]
generalized (2.45) to any almost-periodic potential for E almost
everywhere in the support of the absolutely continuous part of the
spectral measure. We are going to show that, in our case, (2.45)

holds everywhere on E, “é%ﬂ representing, now, the Whitney derivative.

For simplicity, we perform the computations in the (Dinaburg-Sinai)

case V = 0. We also assume (without loss of generality)

*A Timit-periodic function is a limit (in the sup-norm) of
continuous periodic functions (see, e.g., Avron-Simon [1981]).

**See, e.g., Saks [1937].
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1

W=
0 (Zﬂ)d-]

Wie) di = 0 *, 2.46
JTd_1 (@) de | ( )

In this case, the zero-order Hamiltonian is given by**

0 . 2
HOM (A, g) = VB Ap+anhyt oee tudy - = Ay sin’e (@)

= ol0a+ e, O

and, for E & é,
ofE) = m%m)(mo(E);e) = m%m)(JEEE)
- Ere B0 4 2 ?C()U. +0(eh)

F(I) being as in the Inductive lemma of §2.3:

(0) (g
39 Fo  (p(¢"))
FWig) = 22 e F Vot + e

€

;

D)< 0

NCINE eV, ¢ (g) = @y + €8 5Pps- -1 Gy) (2.47)

L
O<lvlfﬂo =i sy

FO ) = FO) gV
N

Since

*Notice the change of notation W(¢3,...,¢H)-+w(w2,...,@d)==w(¢).

**Sae Remark 2 of §2.2.
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° =_2JENO=O
Now, reading from (2.47)
(1) o1 (1)
F : (¢') do*
0 (2v) de ¢ e

_ 1 (1, 5
= F ] e —) d
= de (@) (e )

1 i 0
gy de 3 @ P+ @) g

(0)
1 i¢_0>2 (0) %FR_]
+E(2w)dfd[<3(h R R

.1 (0) 1 3&) (0)
(z.n.)d J B(P'] F de + ¢ (zﬂ)d J ] <8q31 F de .

Besides*

: W
* FSO) = —j& for v; = + 2 and is zero otherwise (see (2.48)).
4vE




Thus, we have

v
uavezd
0<|v[<N
— 0
ptu=0
2
~(0)
[Ev | Y1

2 2
{0 ~(0
_ 2 Foy | 2l %,0)]
O<[v[<N, 2vE + oo -2/ + ven
O
8/ = (2,9
[9]<N_ (9-a@)-4E
1 ;15
2 |G|5NO (v 5)2-4E
W |
=B+l p oY),
|uifﬂo (9-3)"-4E
2
(W |
sE+ el Er——2 —+0(d) |

72
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Finally, notice that the 53-0rder term is Whitney differentiable in
VE, E ¢ £, and that such a derivative can be uniformly bounded on E *,

so that

R EeE.

2.9 Bloch Waves

Equation (2.5) is equivalent to the first order system**

0 0 : ) 0 Oj}
g + el s cees
[_v(npl)-ﬁ o:l N “d [1 0|

P

-
n

(2.49)E

with y = (f,f').

A fundamental matrix for (2.49) _, is

*See §52.7.

*¥de pesume the notation of §2.1 that is o and (d+1) of §2.2-
2.8 are replaced here by w and d.
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ia %

f,=e ° Xo(m1x) being the Floquet solution of Chapter 1.

Setting
Y=T eCX
where 7
-  xglep0) Xolopd | [aao 0 -)
o oy xg T Ty toy T 0 e,

system (2.49) becomes, under the change of variable* y = Tz ,
z' = Cz+ePz, ¢ =u (2.50)
with

. 2 , —2
~1xo{eq) | -1 %, (%)
) _N(szs-ooscPd) 071 0 1

- 2

.2 :
LIS ilxg

2
|

Now, the existence of Bloch waves for (2.5), that is of independent

solutions f = e'®* y(wx) and T with X a smooth function on Td, is

equivalent to the existence of.a change of variable z = S{wx)w that

* det T = [fo,?éj = f%—, see Chapter 1.
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transforms (2.50) into

The rest of this section is devoted to the construction of such an S
adapting the techniques used in §2.2-2.8 to the present formalism. For

ease of notation, we will indicate corresponding objects by the same

symbols.
Denote by G the ring of matrix-valued functions on Td of the
form
g h
G = _ _ s
h g
and by Go

To set up the recursive scheme, let o5 e R and P(J) € G, and consider

the system
2} = ¢l3)(a,e) 2y + 2 o3 (g3a,0) 20 ¢ =w (2.50),
where
NG LS |
0 —ia. | E(J) E(J)
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The regularity assumptions on C(j) and P(j) as functions of a ¢ A(j)

and @ e Td are as in

§2.3; Mj denotes an es-independent upper bound on

(3) -
| P HE- neoC Now Tet 85 < &5 and define

i

oy = L p) gtve | pldd = T gl ivee

imn

111

L(3+)
D

1 =

Inductive Lemma {II).

such that if a € A(j+

K1 c(sj

then, setting 254 =

e L a(w]) el

min%%cn(Nj) sup

-1
]
a 3 L]
aeDj

= {a € A(J)' ]aj(a)-‘”év > CQ(-}\)I) s O<‘\)|f_NJ}

D(nj+'l ) A(J+1)) .

There exist two universal constants K1 > K2

1) and

_ J
) 6.1 cM, ez <1
J J

SE] Z4 where

u




¢t ang p

(gsa
D

) € Td X A(j+1)

Moreover,

F+

[

Finally, %4 ¢ Rand P

j+1°15+1

§_K2 ;(6j) dj

(41 ¢ 6 .

0

1

J+1) as functions of, respectively, a € A

2
ch .

- . , oA
Sj = Sj(mx,a,g) , Sj(Q,a,e) =1 +¢ Uj(w;a,e) ,
()
(3) 2
“{J fwev
_ 1 0 9% E:
Us =310 | 209) + "
S B I IR v#0 al3)
- - IVIENj v
Zi(Eéli-a.)
the system-(Z.SO)j becomes
RPN FE DI SN ¥ ) -
Zj""] = [C + e P 1Zj+1 s G =
- with
1 () - -
- : il - i.
clitt) o o(3) , 27 "o s i) 27 ¢
0 ™ 3)
- O —
and
. : ., pld)
P(J'H) = S_] P(‘]) u. - Ué(‘}) + R ;
i A 2]
£
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~(3)
q\)
s ey
21(55= ay) Livg
=(3) :
p\)
Twev
w
(3) | T O
0 -'iuj+-E
(3+1) and

have holomorphic extensions to Dj+] and § (5j+1) X
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Proof. (2'50)j+} and the regularity properties of C(j+1) and P(j+])

are easily checked mimicking the ideas of §2.3. The only new technical
element in the lemma is the Tast assertion. That %54
Tows from P(j) being an element of Go' To show that P(j+}) belongs to

is real it fol-

Go’ notice first that Uj € G0 and that G is closed under norm limits.

Then, if we put

we have

j

Thus, ﬂj ¢ G and hence P(J+1) € 6. Furthermove, rewriting PUI*1) ao

It

(41) _ 20T g 2 () g 4.2
p £ (SJ [-e DmSJ. + C Sj e

we obtain

(3+41) _ -23 -1
tr P £ tr[Sj Dm Sj] )

The c¢laim now follows from the identity
tr[T7! D T = tr[D TogT]

valid for any matrix-valued C](Td) function T with |[I-T||_<1 and any

d

vector field D on T with constant coefficients. The proof is finished.
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At this point there are no more difficulties in following the

path described in §2.4-2.8. We collect the results in the following

Theorem. Let g and {8} be compatible*.

Y
m
-
FAY
el
-
!
11

KZ‘FCMO

and E belongs to

0

IT ¢ satisfies

e=ol (al™)y, A 2 A A
3=0

then the change of variable z = S, W o
S, = TT S. =1+ el
=0

transforms** (2.50) into the system

Ta, 0
w'o= w, o =lima, .
0 -ia jto J
Furthermore one has
(i) U, €6, ;
(11) S_ as a function of e ¥ is analytic with a holomorphic

extension to Sd(gm) (g = Tim gj) satisfying

Jte

*See §2.4 but notice that, because of the Inductive Lemma {(II),

an analyticity-loss sequence {Gj} will now be required to satisfy

§. < g, instead of (2.22).
o 3

**0bviously onesets C(O) = C and P(O) = P.
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(iv)

(v)

{vi)
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loll, <«

fe=]

4T 3

S, and o as functions of E are C” in the sense of Whitney on E;

a verifies

b, - l‘?"|| 2‘E§T%GT7_’ any w e 24 - {0}y ,

and

R = A(O) - A(m)

| U 43)
J=0 veZd
O<|v|§Nj
where
1) . {a e A(O):]a—a. | <r 3,
v Jg\) v
= (3) ey _ 3
ay , =a (] ) . r, = &ty
and a(j)

is the inverse function of* uj;
if (2.44) holds then for E0 > min v
Ke

meas. (R A [E_,=)) < ,
8] —'C/E;

where R = c(LO)- E.

*Compare §2.6.
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Remark 1. The identification of a with the Johnson-Moser rotation

number is immediate: From

Tz =TS w

[=]

Rl
]

one sees that*

g X i X

fze ° y{wx) = e 7 Xo(me) L1 + es{wx)]

1l

and f are two (independent) solutions of {(2.5). The identification is

now plain from sup |y - Xol < 1.

Remark 2. The resonant points of the Dinaburg-Sinai set correspond,

in the present approach, to the number aj v Notice the difference

3

with the aj v's of §82.6: there, because of the real formalism, we had

3

to exclude more points**,

Remark 3. Russmann [1980] constructs, for E large enough, a function

a(g, ;LJ analytic in L put (he proves) only continuous in g varying
vE vE

in the Cantor set

[ox]
n

) wev 1
L&J {B>0-l8 -3 ‘ iQ(IVD 1.
vel -{0}

*s = (Uw)1].

**For a comparison, recall the switch of notation w -+ @,
d » d+1.
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Then he identifies the resonant points a, of the Dinaburg-Sinai set

with
5w + a(B(E), =)
vE
where B(E)} is determined implicitly by

g = /E - a(g, ) .B8e B. (2.51)

-

To carry over such an approach, ohe needs to analyze further equation
(2.51). This can be done along the Tines of this chapter proving
that g + a(s, J—) is C&(B) and that 22~ 1 for large E's.
JE 38
Finally, notice that in this case, @ are not any more num-

bers but functions of E {which are CE on 3-1(8)).

Remark 4. The system (2.50) meets the hypothesis of the main theorem
in Moser-Poschel [1984]. Thus, with their method, the "resonant states”

-described in (2.4) can he obtained also in our situation.




CHAPTER 3
ABSOLUTELY CONTINUOUS SPECTRUM OF QUAST-PERIODIC SCHRODINGER OPERATORS

3.1 Introduction

In this chapter, we study the absolutely continuous spectrum

of a family of quasi-periodic Schriodinger operators

Loz LV(e + w)l, o 14,

¥ being a real continuous function of Td and y = (w], ces md) ra-
tionally independent frequencies. Two themes dominate: spectral

densities and Bloch waves, that is, eigen-solutions of Le of the form

b= e B (wx)

with y a 82 function on Td and g a real number.
In 54, we show that for almost all £ in a minimal support S

of the spectral measure*, there exist two independent solutions, u

and u **, of

*For precise definitions, see §2.

**Similar functions were also exploited by Johnson-Moser
[1982], Kotani [1982] and Deift-Simon [1983].

83
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such that*

d(PEosp)
&€ 2n

L@, u) |2 + (9,12

| Lu,ul|

» @eC (R} (3.1)

The proof of {3.1) is based on a fundamental result about S appearing
in Kotani [1982] and on a characterization of the absolutely contin-
uous spectrum for L's in the 1imit point case worked out in 3.

In Section 5, we show that if there exist Bloch waves ¢ for
E belonging to a set of positive Lebesgue measure, then, on such a
set, one can replace u by ¢ in the above formula (3.1). An immediate
corollary of this fact, applied to the KAM set E of Chapter 2, gives
a representation of the spectral densities in terms of KAM eigen-
functions.

Deift-Simon [1983] proved the existence, on S, of two indepen-

dent eigenfunctions, g and g, such that
x + r{x) = |g(x)}
is an L2—quasi—periodic function:
r(x) = R(e + wx) ,  ReLE(TY).

In the last section, we prove that g belongs to L3(Td) and that R

can be thought of as a distributional solution, on Td, of**

*pS denotes the standard spectral family for L. and fl-stands
for the Rann—Nikodym derivative with respect to Lebesgue meggure.
d
**D = T W _E._
m -

1 1 881

i
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2 R = LHQ-ER, R 0 ae
w

R

Finally, if w satisfies a Diophantine condition and if* x > g(x) + ax
denotes the phase of g, we will see that there is a natural way of
associating to g a (unique) distribution on Cm(Td). This will allow

us to interpret g as a weak Bloch wave.

3.2 Classical Background

Our analysis will be based on some classical facts that we

recall here for convenience.

(m Herglotz functions**. A function g, holomorphic in the open

upper half plane
C+ = {z e C: Imz > 0} ,

is said to be a Herglotz function if Im g > 8. The class of such
functions will be denoted by H. Any g in H admits the following repre-
sentation:

1 1

9(z) = a + bz + [_ (%2 = %z
0

) dU(X) ’ (3'2)

with ae R, b >0, z,e Cp and dp a positive Borel measure subject to

*As usual, o is the rotation number.

**%See Dym-McKean [1976] or Katznelson [1968].
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du(x)
J 1+ x2

Viceversa, any function of the form (3.2) belongs to H.

For almost every* x in R, the boundary value of a Herglotz

function g exists and is finite; we will denote it by

g{x) = 1im g(x + ie) .
e+0

Moreover, the imaginary part of g(x) coincides (almost everywhere)

1
with the Radon-Nikodym derivative dic , of the absolutely continuous

part of the representing measure.

(2) Limit-.pointrtheory**, A Schriddinger operator L{v} is said
to be in the Timit-point case {at +=) if, for any E e C-R, there

exist two solutions, f, (x,E)}, of

L{v) f = Ef , (3.3)

uniquely determined up to a multiplicative constant, such that

It

Ko £,00 € AR, R, = (0,0), R = (-=,0).

*Notational warning: All measure theoretical assertions stated
without specifying to which measure they refer to, have to be intended
"with respect to Lebesgue measure”.

**Coddington-levinson [1955].
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In this case,

(1) f, and f_ are independent;
(i) the limits*
. f-I(X,E) . f-I(X,E)
h (E} = Tim - FGET h_{(E) = Tim F.O0EY
Xfeo 2 Xd-o 2
exist for any E € C-R;

(i1i) E e C, »h(E) ¢ C, are Herglotz functions;
(iv) fiﬁx,E) = const.[f](x,E) j_hi(E) fz(x,E)];
(v) L{v) is essentially selfadjoint on Cz and the Green's function
| is given by

f(x,E) f_(y,E)
Q(X,_VaE) = [f_[._,'F_T s X > Y,

and symmetrically for x < y.

Notational remark: From now on, f_will denote f1(x,E) j_h+(E) fz(x,E).

A sufficient condition for L(v) to be in the limit-point case

is that
2
v(x) > -k x%, x| t =

for some positive constant k. Thus, bounded potentials give rise to

the limit-point case**.

*We recall that f1 and f, are the solutions of (3.3) with
f](O) = Fé(O) =1 and fi(O) = f2(0) = 0.

**" imit-point" is opposed to "limit-circle", characterized by
the fact that all the solutions of (3.3, with E € C- R are L% in
either R_or R_.




88

(3) Measure theory*. A1l the measures that we shall consider are

positive and Borel.

A support of dy is a set A such that u(R - A) = 0. Two
measures are orthogonal (or mutually singular) if some of their sup-
ports are disjoint.

A minimal (relative to Lebesgue measure) support of du is a
support such that any smaller support A' C A satisfies meas.(A-A')=0.

Now, let

du = dugo + dug

be the Lebesgue-Jordan decomposition of du. It is a theorem by

De La Vallée Pouissin that the sets

{x e R: %ﬁ-existsando < %% < w}

[a 8

{x € R: H§-= +o QP %&-doesn't exist}

are minimal, disjoint supports of, respectively d”ac and dus. Notice
that the second set, being a minimal support of a singular measure,

has Lebesgue measure zero.

*The circle of ideas illustrated here is very close to the one
found in the (spectral-theoretical) paper by Aronszajn [1957]. As
a general reference, see Saks [1937].
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(4) Spectral theory*. (i) For Borel sets A and real numbers E,

Tet PA and PE z P(__O° E) denote, respectively, the spectral projections
and the spectral family of some selfadjoint operator T on LZ(R).

Stone's formula**,

b
] ) .1
7 Pra,b] *Pla,b)d = Strong’llg ?E'Ja [Reys, - Reog 1 dEs

gives immediately.

, 1
ufAa) = J d(P_@,) = 1im —~ Im f (Re,: ¢,) dE
q A E c40 T A E+ie

where & is any Borel set withy (3a) = 0 and ¢ any C™-function with

compact support. We will call du a spectral measure. Now, notice

that

+x

7 € C+ > (R2@,¢)= J E%E-du¢(E)

-

is Herglotz, so from points {1} and (3} one deduces easily that

A= {E:Him Im(Rpy; q@.¢) € (0,2)}
e+0

is a minimal support of du

®.ac and that

A" = {E:lig Im(RE+i€q,¢) = 0 or fails to exist}

is a minimal support for d“q 5

*Reed-Simon [1972], Simon [1982].

**R_ denotes (1-2)"1 for z & o(T).
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Moreover, on A

du
@,ac _ 4, 1
o - g InReys o) -
e+0

(i1) Let {an} be a sequence of positive, summable numbers

and {@n} an orthonormal basis in LZ(R) and define

<0

dp = ¢ a du, .
n=0 ¢h

Such a measure will be called a spectral-class measure.

Since, for any Borel set 4,
u{a) =0 if and only if PA =0,

one sees that the equivalence class* of du, called spectral-class, does

not depend on the choice of {a } and'{@n}.

Remark. A real number E is called a point of increase for dy if, for

any ¢ >0,

du > 0.
(X-e,x+e)

Now, recalling the definition of absolutely continuous spectrum**,

UHC(T) = U(TI\LZ ) ’
ac

*The equivalence relation being "mutual absolutely continuity".

**Lgc denotes the Hilbert space {gel%: due is purely abs. cont.l.
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one checks easily the relation

Oac = {points of increase of duac} .

3.3 Absolutely Continuous Spectrum of
Limit-Point Schrodinger Operators

Let L(v) be a Schrddinger operator in the limit-point case and
fix a spectral-class measure du based on wn's with compact support.
Let, also, S and $' denote disjoint minimal supports of, respectively,
d“ac and d“s‘ Finally, define, for almost every E in R,

u i(x,E) = f1(x.E) + h (E) f,(x,E)

where h“+(E) are the boundary values of hﬁ_(z) defined in (2) of s2.

Remark 1. For almost every E, the Timits

1im f+(x,E+ie) = u+(x,E)
e+d — —

exist uniformly on compact x-sets.

Remark 2. u, are solutions of the Schrddinger equation (3.3); the

evaluation
[u,.u] = -(h, +h_)

shows that they are independent if and only if h+ +h_ #0.
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Theorem*. (i) {E: h, +h_#0}=5,
(11) {E: h, +h_=01CS" .

Proof. Let
A= {E: h (E} exist and are finitel.
As we have already remarked** |[R-A}] = 0. For any @e CE and E ¢ A,

.
Zlg —Im (Rgy; 9:9) (3.4)

Tim L ” a(x,y,E +ig) 9(x) @ly) dxdy

et "
R2
) lig %.Im (}f+zf_l{ JJ f.00f_(y)gx) ey}
x>y

I RAGIEOrS WD

[}
3=
. (oo
3
=
-+
“w —
o

[Ju,t0u_ et 757
Ry
+ ] u+(y)u_(x)cp(x)cp‘mD
X<y

+ o if h, +h_ =0

<t = if h +h_#0

*Statements regarding caC(L) such as (i), should always be
understood "up to set of (Lebesgue) measure zero".

**| 5| denotes the Lebesgue measure of A.
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The exchange of the limit with the integration is justified by Remark
1. Now by (3) and (4) of §2, we have
dug ac

——dE—= Tim Im (RE+_iE({>,(F), E eA,
e+0

and since, for E € {h, + h_ # 0}, one can choose a function ¢ e Cj

such that

dig ac
dE

>0,

claims (i) and (ii) follow.

3.4 Absolutely Continuous Spectrum and Spectral Densities
of Quasi-Periodic Schrodinger Operators

Now we turn to (real) potentials v which are continuous and
quasi-periodic with rationally independent frequencies (w1, cees md)

= € Ri . Consider, instead of L(v), the family of shifted

" Schrodinger operators parametrized by 68 € Td:

(v.) < Ly )
L{v,) = - =5 + V(g + wx) ,
6 dx2

. . . d
where V is a continuous function on the torus T *.

*Recall that since Vg is bounded, Le is in the Timit-point

case. See §2.
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While it is easy to see that the spectrum of Le is independent

of 6 in_T% *, questions about the nature of o(Ly) are much more
subtle. We start describing a basic result from Kotani [1982]. Let

v,(Es8) be the Lyapunov number for Ly {at +=):

v, (E.8) = li: ]°9§|M£x,e,E)”

when such 1imit exists. Here, M(x,8,E) denotes any fundamental matrix
for

Le f=EFf,
and one checks immediately that s does not depend on the choice of M.
Since the traniation

Tx:eer—»Txe =g +ax eT9

is ergodic with respect to the normalized Lebesgue measure on Td,
do = (deyi , the subadditive ergodic theorem proves that vy (E,s)
2w

*Let 6,0' & Td. By the compactness of Td, we can pick a

sequence {x_} such that va(x-+xn)-+ve.(x) uniformly in x. This implies
that L(ve(-4-Xm) converges to L(ve.) in the norm resolvent sense. Since

the spectrum is not lost under such limits and since the resolvent set
is open, the claim follows. See Avron-Simon [1981], Johnson [1982].
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exists for almost every & *. Now, let w(z} be the Herglotz function**

zec, »wiz) =g | ((Es0) + h_(E,0)) 0
T

and let -v(E) denote the real part of the boundary value of w (for

almost every E ¢ R).

Theorem 1 (Kotani [1982]). (i) v, (E.e) = v(E),

for almost every (E,8) ¢ R x Td;

. ds .
(11) JTd TFTF:TETET' € (0,»), for almost every E in

{E:v(E) = 0};

t

s . 8
(ii1) Se = a minimal support of du_.

{E:v(E) = 0} C {E:h = -h_, Im h, >0},

for almost every o e Td.

Remark 1. Point (iii) shows that the absolutely continuous part of

the spectral-class measures due, g e Td, have a common minimal support

{E:y(E) = 0}. We will denote it by S. Notice that S is uniquely

determined up to a set of measure zero.

*For more information, see Ruelle [1979].

**Henceforth, the notation is analogous to that used before:
For example, h,(z,8) denote the Herglotz functions of §2 for Le’ du
a spectral-claSs measure based on compactcpn's, etc.



Remark 2. ‘Recalling the definition of u,, {(ii1) implies

u+(x,e,E) = f1(x,s,E) + h+(e,E) fz(x,e,E)

= u_(x,8,E) = {F,(x,8,E) - h_{6,E) T,{x;8,E))., E e S.
Moreover,
tlu,,u ] = fu,ul=2Imh >0, E eS.

Now, we are ready for

Theorem 2. Let @ be-any C” function with compact support. Then for

almost every (g,F) e Td xS

]
d“?,ac -
dE 2w

[(@u)!® + {em)]? , (3.5)

ifu,u]

where u = u+(x,e,E).

Proof. By Remark 2, formula (3.4) and Section 2, we see that

96
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d -
udc;,ac =1 —-—]—_—- ” u(x) uly) @(x} olyJ + ” uly) u(x) ¢(x) @TyT
™ Lu,ul x>y %<y
=]; L1 —1' ” u(x) uly) ¢(x) ¢{y) + ” uly) u(x) @(x) ¢{y)
ilu,u] X5y oy

[ mcp(X)W+WU(X)W?(y)J .

X<y

Now,

” u(x) WYY 9(x) ) + ulxT uly) GRT ¢(y)
x>y

” u(x) TTT ¢(x) G + ” Y ulx) §T @(x)
x>y y2X

+x X + ©

[[autx g0 [ uty) g e+ | axut) ¢x) [ uty) ¢(v)

- Cco -0 -0 X

I

Jumem [ un g = il .
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Analogously one checks that

” uly) TIXT @(x) FTHT + THT u(x) FHT @ly) = [(eu) 12 .

X<y

The proof is finished.

Remark 3. An easy consequence of general spectral theoretical prin-

ciples* and Theorem 2 is that the absolutely continuous spectrum of

Le is, for almost every o, uniformiy of multiplicity two.

Remark 4. If v is actually periodic, the eigenfunction u coincides

with the Floguet solution f with f(0) = 1. Then a trivial application

of Theorem 2 confirms formula {1.3) of Chapter 1.

3.5 Bloch Waves, Densities and KAM Spectrum

An eigen-solution ¢ of L{v)**will be called a Bloch wave if
it has the form
w(x) = &' x(wx) ,

where g is a real number and y is a C2 function on Td +. The

- Schrodinger equation for y is equivalent to

*See, for example, Simon [1982].
**The notation is as in the preceding section.

1o avoid trivialities, we assume g # 0 and y not identically
zZero.
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Doy + 218 D y + (E-02-V) y = 0 D:g 2 (3.6)
LUX wa F X = H —=(.U- s -

where everything is computed at & = wx. But, since {8 = wx, X e R} is
dense in Td, equation (3.6) holds identically on Td, and in particular

at g = ao + wx for any eo. This means that, for any ¢,

o 1BX x(8 + wx) = p(x,8)

" is a Bloch wave for L(ve).
Bloch waves with g and w rationally independent will play a

special role. In this case, we have

Ltemma. (i)  [y,9]1# 0 ;
(ii) ix(e)| » s, for some s > 0 and any o ¢ Td;

(-i-i-i)* a = IB + m-\)ol, 'f:O'f" sgme \JO & zd -

Proof. If [y,v] = 0, then, for some complex number a # 0,

- ae-123x -;

>

and, for any v & Zd,

*y = rotation number.
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~ Now, expanding y(s) in Fourier series and taking the limit as x+=
one concludes that iv = 0, and therefore y = 0, a case that we ruled

out in the definition of Bloch waves. This proves
0 # [v.d1 = ~2i8]x)% + 21 In(x D) . (3.7)

Now, if x were not bounded away from zero, there would exist
numbers X, 4o for which x(mxn)-+0. But then (3.7) would imply
[v,0] =0, contrédicting (1).

A§ for (iii), it is a general fact that for any continuous

function F on Td, bounded away from zero, one has
wev (3.8)

for some Vo For completeness, we sketch the proof of (3.8): Let

fFirst F be ¢°(19), say. Then

Tim arg Flux) . 1im %—Im Tog F(wx)

XA x Xteo
. X (DwF)(mt)
= 112-; Im f TFwt) dt
0
d (aF)/(08;) 44
= I misz F g =WV, s
'iz} d (2'“')

T
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where the third equality is easily checked expanding in Fourier series.

Formula (3.8) follows by approximating a continuous F with smooth

functions. Now, (iii) is plain from the definition of «. The proof

is complete.

Remark 1. The Lemma shows that, when 3 and u are rationally inde-

pendent, we can (and will) assume without loss of generality, that y

has the form

Moreover, by {iii}, a and w are also rationally independent.

“In the next theorem, we relate Bloch waves to the spectral theory of

the preceding section.

Theorem 1. Let A C R be a set of positive Lebesgue measure and sup-

pose that for any E in A there exist Bloch waves for L(v),
bp = b= e )

with (o0,s) rationally independent. Then*

(1) A C S(={E e R:v(E) = 0}) 3

(i1} p=au, forsomeaeC:

*Again, "almost everywhere with respect to Lebesgue measure”
is intended.-
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(i1i)  for any ¢ € CO(R)

2 — 12
[ (¢.0)] i_I(W’W)I , (8,E) almost everywhere
ilwsv] in Td X A .

1
dE 2w

The KAM set E, constructed in Chapter 2*, satisfies the

hypothesis of the theorem, so not only

E CO’aC(L) ,

but, by (iii), one has an explicit formula for the spectral densities

based upon KAM eigenfunctions. This also shows that, in the analytic

quasi-periodic case, S is a big set in the sense of Lebesgue measure.

Remark 2. We recall that Dinaburg-Sinai [1975] show that the KAM

spectrum is contained in caC(L) by constructing, using a KAM scheme,

dy,,
the spectral densities —7%%§E-on E.

The proof of Theorem 1 will be a simple corollary of

Theorem 2 (Deift-Simon [1983]). For almost every (8,E) in Td X S,
x > u(x,8,E)| is an L2—quasi-periodic function with frequencies

w = (w1,...,wd).

*See, especially, §2.9.




Proof. We repeat the proof by the authors. Let

g(x,8,6) = —UOG.E) o
JIm B (6,E)

so that
[g,9] = -2i .

By the unigueness* of the f.'s in C,> one has

u(x,T 8,E) = lim f,_(x,T 8,E+1¢)
J g4l + Y

f+(x+y,e ,E+1ie)
f+(y,9,E+ ig)

1

1im
e+0

_ ulx+y,e,E)
uly.a,E
Thus (dropping E in the notation),
X + g(x,Tye) = ¢ g{x+y,8)
where ¢ depends on y, ¢ and E but not on x. Then,
[g(-.T 0), g(-.T 0)] = -21 = [g(-+y,8), g(-4y,6)]

implies |c| = 1, that is

[t}

lg{x+y,8)| Ig(x,Tye)| , for any x € R,

in particular at x = 0

*Recall f+(0,z) =1, z & C,.
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1

Yim h+iT 5)

lg(y,8)] = Ig(O,Tye)l =
- y

Now (iii) of Kotani's theorem* confirms the L2-quasi—period1city of

x » {u{x)] concluding the proof.

Proof of Theorem 1. By the Lemma, we have

[w,w]# 0, Eeh.

Thus, any fundamental matrix of the Schrddinger equation is bounded
in norm and the Lyapunov number y,_ vanishes identically on A: (1) s,

now, plain by Kotani's theorem. To see {(ii}, fix E (a.e.) on A and

Tet

x > u(x,8) = a p(x,8) +b w(x,8) , a,becC. {3.10)
Then, we have

u? « (Jal? + 61%) [xI? = 2 RelaB €21 571 ,
that we rewrite as follows:

2 21 2 = _—2iex =2
o 1af(T e+ ¢, Ix(T 0) (% =y &2 (T 0) 4T, 1% 3H1 0),

(3.11)

where C, = In h,(6) and g is as in (3.9), C, = -(la|® + [b]?),

6 + wx. Notice that (3.11) holds for every x in R

3 = 2ab and Txe

*Theorem 1 of §4.
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and for almost every & in Td.

Thus, for any v e Zd and t « T, we have

1 (y 2. =21 (t+ax)-i(Tyg8) v
¢, v igl(Txe) e dx (3.12)
Y ~2i (t+ax)=1(T_8) v
2
+ cer x(T,8)1 e U dx
0
-2it-1(T 8)+v
_ 1P 2 X
- Gy 5 JO x2(T,0) e dx
a7 ~2i(t + 20x)-1(T 8) v
+ Cg E-J X (Txe) e dx .
0

Now, since g2 and x2 belong to LT(Td) and since the flows

Td+1 d d+1

x+(t+amTﬁ)e ,x+Tﬁ eT ,x+(t+&w;&e)eT

are all ergodic, we can apply the ergodic theorem and, letting y +

d+1

in (3.12) for almost every (t,e) € T- ', we obtain

'2it|-e' - 1 1 - —Zit'-ie1 b Y] ! 1
2, dt'de 1y 2 dt'ds
c, f olle) e PRl [ Ix(s")] %e il
: T
Td+] Td+1
= C e-21tj XZ('BI) e-'ie"\J de? _ . 2 “Zit'—'ie'-\) dtadel
3 d+ C3 ‘X(e) e d_!_'] *
(2m) Td+'| (2n)
that is
g = C3 e—21t (Xz)v
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Since v was arbitrary and x is not identically zero by hypothesis, we
must have C3 =0, i.e., ab = 0. Looking at the rotation number in
(3.10), we conclude b = 0. This proves (ii).
Now, {(iii) comes directly from Theorem 2 of 4 since the con-

stant a washes out from formula (3.5). The proof is finished.

3.6 Weak Bloch Waves

In this section we discuss a question raised by Deift-Simon

[1983]: Do there exist Bloch waves, possibly non-smooth, for almost

every £ in S = {E:v(E)=03}?

First, we summarize the situation. Let g(x,9,E) be the eigen-

solution of L(Ve) defined in (3.9} and let
r = r(x,8,E) = |a(x,8,E}]| .
In Theorem 2, 55, we saw that

Y‘(XsesE) = 1 = R(TXB,E) ) (eaE) d.e. :ln Td % S »

/Tm B, (T,8,E)

and also*

X
0 < Tim l—[ rz = J Rz(e) do < +w . (3.13)
d

%
Xten 0 T

Furthermore, since [g,9] = -21, x » r(x} is different from zero for

every x and the Schrodinger equation shows that r satisfies

*Dropping the dependence on E in the notations.
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Me s (v, - E)r . (3.14)
r

Thus, for almost every §, X - R(Txe) is at least Cz. Another important

relation stems from Johnson-Moser [1982]:

.1 (3
-['HTIEJ—'Z—
r

o . = J ; Imh, = J ; ;%—= . {3.15)

T 7d R

We collect a few other properties of g and r in the following

Lemma. For {8,E} a.e. in 79 « S, one has

X
(@) T ] leff <

X Ao 0
. -1
(i) Tm lelxrxre
X 4o VX

Proof. To see (i), we will need two standard inequalities that hold

for arbitrary Cz-functions f *:

X
lf(x)[2 < K J (§f|2 + |f“|2) , x > 1 (say) and K a universal constant,
0 (3.16)

[F(x)|% < 2 J; (F12 + #1149 x> 0. (3.17)

*The first is a Sobolev inequality,\the second follows im-
mediately from the identity

1"()()-2 = [Ji_] <:f(y) + [; f'(z) dz> dy] 2.



Now, let f be a solution of
f* = qf,

where q is a continuous bounded function. Then

X X
i 12
R,

o= frenmof -

0

so that

* 2 oY
[1e17 <llal, [ 1912 + 1500) #0)] + 1560 #1001 -
0 0

Moreover, by (3.16) and (3.17),

21£(x) £ (x)| < 2|2+ T £ [

X X X
2 YA 2
<k +lall) [ 16 [P enal [ 167,
0 0 0

and one concludes

X X
[ ca ] 1f7en
0 0

where a = (4K

-+

(4K +3) [lqlL) and b = 2|£(0) '(0)] .

So, setting f v-E, (3.15) and (3.18) show {(i).

113

g and g

{3.14) one checks

& [(r')2 +;lz] = (v - E)(r)

From

108

(3.18)
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and, integrating and using (3.17},

(r')2 _j? =c+ {v-E) 2 J; v p2 (3.19)
r

X X
<leb+ellvel, [ o2 e eBev, [ P
0 0
Since
Ir'l < 19",
dividing by x and Tetting x4~, we obtain, by (i),

-1
—_ r' o+
Tim "' ¢,

VX

Now going back to (3.19), we have also

Tm — < =.
VX

The proof is finished.

Now the upshot is the formula*

{ RD%:[ %+J (V - E) R 6. (3.20)
d w TdR Td

valid for any C° function & on T%.
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Proof. First, let ¢ > 0 and write

¢(x) = ¢(x,0) = ¢(T,0), T8

9 + wX.

Since R € L](Td) we have, by the ergodic theorem and (3.14),

J R D% = lim l—Jx R(T 8)(0%) (T 8) (3.2?)
.d w xto X 10 y w Y
X
= 1im l—[ re"
Xteo 0
-I X
- tinl [w -]+ ¢]
Xt 0

SN _
tin gy (e o

In the last passage we used (ii) of the Lemma to get rid of the
boundary terms. Now, another application of the ergodic theorem to
positive random variables tells us that*
X
1im %-J j%—= J J% .
Or Td R

But, since

Tim %—Jx (v-E)r = J (V-E) R4 ,
0 d

we conclude from (3.21), a fortiori,

*The right-hand side might be ». See, e.g., Breiman [1968].
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L-_'_\
T
=

{2

= J (E- V)Ro + J R D% < =,
d d w
T T T

In particular, for ¢ = 1, we get

showing that (1/R3) e L. Now we can repeat the computation in (3.21)
with an aribtrary C” function & and complete the proof of (3.20).
A new theme has just entered: By (3.20)}, R, regarded as a distribu-

tion* on Cm(Td), is a weak solution of the equation

DiF =L e (V- E)F, F>0 aee. . (3.22)

F

Henceforth, let us assume that V belongs to Cm(Td) and that o s

highly irrational:

ve 79 - (01, (3.23)

for some ¢ > 0 and m ¢ Z+.

Now, define the normalized phase of g by setting

g = eflex +8(]

*As customary, G € LP(Td) can be thought as a distribution on
¢*(19) by letting '

(G.4) z‘[ G¢, for any ¢ e (19,

Td
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Since o is the rotation number of g, g is a real (smooth) function

satisfying

T &%) - g
Xtoo

Furthermore, the Schrddinger egquation for g=R{e) u(x,s) implies
gt = 1_2 - a, g(0,e) =0 (mod 2r) . (3.24)
r

In the next theorem, we show that there is a natural distribution

associated to the phase Rg.

Theorem. There exists a unique distribution B on Cm(Td) satisfying

X
(D Bsgy = Tim —J B'(y.8) o(Ty0) dy,
Xteo 0

{B,1) = 0

for almost every 5 Td and all 4 ¢ Cm(Td). Moreover, B belongs to

the Sobolev space* H _ for any t > m + %-.

-t

Proof. Define B as the (formal) trygonometric series

N

1 iv-0
B(o) = . (——)e .
¥#0 Twev R2 Y

bl

*Hgy s € R, 1s the c]osure of tryonometr1c po]ynom1a1s
G E:G e1v ® in the normI!GH E:(1 + vev) |G ‘ ; see, e.g.,
Bers-John-Schechter [1964].
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For t >m + d

> (3.23) yields

2t e 1|
I8 E 0™ g (]

. C2<[1_2>2 y bl

R ('l+v-\))t

showing that B e H-t'
Next, let ¢(x,8) denocte ¢(Txe). Then, TTE'%-B(X,G) =0,
(3.15) and the ergodic theorem imply
R 1 -
11‘ng gy' = lim —X—{B(x) g(x) - j B'({’]

Xt 0

e (e ] ()2

<DmB,¢).

H

it

Finally, uniqueness is a trivial consequence of the irrationality of w

and the normalization {B,1) = 0. The proof is finished.
Remark 1. B is a (distributional) solution of

: 1
DUJB_E?-&,

where such equation is the 1ift on Td of (3.24).
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Remark 2. If R happens to be smooth, then equation (3.22) shows that
R is bounded away from zero. Thus, ;%-is smooth and hence B is a nice

R
function. In such a case

1

s(x,8) = B(T,8) - B(e)
solves (3.24) and g is seen to be a (genuine) Bloch wave.

This last remark suggests that the question of the existence

of (smooth) Bloch waves on S can be reformulated as follows: Is a

weak solution R of (3.22), satisfying

R2 and 5 ¢ Lerd)
TR

smooth?
Unfortunately, regularity properties for nonlinear equations
on tori are difficult to be treated with general PDE méthods. On

" this subject we just mention a paper by Brezis-Nirenberg [1977].

We conclude indicating a possible way to attack such a problem:

Assume that one is able to prove that

%.e LP(Td), for any p > 4.
Then (3.22) would imply

2R e L2 |

w

Applying Dm to the equation we would see



3, _ 3 _

DwR = - ;E'DNR + (DwV)R + (V-E)
so that

3R e L2,

w

and, inductively,
DSR e L2 , for any n.

This would mean

YR [Z Jwev]® < o, any n,

a formula that gives decay of the Fourier coefficients (i.e., smoothness)

DR

for all v's away from the small-denominator plane

{v e Rd:m-v = 0},
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APPENDIX A
AN ANALYTIC IMPLICIT FUNCTION THEOREM ON Td

We sketch the proof of the Proposition of §2.3 needed in the

Inductive Lemma. Injectivity is plain from

lz + g(z) - (2 +g&'ﬂ|3_h-—f]<1-EL“%%HP>,ZJ'eS%rL

Surjectivity is an elementary application of the “contraction lemma".

In fact, let w be any point in Sd(r~s) and consider the map

z € {z ¢ Cd:|z-w[ < s}~ j(z) =w - g(z). If the constant Ky 1s
chosen suitably, j will map the sphere {z:|z-w| < s} into itself and
will be a contraction. Therefore, in such a sphere, there exists a
unique fixed point z for j, that is, z = w - f(z).

The remaining statements are even more obvious.
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APPENDIX B
CONVERGENCE OF CHANGES OF VARIABLES IN THE KAM ITERATION

We prove the claim made in the proof of the theorem of 52.5.
Let's consider first the 1imit of the G ._ Recalling that z -~ G (z)

d _
is holomorphic in S (gj+]), Ejsq = £ -2 25 § , plus the est1mates

on Aj and (2.12), we have for z,z' in a compact set of § (g )

165 ,n(2) - 6(2)] = kgo 165407 (2) = 654, (2)]

R LI CTNES STV, S e 1 PR Y
k=p | Ik 954K+7 itk “=0 || ®7 93+
m=1 1 j+k | 3¢ J+k+1
4 2
2k [ 1 =] ] = oyl
k=0 L 2=0 3 @
PR ol 112
< K T+ e7fja g £ B
m-1 jtk ] o E S k1
< K. 1+ 5¢e" |la|l 8 £ Il a, ”
ko2 E){ 2 el e gkt Il g
241
< K (ET)J+1

This proves the claim concerning the Gj's

Notice also that
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1G(z) - z| < |G(z) - Go(z)| + [Go(z) - z|
iI(};O IG.]'H = GJ' + |GO - ZI < K. et

So we have G{g)

11

(Q1 + ea(@sase), @ps -ees ¢n) with a holomorphic
in Sd(gm) and

lall < Kye.

Let's turn, now, to the Sj's. Ffrst notice that Sj has the

form

_ _ -
14+50) 0 <=+ 0
s{3) 10+ 0

] s((jj) 0 «--01

We want to show, by induction, that||s1(.*])|[E < 1 for any
J+1

i,j. For j = Ojlsgoni =¢ ~§9—H < K. et < 1 because of condition
B B L o)

(2.26). Assume||s§jn| <1, for 0 < j < k. Then
Ej+1
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T K+1 3¢ k+1 3¢ ]
1 + sgk)-FEZ ak+1 %k) E2 k+] 0 ...0
@1 i
k+1 3¢ k+1 3¢
= = k), 2 S%k+1 . (k) 2 k+1
el T3k T Ty Spi e metspten om0 0
k+1 a¢°_ k+1 3¢ ’
Sé|<)+€2 k+1+sék) 2 PR
994 9¢q
and, by the inductive hypothesis (2.25),
||S(k+]ni E ls(k) + 52k+] Ef5i1-+ s(k) k+1 a¢k+1”
k+2 1 Bqai 1 3q7_1 gk )
k+1 3¢
st 2 2R sk e
=0T Tk 9 T B
k+2
+ ]
NEC T ”“” 1) w2 § 2
r— 'I Ek_l_-l 3?1 < i £=~| € a(f
S+l
< Koet +2 K. (K e’r)zf_] .
Next, we show
“S:?H-'l - SSL”E < (K. e1}




In fact:

Sper = Sl = 115300,49) Touq (9490 - Sl

< l1y08047) = S+ 1180, I1T,4(a,0p) - T

3%

3 22+1
< K. 3 Igﬂ,ﬂ - z| +[|SQ‘H (K. te)
< Ko ————— (K. e + {151 K. et
o1 e .
o+
< (K. s:'l.')2
Now,
. m-1 _
HSk+m B Ssa” = J.;O ||Sk+j+1 B S“k+j”
o k+j+1 k+]
iE (K. E‘l’)z < K. (K. er)z
0

Thus, we can set

1+ 851(¢;a,g) 0 «-+ 0

S = L 1900 0

£S5y 0 .+« 01
with the vector s holomorphic in Sd(

and|]s”€ < Kyt

£ ) (for each a e A(m))
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